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STOCHASTIC RESPONSE OF BASE-EXCITED
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The probabilistic solution to the stochastic responses of a rigid structure connected to
a foundation with Coulomb friction-type base isolation subjected to stationary Gaussian
white-noise-type ground excitations is investigated. The base isolation system which can be
described with a base-excited Coulomb oscillator utilizes sliding bearing in which the
coe$cient of friction exhibits strong dependence on the sliding velocity. The analytical
probabilistic solutions are obtained with both an equivalent linearization procedure and
a new method proposed recently. The analytical solutions are veri"ed by Monte Carlo
simulation and the results show that the method utilized yields better solutions than the
equivalent linearization procedure. It is also found that friction-type base isolation systems
exhibit softening non-linearity and the method utilized is well suited to systems with
softening non-linearity.
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1. INTRODUCTION

The use of base isolation systems has gained popularity in earthquake-resistant design of
building structures. The basic mechanism is to isolate strong ground motion induced by
earthquake from the structure by introducing #exibility and energy-absorption capacity.
Various isolation systems have been proposed and reviewed in the literature [1}4] and the
responses of base-isolation system have attracted considerable investigation [5}10].
Previous analytical studies of the stochastic responses adopt mainly the equivalent
linearization procedure. It is known that the equivalent linearization procedure is only
e!ective for weakly non-linear systems as in the case of sliding isolation systems. Moreover,
the equivalent linearization procedure leads to Gaussian probability density function
(PDF) of system responses, which is not correct for non-linear systems. If Gaussian PDF is
still utilized for the probability evaluation or some other statistical analysis such as higher
moment evaluation and reliability analysis of structures, the results can be much distorted.
Therefore, more accurate PDF solutions are desirable. In past decades, much attention was
paid to the improved PDF solution of non-linear stochastic systems based on various
methods though some restrictions are inherent in them. Recently, a new method which may
be called local weighted residual method in the following statement for the PDF analysis of
non-linear stochastic systems, was proposed and applied to some non-linear systems
[11}13]. The method is free of the degree of non-linearity of systems. In this paper, the PDF
of the sliding base-isolation system with Coulomb friction force under the action of
horizontal ground motion is analyzed with the new method. The results obtained with this
method are compared with those from the equivalent linearization procedure and Monte
Carlo simulation to verify the e!ectiveness of the method for this base-isolation system
subjected to horizontal ground excitations.
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2. MATHEMATICAL MODEL OF SLIDING BASE ISOLATION SYSTEM

The resilient-friction base isolator (R-FBI) which was found to have the broadest range of
applicability was investigated by many researchers [10]. This isolator consists of concentric
layers of Te#on-coated plates that are in friction contact with each other and contains
a central core of rubber of steel-reinforced laminated rubber. A rubber bearing and
a pure-friction isolator in parallel are used in the base-isolation design. In the analysis of
base-isolation system, the upper structure is usually assumed to be rigid with mass m. The
base-isolated system is assumed to consist of a spring with sti!ness k and a dashpot with
damping constant c. The moving upper structure is in contact with the spring and dashpot.
When the mass is in motion, Coulomb friction force is developed which is imposed on the
mass. The equation of motion for the mass can take the following form:

mXG (t)#cXQ (t)#kmg sign(XQ )#kX(t)"mgXG
g
(t), (1)

where k is the coe$cient of sliding friction, g is the gravitational acceleration, sign ( ' )
denotes the sign function and XG

g
(t) is the relative acceleration of ground motion to

gravitational acceleration, which is assumed to be stationary Gaussian white noise with

E[XG
g
(t#q)XG

g
(t)]"Sd (q), (2)

where d(q) is Dirac Delta function.
Equation (1) may also be written in the following form:

XG (t)#2muXQ (t)#kg sign(XQ )#u2X(t)"gXG
g
(t), (3)

where m is damping ratio and u is the linear natural frequency of the system. It is obvious
that equation (3) expresses a strongly non-linear system because the value of sliding friction
coe$cient k is usually around 0)1 and therefore, the value of gk is around 1 m/s2. In this
paper, the PDF solutions of the system are investigated with both the equivalent
linearization procedure and the local weighted residual method, and the results are
compared with those obtained by Monte Carlo simulation in the following sections. Some
behaviors of the solutions are observed which provide some information about the
structure responses and the e!ectiveness of the local weighted residual method for the
system whose PDF solutions are similar to those of the friction-type sliding systems.

3. EQUIVALENT LINEARIZATION PROCEDURE

The solution of equation (3) was studied with the equivalent linearization procedure but
only the variances of the responses were compared with those by Monte Carlo simulation.
Because of the importance of PDFs in reliability analysis, it is also necessary to predict the
PDFs of system responses. If equation (3) is replaced by the linear equation

XG (t)#2m
e
u

e
XQ (t)#u2

e
X (t)"gXG

g
(t), (4)

then the response of equation (4) is Gaussian and the PDF of the responses from equation
(4) can be determined with the variances of the responses. With the equivalent linearization
procedure and observing that for stationary, Gaussian zero-mean input process XG

g
(t),

responses X (t) and XQ (t) are Gaussian processes and in a stationary state and are
uncorrelated. m

e
and u

e
can be obtained in a stationary state as

u
e
"u, m

e
"m#

kg

J2nupXQ

, (5, 6)

where pXQ is the variance of XQ .
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For system (4), the variances of stationary X and XQ are given by

p2
X
"

S

4m
e
u3

, p2XQ "
S

4m
e
u

, (7, 8)

Solving equations (6)}(8) leads to

pXQ "
J(kg)2#2nmuS!kg

2J2nmu
, (9)

p
X
"

1

2 C
S

m#kg/J2nu3pXQ D
1@2

(10)

for which the PDF of X and XQ can be obtained as

p(x, xR )"
1

2np
x
pxR

expA!
x2

2p2
x

!

xR 2
2p2xR B (11)

which is the PDF solution of system responses resulting from the equivalent linearization
procedure.

4. NEW PROCEDURE

In this section, the PDF solution of the responses of system (3) is obtained with the local
weighted residual method [11}13].

Setting X
1
"X and X

2
"XQ , equation (3) is written in Ito's form as follows:

XQ
1
"X

2
, XQ

2
"f (X

1
, X

2
)#gXG

g
(t), (12, 13)

where

f (X
1
, X

2
)"!2muX

2
!kg sign(X

2
)!u2X

1
. (14)

The response, MX
1
, X

2
N3R2 where R denotes real space, is a Markov vector and the

probability density of the stationary Markov vector is governed by the reduced FPK
equation

x
2

Lp(x
1
, x

2
)

Lx
1

#

L
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2

[ f (x
1
, x

2
)p (x

1
, x

2
)]!

g2S

2

L2p(x
1
, x

2
)

Lx2
2

"0, (15)

where Mx
1
, x

2
N3R2 is state vector and p"p (x

1
, x

2
).

For the sliding base-isolation system, the PDF p (x
1
, x

2
) of the stationary responses must

ful"ll the following conditions:

p (x
1
, x

2
)*0, (x

1
, x

2
)3R2,

lim
x
i
PR

p (x
1
, x

2
)"0, i"1, 2,

P
=̀

~=
P

=̀

~=

p (x
1
, x

2
) dx

1
dx

2
"1. (16)

If an approximate PDF denoted as pJ (x; a) is used, where a3RN
p and a

i
, (i"1, 2,2 , N

p
)

are parameters to be determined and N
p
is the total number of parameters, it is obvious that

conditions (16) should also be ful"lled by the approximate PDF.
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The approximate PDF of the stationary responses of this system is assumed as an
exponential form

pJ (x
1
, x

2
; a)"c expQ

n
(x

1
, x

2
; a), (17)

where c is a normalization constant and

Q
n
(x

1
, x

2
; a)"

n
+
i/1

i
+
j/0

a
ij
xi~j
1

xj
2

(18)

which is an n-degree polynomial in x
1
, x

2
. In order to ful"ll condition (16), it is assumed that

pJ (x
1
, x

2
; a)"0, i"1, 2, Mx

1
, x

2
NNX, (19)

where X"[m
1
!c

1
p
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i
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denote the mean value and standard deviation of X

i
respectively. c

i
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de"ned such that m
i
!c

i
p
i
and m

i
#d
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i
, and the

derivatives of PDF with respect to x
i
equal zero at m

i
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i
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i
#d

i
p
1
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Substituting equation (14) into equation (15) leads to

x
2

Lp

Lx
1

!2[mu#kgd (x
2
)]p![2mux

2
#kg sign(x

2
)#u2x

1
]

Lp

Lx
2

!
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2
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Lx2
2
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(20)

where d( ' ) denotes Dirac's delta function.
Equation (20) cannot be satis"ed exactly with pJ (x

1
, x

2
; a) because pJ (x

1
, x

2
; a) is only an

approximation of p (x
1
, x

2
). Substituting pJ (x

1
, x

2
; a) for p (x

1
, x

2
) in equation (20) leads to

the following residual error:

*(x
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Substituting equation (17) into equation (21) yields

*(x
1
, x

2
; a)"F(x

1
, x

2
; a)pJ (x

1
, x

2
; a), (22)

where

F (x
1
, x

2
; a)"x

2
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Because pJ (x
1
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2
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; a)"0 if pJ (x

1
, x

2
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(20). However, usually F (x
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to make the projection of F(x
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or
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p
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Thus, the reduced FPK equation (20) is satis"ed with pJ (x
1
, x

2
; a) in the weak sense of

integration if F (x
1
, x

2
; a) H

k
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1
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2
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2
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such that F (x
1
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2
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2
) is integrable in R2, N

p
quadratic non-linear algebraic

equations in terms of N
p

undetermined parameters can be obtained from equation (25) as
follows with f
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(x

1
) and f

2
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2
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which results in the following quadratic algebraic equations in terms of unknown
parameters a

ij
, (i"1, 2,2, n; j"0, 1, 2,2, i):
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The unknown parameters can then be determined by solving equation (28).
The above outlines the procedure for the PDF solution of the system responses with local

weighted residual method. It is apparent from the above derivation that the sliding behavior
of the structure is not simpli"ed while in the equivalent linearization procedure, the sliding
term is incorporated as part of the damping force. Therefore, better results can be expected
with local weighted residual method.

5. NUMERICAL ANALYSIS

To assess the e!ectiveness of the local weighted residual method for a sliding isolation
system, the PDF solutions of the system were obtained with the equivalent linearization
procedure, the local weighted residual method and Monte Carlo simulation in the present
study. A system with m"0)1, u"2 rad/s, k"0)1 subjected to a weak and a strong
excitation is considered respectively. Taking the reference of S"0)0348 m2/s3 ("2n]
0)005544 m2/s3) corresponding to the intensity of the N00W component of El Centro 1940
earthquake as suggested by Bycroft [14], S"0)01 m2/s3 and S"0)05 m2/s3 are chosen for
the cases of weak and strong excitations respectively.

5.1. WEAK EXCITATION

For weak excitation with S"0)01, the PDFs obtained with the equivalent linearization
procedure and the local weighted residual method for n"6 are compared with those
obtained with 2]107 simulated realizations and shown in Figures 1 and 2. The results
Figure 1. PDFs of the displacement X, weak excitation. ** Simulation; - - - - n"6; *}* n"2.



Figure 2. PDFs of the velocity XQ , weak ground motion. ** Simulation; - - - - n"6; *}* n"2.

Figure 3. Logarithmic PDFs of the displacement X, weak ground motion.** Simulation; - - - - n"6;*}*
n"2.
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showed the superiority of the local weighted residual method over the equivalent
linearization procedure for the PDFs of both displacement and velocity of the base-
isolation system. In Figures 1 and 2, the PDF of displacement is close to Gaussian PDF and
the PDF of velocity is also close to Gaussian PDF except in the range around origin. In fact,
the PDFs of both displacement and velocity of the base-isolation system are far from being
Gaussian, which can be observed from the plots of logarithmic PDFs of responses. The
logarithmic PDFs of both displacement and velocity of the base-isolation system are also
plotted and compared in Figures 3 and 4 to show the tail behavior of PDFs. It is apparent



Figure 4. Logarithmic PDFs of the velocity XQ , weak ground motion.** Simulation; - - - - n"6;*}* n"2.
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that the values in the tails of PDFs obtained with the local weighted residual method agree
well with the simulated results, while those from the equivalent linearization procedure
deviate from simulated results signi"cantly. Thus, it is concluded that the PDF solutions of
both displacement and velocity of the base-isolation system are far from being Gaussian
and much more accurate PDF solutions can be obtained with the local weighted residual
method.

Moments are also important statistics of system responses; therefore, the moments
obtained with di!erent methods are shown and compared in Table 1. It is seen from Table
1 that the moments obtained with the local weighted residual method for n"6 are much
improved compared to those obtained with the equivalent linearization procedure which is
found to be only suitable for the second moment evaluation if the obtained values of the
second moment are acceptable. With the weighted residual method, the higher order
moment is more improved than the lower order moment.

5.2. STRONG EXCITATION

Next, we consider a case for strong excitation with S"0)05 m2/s3 to test the e!ectiveness
of the local weighted residual method for the base isolation system. The PDFs obtained by
the local weighted residual method, the equivalent linearization procedure and Monte
Carlo simulation of 2]107 simulated realizations are shown and compared in Figures
5 and 6. In Figures 5 and 6, the PDFs of both displacement and velocity of the base-
isolation system still seem to be of the Gaussian type while the PDFs for n"6 are improved
compared to those obtained by the equivalent linearization procedure. In order to compare
the tail behavior of PDFs, the logarithmic PDFs are shown and compared in Figures 7 and
8. Similar improved results for n"6 can be observed in the "gures. It is also observed that
the PDFs in the case of strong excitation are closer to the Gaussian type than the PDFs in
the case of weak excitation. In other words, the friction-type base-isolation system can be
more linear under the action of stronger excitation.



TABLE 1

Moments for S"0)01 m2/s3

Order Simulation Local weighted residual method (n"6) Linearization

Moments of displacement X
2 7)107]10~2 7)162]10~2 6)024]10~2
4 1)847]10~2 1)847]10~2 1)088]10~2
6 9)088]10~3 8)848]10~3 3)275]10~3
8 6)363]10~3 6)065]10~3 1)377]10~3

10 5)604]10~3 5)152]10~3 7)411]10~4
12 5)638]10~3 5)005]10~3 4)829]10~4

Moments of velocity XQ

2 2)803]10~1 2)908]10~1 2)409]10~1
4 3)106]10~1 3)172]10~1 1)742]10~1
6 6)307]10~1 6)892]10~1 2)097]10~1
8 1)824 2)234 3)533]10~1

10 6)585 9)033 7)632]10~1
12 2)744]101 4)138]101 2)004

Figure 5. PDFs of the displacement X, strong ground motion. ** Simulation; - - - - n"6; *}* n"2.
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In the case of strong excitation, the moments are listed in Table 2. Good improvements
are observed for the results obtained by the local weighted residual method compared to
those obtained with the equivalent linearization procedure, especially for higher moments.
It is also found that the equivalent linearization procedure is only suitable for the evaluation
of the second moment even in the case of strong excitation if the obtained values of the
second moment are acceptable.

For structural reliability analysis, good prediction of tail behavior of PDFs is very
important. From the above numerical analysis, it is observed that the local weighted



Figure 6. PDFs of the velocity XQ , strong ground motion. ** Simulation; - - - - n"6; *}* n"2.

Figure 7. Logarithmic PDFs of the displacement X, strong ground motion.** Simulation; - - - - n"6;*}*
n"2.
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residual method provides an e!ective tool for estimating more accurate PDF solutions of
the Coulomb friction-type base-isolation system, particularly in the tails of PDFs.

From the "gures, it is also observed that the Coulomb friction-type base-isolation system
is of &&softening'' non-linearity (which produces broader tails than the Gaussian PDF) rather
than &&hardening'' non-linearity (which produces narrow tails). Hence, the presented results
also validate the applicability of the local weighted residual method for the systems with
&&softening'' non-linearity which poses di$culty for other methods.



Figure 8. Logarithmic PDFs of the velocity XQ , strong ground motion. ** Simulation; - - - - n"6; *}*
n"2.

TABLE 2

Moments for S"0)05 m2/s3

Order Simulation Local weighted residual method (n"6) Linearization

Moments of displacement X
2 7)725]10~1 7)410]10~1 6)890]10~1
4 2)004 1)908 1)422
6 9)019 8)937 4)873
8 5)654]101 5)919]101 2)313]101

10 4)388]102 4)810]102 1)385]102
12 3)916]103 4)427]103 9)832]102

Moments of velocity XQ

2 3)087 2)961 2)756
4 3)264]101 3)080]101 2)276]101
6 5)873]102 5)826]102 3)119]102
8 1)446]104 1)549]104 5)921]103

10 4)350]105 5)029]105 1)418]105
12 1)497]107 1)844]107 4)027]106
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6. CONCLUSIONS

Through numerical testing on the local weighted residual method, it is observed that the
method is suitable for the probability density analysis of a sliding system with Coulomb
friction. For n"6, the obtained PDFs of both displacement and velocity are very close to
the results obtained by Monte Carlo simulation. It was also shown that the PDF and the
higher (greater than second) order moments obtained with the equivalent linearization
procedure are not acceptable for the sliding system, especially in the tails of the PDF which
are important for reliability analysis.
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The analysis of the PDFs of displacements for di!erent levels of excitation showed that
the excitation level is a major factor which in#uences the PDF types of displacement and
velocity of the base-isolation system. It is found that the PDF solutions of both
displacement and velocity are closer to the Gaussian type as the power spectral density of
excitation increases.

The numerical results show that the base-isolation system with the Coulomb type of
friction is of &&softening'' non-linearity and the local weighted residual method is also
e!ective for such systems with &&softening'' non-linearity.

Because of the softness of the Coulomb friction-type base-isolation system, the results
from the equivalent linearization procedure underestimate in probability the responses of
the base-isolation system, which may lead to reliability overestimation. Meanwhile, the
local weighted residual method can provide more reliable results.
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