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Three-dimensional vibrations of thick circular and annular plates are analyzed by a finite
element method which, with a properly assumed set of displacement field, is different from
the traditional 3-D finite element analysis and is reduced to a sequence of 2-D analyses one
for each circumferential wave number. The present approach has several unique features: (1)
It can obtain vibration frequencies which are comparable to, or as accurate as, those by
other three-dimensional approaches, whenever comparisons between them are possible, and
yet the formulation of the present method is simpler and its application is straightforward.
(2) Different simply supported boundary conditions can be exactly imposed with the present
approach. The latter feature may be quite difficult, if not impossible, for other methods. In
the present analysis, vibration frequencies of a circular and an annular plate under different
combinations of boundary conditions, wave numbers and finite element meshes are
calculated, vibration characteristics are examined, and some typical mode shapes are shown
graphically. Then, the results of some example problems by the present method are
compared to those available in the literature to show its validity and accuracy.
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1. INTRODUCTION

There are numerous publications of vibrating circular and annular plates in the literature.
However, only a relatively limited number of these deal with this problem with
three-dimensional approaches and Leissa [1-3] and Hutchinson [4-6] are the two most
notable ones. When vibrations of circular and annular plates are analyzed by the
conventional two-dimensional (2-D) (plate) theories, some behaviors in the thickness
direction cannot be taken into account and some boundary conditions are just impossible
to impose exactly [7]. Therefore, the vibration frequencies obtained by 2-D methods may be
overestimated or underestimated, and some vibration modes would never appear in the
analysis [8]. As to 3-D analysis, a 3-D analytical solution based upon series consisting of
Bessel functions in the radial co-ordinate and trigonometric functions in the circumferential
and thickness co-ordinates was presented by Hutchinson [4] for the vibration analysis of
thick, free circular plates. So and Leissa [3] proposed a 3-D Ritz method to solve similar
types of problems, made comprehensive comparisons, and presented various vibration
modes. However, due to the nature of their approaches, analysis of circular plates with
simply supported boundary conditions might be a very tough job for them to do. In the
present study, 3-D vibrations of circular and annular plates are analyzed with a finite
element which is based on a properly assumed displacement field and is not a traditional,
3-D element. Therefore, we can obtain 3-D results without paying the cost of 3-D analysis
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and also need not deal with its complicated output. Vibration frequencies of a circular and
an annular plate under different combinations of boundary conditions, wave numbers, and
finite element meshes are derived first, vibration characteristics are examined, and convergence
is tested. Some typical mode shapes are drawn. Then, results by the present approach for some
problems are compared with the other most accurate results known to date.

2. FORMULATION

The displacement field is assumed as
u=U(r, z, t) cos nb, v=V(r,zt)sinnb, w=W(r,zt)cosnb, (1)

where u, v, w are the displacements in the radial, circumferential, and thickness (axial)
directions, respectively, r, 0, and z are the corresponding co-ordinates in these directions,
n=0,1,2, ..., oo, representing the circumferential wave numbers, and ¢ is time variable.

This is a displacement field that satisfies the 3-D elasticity equations of motion (of circular
plates), expressed in cylindrical co-ordinates, when synchronous, sinusoidal motion is
assumed. These are also the same displacements used in reference [3] and elsewhere.

The displacements are then substituted into the strain-displacement relations, and the
strains are therefore expressed in terms of displacements. The stress-strain equations, in
turn, lead to stresses which are also expressed in terms of displacements.

The finite element formulation of vibrating plates requires Hamilton’s principle:

0

t
0= J |:j [O—régr + 0'2582 + 69589 + Tzﬂéyzﬂ + ’Crﬂéyrﬂ + ’Crzéyrz)
vol

— (uUdU + B8 + Wwow)] dV} dt, ?)

where i, ¥, and w are the velocity components in the three co-ordinate directions. After
substituting stresses and strains obtained via strain-displacement and stress-strain
relations into the above equation, we end up with a variational form where the three
displacements are the only primary variables. The general practice of the finite element
method is then followed. If the integration is carried out with respect to a single finite
element, the element equation can be derived as

[m]{U} + [K]{U} =0, 3)

where {U}" =[U;, Uy, ..., Uy Vi, Vo, oo, Vi Wy, Wy, ..., W, ], m is the number of
nodes in an element, and [m] and [k] are the elemental mass and stiffness matrices; see
Appendix A.

The global equation of motion can be obtained by assembling all the element equations:

[M1{X} + [K]{X} =0 @
which corresponds to an eigenvalue equation of the following form:
[K]{x} = A[M]{x}. 5)

The eigenvalue 4 denotes the square of vibration frequency w and eigenvector {x}
represents the corresponding mode shape.
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3. RESULTS AND DISCUSSIONS

To have a clearer understanding of the vibration of circular and annular plates under
different boundary conditions, circumferential wave numbers (n), radial wave numbers (s) or
modal numbers, and finite element meshes, numerical results are presented for a circular
plate with a/h = 5 where a is the outer radius and h is the thickness of the plate and an
annular plate with a/h = 10 and b/a = 0-5 where b is the inner radius. Both plates have the
Poisson ratio 0-3. The boundary conditions employed are completely free, clamped, ssl1, ss2,
ss3, and ss4 for the circular plate and completely free, c-f, ss1-f, ss3—f, c-c, ss1-ssl, and
ss3-ss3 for the annular plate where “c” represents the clamped condition, and “f” denotes
free boundary. The two conditions before and after the dash denote those at the inner and
outer edges of an annular plate respectively. The four simply supported conditions are
shown in Figure 1. In all cases, the finite element employed is an 8-node isoparametric 2-D
element (in rz-plane). Therefore, for each value of n, the present analysis is reduced to
a two-dimensional analysis and can save a lot of computer time. The finite element meshes
are generated with equally spaced grids in both r and z directions. Frequency w is

non-dimensional according to & = wa./(p/G).

The finite element non-dimensional frequencies of a circular plate are listed in Table 1 for
the axisymmetric case, n = 0. A superscript “ +” denotes a radial straining mode, as seen in
Figure 2, and a “*” denotes circumferentially vibrating mode, as seen in Figure 3. Values in
Table 1 without any superscript represent flexural mode non-dimensional frequencies, as
seen in Figure 4. These symbols will stand for the same things in this paper unless otherwise
noted. From Table 1, we may find that:

(1) Radial straining modes or circumferentially vibrating modes exist in the first five
modes regardless of the boundary conditions. The radial straining modes appear as
the third one for the free, ss2, and ss4 cases and have almost the same frequency. The
circumferentially vibrating modes occur as the fourth mode for the free boundary
condition and at first the fourth mode and then the fifth mode (this is due to mesh
refinement and the redistribution of the system stiffness and mass matrices which
might follow) for ss2, and the fifth mode for ss4, also with the same @. On the other
hand, circumferentially vibrating modes appear as the third mode for the clamped,
ss1, and ss3 cases and the radial straining modes as the fifth mode for the clamped and
ss1 cases. However, their frequencies are not close to each other.

/ §
ssl ss2
>I §
ss3 ss4

Figure 1. Simply supported boundary conditions.
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TaBLE 1

The first five non-dimensional frequencies @’s of a circular plate for different boundary
conditions and finite element meshes (a/h =5, v = 0-3 and n = 0)

Mode
BC Mesh 1 2 3 4 5
Free (5x2) 0-8319 3-074 34577 5-137* 6002
(10x2) 0-8316 3-:063 34577 5-136%* 5198
(20x2) 0-8316 3-062 34577 5-136* 5912
(20 x 4) 0-8314 3-059 34577 5-136* 5900
Clamped (5x2) 09187 3-036 3-832% 5790 6:496"
(10x2) 09135 3-:008 3-832%* 5-682 6487+
(20x2) 09115 3-001 3-832% 5665 64847
(20 x 4) 09102 2993 3-832% 5-644 6482%
ssl (5x2) 04672 2:460 3-487* 5232 55047
(10x2) 0-4668 2447 3-391* 5151 53827
(20x2) 0-4668 2441 3-319%* 5123 52837
(20 x 4) 0-4663 2432 3-247* 5-085 5-139°
ss2 (5x2) 0-4672 2:460 34577 5-138* 5232
(10x2) 0-4668 2447 34577 5-136* 5151
(20x2) 0-4668 2:441 3457 5123 5-136*
(20 x 4) 0-4663 2432 34577 5085 5-136*
ss3 (5x2) 0:6770 2:537 2:875* 4-391° 5-515°P
(10x2) 0:6675 2:505 2:759%* 4-284° 5-306P
(20x2) 0-:6618 2:483 2:663* 4-243° 5-147°
(20 x 4) 0-6504 2:462 2:567* 4-141° 5-007P
ss4 (5x2) 0-4629 2:382 34577 4-881 5-138*
(10x2) 0-4615 2:343 3-456* 4-695 5-136%*
(20x2) 0-4607 2:322 34567 4-602 5-136%*
(20 x 4) 0-4596 2:291 34567 4-469 5-136%*
Z

Front view

4\0

Top view
Figure 2. A typical radial straining mode (Table 1. free, n = 0, mode = 3).

(2) Flexural modes for ss1 and ss2 have the same non-dimensional frequencies which are
different from those of ss3 and ss4. ss3 is especially different from the other three
simply supported cases in many aspects.
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Figure 3. A typical circumferentially vibrating mode (Table 1. clamped, n = 0, mode = 3).

\\%_,,

Front view

4-\(-)

Top view

Figure 4. A typical flexural mode (Table 1. ssl, n = 0, mode = 1).

From 1 and 2 above, we may conclude that the boundary effect on @ is different for
different types of vibration modes. The fact that the free, ss2, and s4 cases all have the
same in-plane modes with the same frequencies may be attributed to the
non-restraining of the in-plane displacements at boundaries, though the transverse
displacement conditions are specified in different ways. Also, in this case, the first
in-plane mode is a radial straining mode. When there is radial constraint (clamped,
ss1 and ss3), the first in-plane mode is of a circumferentially vibrating type, instead. As
to the flexural modes, on the contrary, the same transverse displacement conditions
specified at symmetric location lead to the same @ whether there is in-plane constraint
at boundary or not.

Convergence of the non-dimensional frequencies along with the finite element mesh
refinements for all the cases in Table 1 are monotonic. However, the convergence rate
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for different mode types and boundary conditions may be different. Both the in-plane
modes mentioned in (1) have very quick convergence for the free, clamped, ss2 and ss4
cases no matter what their modal numbers are. When only the boundary conditions
are concerned, convergence of the free and the clamped cases are, in general, better
than other types of boundary conditions. ss3 has the slowest and worst convergence
among all, but still it is not too bad (the difference between 20 x 20 and 20 x 4 is
<2:5%).

(4) Frequencies for the simply supported condition are lower than for clamped cases as
usual. However, it is interesting to find from Table 1 that the fundamental frequency
of the free case is higher than those of the four simply supported conditions, and the
second and the third axisymmetric flexural modes of the free cases are the highest
among all the boundary conditions.

It should also be noted that, if we look at the displacements, the mode shown in
Figure 3 should not appear for n = 0. So and Leissa [3] use a complementary set of
functions which replace cos n0 by sin n0, and conversely, to obtain this type of mode.
However, either set of displacements will lead to the same system equation with our
formulation when n = 0, none of the modes is missing, and this might be another
advantage of the present method.

Table 2 shows the non-dimensional frequencies of the same circular plate as in Table
1 with n = 1. A superscript “s” denotes that it is a radial straining mode at # =0 and
a circumferentially vibrating mode at 8 =90, and so it is an in-plane mode without
transverse displacement w; see Figure 5. As to “p”, it is a combination of different vibration
modes, as in Figure 6. Compared to Table 1, we may find that the observations from Table
1 would not totally apply to cases with n = 1. From Table 2, flexural modes of ss1 (the 1st
and the 3rd modes) still resemble those of ss2 (the 2nd and the 4th modes) and have the same
frequencies, and the explanation we give for the same situation in Table 1 is applicable here
as well. The first in-plane mode of ss2 has exactly the same frequency as ss4, with almost the
same mode shape. But, the third mode of ss2 has a different mode shape from that of ss4, in
spite of the close @’s of the two; see Figure 6. Convergence is also monotonic for all cases
and the free case still has the fastest convergence as for n = 0. In-plane modes (with
superscript “s”) in general have better convergence for free, clamped, and ss2 (difference of
@’s between 20 x 2 and 20 x 4 < 0-1%). That in-plane modes of free, ss2 and ss4 do not have
the same @’s as in Table 1 may be due to the non-axisymmetry for n = 1. It is also
noteworthy that the lowest mode is an in-plane mode, and not a flexural mode for this case
of n=1.

Tables 3-6 list the non-dimensional frequencies for n = 0-3, s = 1-5, with different
boundary conditions (f-f, c—f, s1-f, s3-f, c-c, s1-s1, s3-s3) and finite element meshes (5 x 2,
10 x 2,20 x 2, 20 x 4). A superscript “a” means that the mode is of an antisymmetric type
(u(z) = —u(—z), v(z) = — v(— z), w(z) = w(— z)), as seen in Figure 7, which is different from
the symmetric modes (u (z) = u(— z), v(z) = v(— z), w(z) = — w(z)) with superscript “ + ” or
“*” or “s”. Since f-f cases always have fast convergence, only 5x 2 and 10 x 2 meshes are
used.

These results reveal the complex nature of the vibration of annular plates. Some
observations that might not be familiar to the reader are listed below.

(1) Fundamental frequencies (flexural modes) for the f-f cases are not necessarily lower for
smaller n, e.g., @,’s for n =2 and 3 are smaller than for n =1. However, for the other
types of boundary conditions, @; increases monotonically with the increasing of n.

(2) Non-dimensional fundamental frequencies with n = 0 and 1 for the f-f condition are
larger than those for s1-f and s3-f. This is similar to what we have found for the
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TABLE 2

The first five non-dimensional frequencies @’s of a circular plate for different boundary
conditions and finite element meshes (a/h =5, v =03 and n = 1)

Mode
BC Mesh 1 2 3 4 5
Free (5%2) 1-765 2-733% 4-420 5-945% 6-842°
(10x2) 1-763 2-733% 4-391 5-944¢ 6-835°
(20x2) 1-763 2-733% 4-388 5-944 6-835°
(20 x 4) 1-762 2:733% 4-382 5-944¢ 6-835°
Clamped (5x2) 1-844 3-792¢ 4-369 5-645° 7-383
(10x2) 1-811 3.725¢ 4287 5-5958 7-142
(20x2) 1-797 3-675° 4264 5:561° 7-102
(20 x 4) 1-793 3-674° 4-250 5-561° 7-071
ssl (5x2) 1-298 3-214¢ 3797 5-136° 6-829
(10x2) 1-278 3-077¢ 3-735 4-969° 6627
(20x2) 1-267 2:968° 3-708 4-849¢ 6565
(20 x 4) 1-264 2-871% 3-687 4-760° 6:501
ss2 (5x2) 0-8595¢ 1-298 2:938° 3797 6-388°
(10x2) 0-7973¢ 1-278 2:906° 3-735 6:336°
(20x2) 0-7470¢ 1-268 2-883° 3-708 6-293°
(20 x 4) 0-7467¢ 1-264 2-883° 3-686 6:292°
ss3 (5%2) 1-340r 2-544r 3-953p 4-430° 62617
(10x2) 1-304° 2:417° 3-826° 4-:282P 5-955°
(20x2) 1-280P 2-338° 3-738° 4-169° 5-799¢
(20 x 4) 1-271° 2:246° 3-664° 4-083P 5-627°
ss4 (5x2) 0-8595° 1-272 2:937r 3-612 6200
(10x2) 0-7973¢ 1-244 2:904° 3-492 5-874
(20x2) 0-7470¢ 1-229 2-881° 3431 5732
(20 x 4) 0-7467¢ 1-220 2-881° 3-356 5-555

circular plate. However, for n = 2 and 3, @,’s of f-f are the lowest compared to those
with the other boundary conditions.

(3) An in-plane mode plus one of the f-f, c-f, and c—c conditions guarantees a good, and
mostly quick, convergence regardless of the values of n and modal number. Also, the
completely free boundary condition is the only one that can have a general, faster
convergence than the other boundary conditions, just the same as for circular plates.

4. COMPARISONS WITH OTHER RESULTS

To set up the validation of the present method and to check its accuracy, comparisons of
the results for some typical problems by the present method with those known to be the
most accurate are made. The finite element meshes employed, according to the convergence
characteristics shown in Tables 1-6, will consist of finite elements, square in shape mostly
with the side lengths of the element being h/2, h/4 and h/8 for a/h = 5 and 10, 2-5 and 1 when
boundary condition is completely free. For problems with other boundary conditions,
meshes will be specified otherwise.
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Figure 5. An in-plane mode which is a radial straining mode at 6 = 0° and a circumferentially vibrating mode
at 0 = 90° (Table 5. c—f, n = 2, mode = 4).

Table 7 shows the non-dimensional flexural vibration frequencies of circular plates with
a/h = 10 and 5. Boundary condition is completely free. The results of a 3-D Ritz method [3]
and a 2-D Mindlin theory [9] are also listed. It is observed that very good agreement
between the present results and those of the 3-D Ritz method has been achieved. Their
difference of @ is smaller than 0-5% for all cases of a/h = 10 and for most cases of a/h =5,
with the present results being a little higher. 2-D theory derives the lowest frequencies
among the three methods. This is quite different from the traditional expectation that 2-D
frequencies of plates are higher than those of 3-D.

Table 8 compares the non-dimensional flexural vibration frequencies of two annular
plates with completely free edges among the 3-D Ritz method [4], the 3-D series method
[6], the 2-D Mindlin theory [6], and the present method. The outer radius to thickness
ratios (a/h) are 2-5 and 1, both with a ratio of inner to outer radius (b/a) equal to 0-5; hence,
they are quite thick plates. It is amazing that the differences between the 3-D Ritz and the
present one are smaller than 0-1% for all the cases expect two (a/h = 2:5,n =0, s =4 and
a/h=1, n=0, s=3). Compared to the present results, some of Hutchinson’s are
overestimated and some underestimated, with small discrepancies for most of the cases. As
to the Mindlin theory, it is not expected that a 2-D theory would obtain good results for
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Figure 6. A mixture of different vibration modes (Table 2. ss4, n = 1, mode = 3).

thick plates like these. The 2-D frequencies are always higher than the 3-D approaches, with
the case a/h = 2-5, n = 0, s = 4 being the only exception. Also, it is found that differences
between 2-D and the present one are generally quite obvious for s = 3 and 4 of all cases with
a/h = 1, and the worst ones are surprisingly those of n = 0, the axisymmetric cases.

Table 9 shows the comparisons of flexural vibration frequencies of an annular plate with
a/h =17, bja = 0-1765 and completely free boundary conditions from the 3-D Ritz [3],
a 3-D toroidal element [10] and the present. The present results are a little higher
(difference < 0-5%) than those of the 3-D Ritz’s as before and lower (difference < 0-5%)
than those of reference [10].

Comparison of the non-dimensional flexural vibration frequencies of solid rods, fixed at
one end and free at the outer circumferential surface and the other end, is demonstrated in
Table 10 where L is the length of the rod and D is the diameter. Very good agreement is
found between the present solutions and those of So [11].

Table 11 compares the four lowest @’s of axisymmetric flexural modes for clamped
circular plates with a/h = 5 and 2-5. The difference between the present solutions and those
by 3-D series solutions of elasticity [12] is small (< 0-3%) for all the cases. Mindlin theory
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TABLE 3

The first five non-dimensional frequencies @’s of an annular plate for different boundary
conditions and finite element meshes (a/h = 10, bja = 0-5, v = 0-3 and n = 0)

n  Mode Mesh f-f cf s1-f s3-f c-C sl-sl s3-s3
1 (5%x2) 0-4442 06236 0-1995 03386 3-569 1-823 2:583
(10x2) 04442 06197 0-1995 0-3347 3-520 1-817 2:527
(20 x 2) 06182 0-1995 0-3325 3-504 1-812 2-486
(20 x 4) 06173 0-1995 0-3279 3-492 1-807 2:435
2 (5x2) 2:237* 1-973* 1-746* 1-457* 6:394*  5-541*%  4-475*
(10x2) 2:236" 1-973* 1-687* 1-395% 6-393*  5:336% 4-278*
(20 x 2) 1-973* 1-645* 1-345* 6-:393*  5191* 4-118*
(20 x 4) 1-973* 1-605* 1-296* 6-393*  5-053* 3-963*
0 3 (5x2) 3-.979* 3-482* 2:695* 2:543° 8220 6:251*  4-545P
(10x2) 3-970* 3-452¢ 2:685* 2:511° 8-:052 6:167*  4-359P
(20x2) 3-443 2:679* 2-:494° 8014 6124 4-278°
(20 x 4) 3-436 2:671 2:469° 7978 6-:071 4-102r
4 (5x2) 6-815* 54117 46827 4-419*  1093* 8169* 8097°
(10x2) 6-814* 54067 4-576* 4029  1090"  7-843* 7-718°
(20x2) 54027 4-490* 39617  10-89*  7-588%  7-440°
(20 x 4) 54027 4-365* 3-842°  10-89* 7227t  7-162°
5 (5%2) 9-200* 8-554* 7-593 7-666°  12-64* 10-96* 9-279*
(10x2) 9-098* 8-417* 7-495* 7-436°  12:63* 10-59* 9-035*
(20 x 2) 8-:393% 7-461* 7-285°  12-62* 10-35* 8-850*
(20 x 4) 8:3682 7-412° 7-148°  12-62* 10-13* 8:680*
TABLE 4

The first five non-dimensional frequencies @’s of an annular plate for different boundary
conditions and finite element meshes (a/h = 10, b/a = 0-5, v =03 and n = 1)

n  Mode  Mesh -f c-f s1-f s3-f c-c sl-s1  s3-s3
1 (5%2) 0-7722 0-6309 0-2197 0-3229 3-:599 1-884  2-608
(10x2) 0-7705 0-6265 02190 03166 3551 1876  2:553
(20x2) 0-6251 0-2189 0-3122 3-535 1-872 2512
(20x 4) 06246 02187 03070 3523 1866 2462
2 (5x2) 2:810° 2:611* 2:425%  2:029*  6721*% 5-846* 4214°
(10x2) 2-810° 2:611* 2-376* 1-958» 6:720%  5:643*%  4-007°
(20x2) 2:611* 2-340* 1-909° 6-719*  5497* 3-892°
(20x 4) 2:611*% 2:304* 1-846°  6719%  5:346%  3-699°
1 3 (5x2) 4-101* 3-5412 27728 2-746° 8258 6-303*  5:244¢
(10x2) 4-091* 3-511* 2-760% 2-723p 8092 6218 50677
(20x2) 3-503* 2:754* 27100 8054 6174  4:945°
(20 x 4) 3:495% 2-746% 2-:694r 8:018 6-121 4-805P
4 (5%2) 7-401° 5382 4-689 41817 10-81° 8212*% 8038°
(10x2) 7-401° 5377 4584 4-069*  10-79° 7887 T-670°
(20x2) 5377* 4-501 4004  10-78° 7637+ 73970
(20x 4) 5-372* 4-385 3-896°  10-77° 7:301°  7-130°
5 (5x2) 9277 8603 7651* 7-685°  13:02%  11-26%  9-689*
(10x2) 9-174* 8-466* 7-549* 74617 13-00* 1091* 9-443*
(20x2) 84422 7514 7:314>  13-:00* 10-68*  9-261°

(20 x 4) 8-417* 7-471* 7-178»  13-00* 10-46*  9-055°
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TABLE 5

The first five non-dimensional frequencies @’s of an annular plate for different boundary
conditions and finite element meshes (a/h = 10, bja = 0-5, v = 0-3 and n = 2)

n  Mode Mesh f-f c-f s1-f s3-f c—C sl-sl  s3-s3
1 (5x%2) 0-2038 0-6841 0-3497 04242 3699 2074 2715
(10x2) 0-2037 0-6802 03482 04184 3652 2064  2:663
(20x2) 0-6783 0-3478 04146 3636 2059 2622
(20x 4) 0-6777 0-3473 04107 3624 2051 2575
2 (5x2) 0-9483° 3-720* 3-000* 2-541° 7-595%  6461* 43207
(10x2) 0-9481° 3-691° 2:987° 2:463° 7:592*%  6374* 41077
(20x2) 3-683* 2:980° 2:417° 7:591*%  6:329*  4-000°
(20x 4) 3675 2:971° 2:349° 7-590* 6273  3-800°
2 3 (5x2) 1-376 3-808° 3-564° 3-543° 8376  6:598° 6:320°
(10x2) 1-372 3-807° 3-498° 3-488° 8213  6388° 6:160P
(20x2) 3-807° 3-446° 3-446° 8176 6227° 6034
(20x 4) 3-807° 3-384° 3396 8140  6:027° 5907°
4 (5x%2) 4-192° 5-533° 5-021° 4-655*  10-70° 8-462°  8052°
(10x2) 4-191° 5-528° 4-948° 4-594  10-68° 8157°  77701°
(20x2) 5-524° 4-894° 4-562°  10-67° 7:935%  7-440P
(20x 4) 5-524° 4-824° 4-510°  10-67° 7-671°  7-188P
5 (5x2) 4-454* 8-744* 7-817* 7-812°  13-92*  12-07°  10-48°
(10x2) 4-441# 8-612* 7-719* 7-588°  13-60*  11-76° 99337
(20x2) 8588 7-680° 7-451°  13-52*  11-55° 9-627°
(20 x 4) 8:562* 7-632* 7-314° 1345 11-34° 9-266°
TABLE 6

The first five non-dimensional frequencies @’s of an annular plate for different boundary
conditions and finite element meshes (a/h = 10, b/a = 0-5, v =0-3 and n = 3)

n  Mode Mesh f-f c-f s1-f s3-f c—C sl-sl s3-s3
1 (5%x2) 0-5403 0-8505 0-6304 0-6909 3-889 2:407  2-945
(10x2) 0-5399 0-8466 0-6285 0-6865 3-844 2-395 2-894
(20 x 2) 0-8456 0-6280 0-6841 3-829 2-:387  2:854
(20 x 4) 0-8446 0-6270 0-6812 3-817 2:378 2:811
2 (5x2) 2080 4022* 3378 3102° 8579  6730° 47720
(10x2) 2-:076 3:9942 3-3622 3-042° 8421 6:641*  4-567°
(20x2) 3987 3-354# 3-010° 8385 6:593*  4-471°
(20 x 4) 3:979 3-3432 2:965P 8:349 6534  4-288°
3 3 (5%2) 2-247¢ 47328 4-353% 4-128° 8777°  T462°  7-530°
(10x2) 2:246° 4-730°8 4:267° 4-045° 8770° 72165  7-327°
(20 x 2) 47308 4-203% 3.987° 8768 7024  7-162°
(20x 4) 4-729¢ 4-124¢ 3911°» 8767 6764 6-988°
4 (5x2) 5-0042 6-353¢ 6-129% 5-938°  10-83° 9-121%  8301°
(10x2) 4-987* 6:353° 6:099° 5914  10-81° 8-872%  8-000°
(20 x 2) 6-348° 6-080° 59047  10-81° 87008  7-791°
(20x 4) 6-348° 6-051° 5-880°  10-81° 8519%  7-595°
5 (5x2) 5749 8983  8100° 8056 1428 12:35* 1076
(10x2) 5-749% 8856 7-998* 7-841°  13-78* 11-99* 10-18°
(20 x 2) 8-832 7-9582 77107 13-71*  11-84* 9-865°

(20 x 4) 8-807° 7-910° 7-583*  13-64* 11-67* 9-509°
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Figure 7. A typical antisymmetric vibration mode (Table 4. c-f, n = 1, mode = 3).

solutions obtained in reference [12] are also shown in Table 11 and are smaller than 3-D
results, beyond expectation.

5. CONCLUDING REMARKS

In the present study, 3-D axisymmetric and non-axisymmetric vibrations of a circular
and an annular plate are analyzed with various combinations of boundary conditions, wave
numbers or modal numbers, and finite element meshes. Characteristics of the vibration are
examined, different modes are separated and typical ones are demonstrated in graphs, and
convergence with finite element mesh refinement is checked. From the results, several
conclusions have been drawn and can help understand the vibration phenomena of circular
and annular plates better. Convergence is monotonic for all cases. It means that
convergence can always be reached by element mesh refinement even if the present
numerical results of some cases might not be convergent to a satisfactory extent (which is
limited by the resource available). However, for some cases, e.g., the completely free ones,
convergence is quite good even with coarse meshes.
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TABLE 7

75

Comparison of non-dimensional flexural vibration frequencies @’s of circular plates between
the present, the 3-D Ritz and the 2-D Mindlin theories, with a/h = 10 (mesh 20 x 2) and
a/h =5 (mesh 10 x 2)

a/h =10 alh =75
n s Present 3-D Ritz 2-D Present 3-D Ritz 2-D
0 1 04329 04329 04327 0-8316 0-8314 0-8300
2 1-764 1:763 1-759 3-063 3-059 3-:036
3 3-765 3-761 3-741 5918 5-898 5-821
4 6223 6214 6162 9-008 8-948 8789
1 1 09633 09631 09618 1-763 1-762 1-754
2 2:659 2:658 2:6747 4391 4381 4-336
3 4915 4910 4-876 7-402 7-369 7-254
4 7-542 7-532 7-453 10-55 10-463 10-250
2 1 02576 02576 02575 04997 04995 0-4991
2 1-616 1-616 1-612 2-:820 2:817 2:2798
3 3-626 3623 3-605 5722 5706 5633
4 6-:098 6-:090 6-:039 78-845 8-795 8:640
3 1 0-5892 0-5891 0-5887 1-107 1-106 1-104
2 2:362 2:361 2:353 3:942 3-936 3-:900
3 4-647 4-643 4613 7-045 7-020 6915
4 7-:304 7-293 7-221 10-25 1-0179 9-981
4 1 1-017 1-016 1-015 1-844 1-843 1-863
2 3-183 3-181 3-166 5-099 5-088 5-030
3 5-709 5702 5-658 8:353 8-318 8-178
4 8524 8513 8415 11-61 11-524 11-278
5 1 1-529 1-529 1-526 2:677 2:673 2:660
2 4063 4-059 4036 6272 6255 6173
3 6-802 6793 6731 9-643 9-595 9-419
4 9-755 9-743 9-615 12:92 12-823 12-533
6 1 2117 2:116 2-111 3-577 3:570 3-547
2 4991 4985 4952 7-452 7-427 7-317
3 7918 7907 7-825 1091 10-850 10-636
4 10-99 10-985 10-819 14-19 14-069 13-741

Typical example problems are also solved with the present method. The results are
compared with those from the 3-D Ritz method, the 3-D series method, the 2-D Mindlin
theory, and a 3-D toroidal finite element which are considered to be most accurate in the
literature. Most of the examples feature completely free cases. One of the two exceptions is
circular cylinders with one end fixed and the other surfaces free. The other is clamped
circular plates. The comparisons show that the present method can always obtain accurate
results for the completely free cases and one-end-fixed cylinders when compared to the 3-D
Ritz method, and for the clamped circular plates when compared to the 3-D series method.
Also, all the vibration modes can be revealed. Besides, the present formulation is simple,
computer implementation and application is straightforward, and moreover, various types
of displacement boundary conditions, such as simply supported conditions, can be easily
imposed. This is very difficult for the Ritz method or the series method to achieve.
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TABLE 8

Comparison of non-dimensional flexural vibration frequencies @’s of the annular thick plates
between the present, the 3-D Ritz (3DR), the 3-D Hutchinson’s series method (3DH) and the
2-D Mindlin theory (2DM), with a/h = 2-5, b/a = 0-5 (mesh 10 x4) and a/h = 1, b/a = 0-5

(mesh 8 x 8)
S
a/h b/a n Method 1 2 3 4
Present 1-388 8:324 9132 14-16
0 3DR 1-388 8-321 9-127 14-133
3DH 1-398 8-327 9-128 10-398
2DM 1-388 8:324 9-370 10-593
1 Present 1-944 8-:041 8:537 8-949
3DR 1943 8-:039 8534 8-945
3DH 1950 8-:040 8-:539 8-946
2DM 1951 8-189 8659 9-162
2:5 05 2 Present 0-6907 3124 8-403 8797
3DR 0-691 3-123 8-400 8-793
3DH 0-6901 3127 8-404 8794
2DM 06923 3-142 8-461 8-964
3 Present 1-681 4452 8812 8990
3DR 1-680 4-450 8-808 8-986
3iDM 1-682 4453 8990 10-234
2DM 1-684 4475 8-899 9-076
0 Present 1-984 5774 8-268 9-087
3DR 1-984 5772 8258 9-084
3DH 1985 5774 7-503 8-259
2DM 1985 6720 7-547 10-010
1 Present 1-999 3-930 5-841 7-708
3DR 1-999 3930 8258 9-084
3DH 2-:000 3-930 5-841 6-401
2DM 2-:005 4064 6-583 8-207
1 0-5 2 Present 1-039 2:846 5173 6159
3DR 1-039 2-846 5172 6-157
3DH 1-040 2-846 5173 6-159
2DM 1-040 2-860 5-399 6730
3 Present 2:320 3-947 6-393 6-807
3DR 2:320 3-946 6:392 6-805
3DH 2:321 3-946 6392 6-806
2DM 2:324 3971 6-749 7-311

Some observations from the present study may not be so familiar or may be beyond
expectation. This merely shows the complex nature of the phenomena of plate vibration. In
that case, due to the accuracy, simplicity and versatility of the present method, it should be
a valuable alternative in the vibration analyses of annular and circular plates.
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TABLE 9

77

Comparison of non-dimensional flexural vibration frequencies @’s of the annular thick plates
between the pesent, the 3-D Ritz (3DR) and the 3-D finite element method (3DF), with
a/h =17, b/a = 0-1765 (mesh 6 x 4)

S

Method 1 2 3 4 5
Symmetric modes Present 3-086 7-240 7-835 8-924 9-595
3DR 3-0858 7-2372 7-8200 89145 9-5772
3DF 3-0874 7-2457 7-8345 8:9372 9-7051
Present 2772 6-028 6997 7-909
3DR 27717 6-0272 6-9938 7-8951
3DF 27778 6-0287 6-9986 7-9149
Present 1973 4-052 6386 7791 8138
3DR 19684 4-0503 6-3799 7-7821 81282
3DF 1:9776 4-0535 63915 7-8033 8-1379
Antisymmetric
modes Present 1-789 5-322 6727 9-692
3DR 17884 5:3168 67194 9:6715
3DF 1-7899 53276 67422 9-7096
Present 2-908 5:572 6-039 6-150
3DR 2-9046 5:5678 6:0365 6-1431
3DF 2:9090 5:5755 6:0416 6-1547
Present 1131 4-408 6182 6770 7-694
3DR 1-1300 4:4052 6-1753 67662 7-6741
3DF 11324 4-410 6-1907 67725 7-7279
TaBLE 10

Comparison of non-dimensional flexural vibration frequencies @’s of the solid circular cylinders
with one end fixed between the present and the 3-D Ritz (3DR) methods, with a/h = 0-5 (mesh

8 x 8) and a/h = 0-2 (mesh 4 x 10)

0-5 02
n s Present 3DR Present 3DR
0 1 1-286 1-286 0-511 0-511
2 2:960 2960 1-505 1-505
3 3-170 3-169 2:371 2:370
4 4-184 4-182 2928 2933
5 4-300 4298 2987 3-:009
1 1 0-5060 0-506 0-1060 0-106
2 1-444 1-444 04785 0478
3 2:589 2-588 1-046 1-045
4 2:854 2:854 1-597 1-601
5 3-348 3-347 2:050 2:059
2 1 2:162 2:162 2:132 2:131
2 2:519 2:519 2:343 2:343
3 3451 3-449 2:399 2:300
4 3761 3-760 2:608 2:609
5 4-349 4-348 2:948 2979
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TasLE 10. Continued

05 02
S Present 3DR Present 3DR
1 3-258 3-258 3-258 3-255
2 3-699 3-698 3-612 3-611
3 4-292 4-290 3-627 3:626
4 4-652 4651 3-734 3-733
5 5-356 5-355 3-941 3-964
1 4-282 4-281 4-299 4-295
2 4783 4-783 4722 4719
3 5-206 5-204 4740 4-738
4 5-609 5-609 4-816 4-820
5 6-148 6-147 4-965 4-978
1 5-275 5271 5317 5-316
2 5-814 5-813 5765 5759
3 6152 6-150 5790 5785
4 6-585 6-584 5-857 5-852
5 6984 6983 5979 5983
1 6251 6243 6328 6333
2 6-815 6814 6777 6570
3 7-105 7-102 6806 6764
4 7-553 7-552 6870 6794
5 7-885 7-886 6979 6859
1 7-218 7-204 7-341 7-349
2 7799 7797 7774 7-749
3 8-:057 8054 7-806 7781
4 8-497 8494 7-869 7-844
5 8-846 8-848 7969 7946
1 8181 8163 8:356 8:364
2 8771 8768 8766 8721
3 9-007 9-002 8-800 8755
4 9-424 9418 8-861 8816
5 9-843 9-847 8957 8909
1 9-143 9126 9-375 9-378
2 9737 9732 9761 9-684
3 9956 9-949 9-795 9-719
4 10-346 10-336 9-856 9779
5 10-826 10-837 9947 9-873
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TaBLE 11

Comparison of non-dimensional flexural vibration frequencies of clamped circular plates for
3-D exact solution, 2-D Mindlin solution and the present solution (20 x 4 mesh for a/h = 5 and
10 x 4 for a/h = 2-5)

alh =5 alh =25
1 2 3 4 1 2 3 4
Present 09102 2:993 5644 8557 1487 4099 7055 9992
3-D exact 0-909 2:987 5634 8-541 1482 4086 7032 9965
2-DMindin 0-906 2982 5621 8511 1478 4069 6982 9937
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APPENDIX A

Kll K12 K13 Mll M12 M13
K21 K22 K23 {U} + M21 M22 M23 {U} — 0’
K31 K32 K33 M31 M32 M33

1 1 1
Kiljl = J‘ |:Q11Ni,rNj,r + Q13 ;Ni,rNj + Q13 P NN, + Q33 ﬁNiNj
4

1
+ QSS”2 F NiNj + Q66Ni,zNj,z:| mr dZdl",
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n n n n
|:Q13 ;Ni,rNj + Q33PNiNj — Q55<r NiNj,r — P NLN]>:| ﬁrdzdr

1
Q12N1r ',z+Q23;N +Q66Nl zN] r:|7trdZdr_ 31

2
~: ;
lﬁ

n?
1
|:Q33 2 NN + Q44N1 z4Vj,z + Q55<Ni,rNj,,. — ; Ni,rNj
1
—=N;N;, +— N;N; | |nrdzdr,
r r
|:Q23 Q44 N; .N; :| nrdzdr = Kj3i2
|: 2

n
02:N;.N; .+ Q44r7NiNj + Q66Ni,rNj,r:| nrdzdr

S =J (pN;N;) nr dz dr,
A

ij ij ij
12 22 13 31 23 32
M;"=M;"=M;"=M;  =M;" =M;" =0,
where i, j = 1-m, and Q;; are the stiffness coefficients from

{o} =[Qi1{e}.
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