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The paper presents a systematic method of stability analysis for high-dimensional
dynamic systems involving a time delay and some unknown parameters. Here, the term
&&unknown''means that the parameters are constants but yet to be determined. The analysis
focuses on the stability switches of those systems with increase of the time delay from zero to
in"nity. On the basis of the generalized Sturm criterion, the parameter space of concern is
divided into several regions determined by a discrimination sequence and the
Routh}Hurwitz conditions. It is found, as the time delay increases, that the system may
undergo no stability switch, exactly one stability switch, or more than one stability switches
when the parameters are chosen from di!erent regions. To demonstrate the approach,
a detailed analysis of the stability switches is made in the paper for an active vehicle
suspension equipped with a delayed &&sky-hook'' damper and a four-wheel steering vehicle
with time delay in driver's response, respectively.
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1. INTRODUCTION

Over the last few decades, a great number of studies have been carried out on the stability
analysis of dynamic systems involving various time delays, which are usually caused by
controllers, actuators, human-beings, etc. The studies indicate that on the one hand, the
time delay may give rise to retardation or even instability for a system. On the other hand,
an appropriate time delay can improve system performance, or even stabilize an unstable
system, see for example, references [1}5]. Thus, it is very desirable to gain an insight into the
relations between the stability and the time delay for any practical systems.

From a practical point of view, a system usually involves a number of parameters, besides
a time delay, to be designed so as to render the systems asymptotically stable. If the time
delay is given, some approaches, say, the D-subdivision method, are available to determine
the stable regions of the system in the parameter space. However, an unknown time delay
would make the stability analysis very di$cult.

Alternatively, one can focus on a relatively simple problem, i.e., delay-independent
stability analysis. As shown in the authors' earlier paper [1], practical and concise criteria
do exist for the delay-independent stability of a delayed dynamic system, even if the system
is high dimensional. On the basis of the generalized Sturm theory developed in references
[6, 7], a systematic approach is proposed in paper [1] to derive the su$cient and necessary
conditions for the delay-independent stability of linear dynamic systems of multiple degrees
of freedom. A graphical method is also presented to achieve the delay-independent stable
region in the parameter space of concern. Once the so-called &&discrimination sequence'' is
022-460X/00/220215#19 $35.00/0 ( 2000 Academic Press



216 Z. H. WANG AND H. Y. HU
obtained by using a short MAPLE routine, the su$cient and necessary conditions for
delay-independent stability can be characterized by the sign tables of the discrimination
sequence. In addition, the delay-independent stable region can be obtained by plotting the
graphs, which divide the parameter space of concern into several regions, of some functions
related to the discrimination sequence and by checking the number of variations of sign
tables of the discrimination sequence in each region. In practical applications, the
delay-independent stable region is usually a very small part in the parameter space. Then,
a question arises. How does a delayed dynamic system behave if the system parameters are
chosen from other regions in the parameter space?

The aim of the present paper is to address this question. In what follows, the
characteristic roots of the system will be regarded as the functions of a time delay. As the
delay increases, the stability of the system changes. Such a phenomenon is often referred to
as stability switches and has been discussed for some delayed dynamic systems of low order
[2]. The contribution of this paper is the idea of using stability switches to analyze the
stability of delayed systems with unknown parameters. What will be emphasized in the
paper is, as the time delay increases from zero to in"nity, how to gain a good understanding
for the parameter space concerned and to give a simple approach to complete the stability
analysis as done by using the D-subdivision method. The method proposed in the paper
enables one to achieve some analytical results for the stability switches of high-dimensional
systems with a time delay.

The paper is organized as follows. Section 2 begins with an analysis of stability switches of
linear, high-dimensional, dynamic systems with a time delay. The number of stability
switches is dependent on the number of real roots of a polynomial, which can be derived by
using the classical Sturm criterion if the system parameters are given. However, the classical
Sturm criterion does not work if the system involves any unknown parameters. In this case,
the generalized Sturm criterion proves to be a useful tool. Hence, a brief introduction of the
generalized Sturm criterion is made in Section 2. Then in Section 3, two examples in the
dynamics of ground car are given to demonstrate the method. Finally in Section 4, several
conclusions are drawn from the discussion.

2. THE METHOD

To make the exposition as simple as possible, attention hereafter is paid to the linear
dynamic systems of multiple degrees of freedom, involving a single constant time delay only.
Those systems are governed by the characteristic equation in a compact form

D(j, q),P (j)#Q(j)exp(!jq)"0, (1)

where q*0 is the time delay, P(j) and Q(j) are two polynomials of real coe$cients, and
deg(P)"n'deg(Q). As is well known, the system concerned is asymptotically stable for
given q*0 if and only if each of the characteristic roots has a negative real part. Thus the
marginal stability is determined by D(iu, q)"0. Let

P
R
(u)"Re(P(iu)), P

I
(u)"Im(P(iu)), (2a)

Q
R
(u)"Re(Q (iu)), Q

I
(u)"Im(Q (iu)). (2b)

From D (iu, q)"0, one arrives at

Q
R
cos(uq)#Q

I
sin(uq)"!P

R
, Q

I
cos(uq)!Q

R
sin(uq)"!P

I
. (3)
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In order that equation (1) has a pair of pure imginary roots $iu for given q*0, it is
necessary that DP (iu)D"DQ (iu)D or

P2
R
#P2

I
!(Q2

R
#Q2

I
)"0 (4)

has a positive root u. The left-hand side of equation (4) can simply be rewritten in the more
explicit form

F (u),u2n#b
1
u2(n~1)#b

2
u2(n~2)#2#b

n~1
u2#b

n
. (5)

Once a positive root u is found, the corresponding values of critical time delay are given by

q
k
"

h
u
#

2kn
u

, k"0, 1, 2,2 (6a)

for a h3[0, 2n), which should satisfy

sin h"
!P

R
Q

I
#P

I
Q

R
Q2

R
#Q2

I

, cos h"
!P

R
Q

R
!P

I
Q

I
Q2

R
#Q2

I

, (6b)

where Q2
R
#Q2

I
O0 is assumed.

2.1. STABILITY ANALYSIS VIA STABILITY SWITCHES

If F (u)"0 has no positive roots, the system does not undergo any stability switch. That
is, the system is delay-independent stable if it is asymptotically stable when the time delay
disappears, or unstable for an arbitrary time delay if the system free of delay is unstable.
A detailed analysis of delay-independent stability has been made in reference [1].

When F (u)"0 has any positive roots, we regard the root j of equation (1) as a function
of delay q. Di!erentiating equation (1) with respect to q gives

dj
dq

"

jQ (j)

P@(j)exp(jq)#Q@ (j)!qQ(j)
. (7)

Once we "nd a pair of conjugate pure imaginary characteristic roots $iu with critical time
delays q satisfying equation (6), we can determine the moving direction of its real part as q is
varied, namely, the sign S"sgnMRe(dj(q)/dq) Dj/*uN. In order that S is well de"ned, we
require P@ (iu)exp (iuq)#Q@(iu)!qQ(iu)O0, i.e., $iu are not repeated characteristic
roots. Note that

sgnAReA
1

a#biBB"sgnAA
a!bi

a2#b2BB"sgn(Re(a#bi)), (a, b3R), (8a)

dq
dj

"A
dj
dqB

~1
"!

P@ (j)

jP(j)
#

Q@(j)

jQ(j)
!

q
j

, (8b)

we have

S"sgnGReA
dj(q)
dq BKj/*uH

"sgnGReA
dq
djBKj/*uH
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"sgnGReA!
P@(iu)

iuP(iu)
#

Q@ (iu)

iuQ (iu)BH"!sgnGImA
P@ (iu)

uP (iu)
!

Q@ (iu)

uQ(iu)BH
"!sgn GImA

P@ (iu)PM (iu)

uDP (iu) D2
!

Q@ (iu)QM (iu)
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"!sgnMIm(P@(iu)PM (iu)!Q@(iu)QM (iu))N, (9)

where && 1 '' denotes complex conjugate. Observe that

!MIm(P@(iu)PM (iu)!Q@ (iu)QM (iu))N"P
R
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I
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I
!Q

R
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!Q

I
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, (10a)

F@ (u)"2(P
R
P@
R
#P

I
P@
I
!Q

R
Q@

R
!Q

I
Q@

I
), (10b)

we have

S"sgn F@(u). (11)

Now, we study the case when F (u)"0 has exactly one simple positive u
0
with the critical

delay values given by equations (6a) and (6b). Since the leading coe$cient of F (u) is positive,
it follows that F (u)'F (u

0
)"0 for all u'u

0
, and F (u)(F (u

0
)"0 for u3[0, u

0
).

Thus, one must have F@ (u
0
)'0. This indicates that each crossing of the real part of

characteristic roots at q
k
's (corresponding to $iu

0
) must be from left to right. Thus, the

characteristic equation of system has a new pair of conjugate roots with positive real parts
when the time delay q is crossing each critical value q

k
of time delay, and the number of

characteristic roots with positive real parts cannot decrease as the time delay increases.
Hence, if the system without time delay is asymptotically stable, the numbers of
characteristic roots with positive real parts are 0, 2, 4,2, 2i,2 in the intervals [0, q

0
),

(q
0
, q

1
), (q

1
, q

2
),2, (q

i~1
, q

i
),2 respectively. This means that the system is asymptotically

stable for q3[0, q
0
) and unstable for all q*q

0
. If the system which is free of time delay is

unstable, then there exists at least one pair of conjugate characteristic roots with positive
real part for q3[0, q

0
). As a result, the system must be unstable for all q*0.

Then, we discuss the case when F (u)"0 has simple positive roots u
1
'u

2
'2

'u
p
'0. The di!erence between two critical values of time delay corresponding to a given

pair of roots $iu
j
satis"es

q
j,k`1

!q
j,k

"

2n
u

j

(

2n
u

j`1

"q
j`1,k`1

!q
j`1,k

(k"0, 1, 2,2, j"1, 2,2, p!1).

(12)

The crossing of real parts of characteristic roots at two adjacent simple roots u
j
and u

j`1
must be in opposite directions, since F@(u

j
) and F@ (u

j`1
) have opposite signs. Actually, we

must have sgn F@(u
2j~1

)'0 and sgn F@(u
2j

)(0 ( j*1) since F(u)'F (u
1
)"0 for all

u3 (u
1
,#R) and all possible (u

2k`1
, u

2k
), but F (u)(F(u

1
)"0 for all possible

(u
2k

, u
2k~1

). That is to say, the crossing of real parts of characteristic roots at q
2j~1,k

(corresponding to $iu
2j~1

) must be from left to right, and the crossing at q
2j,k

(corresponding to $iu
2j

) must be from right to left. Therefore, as the time delay varies from
zero to in"nity, the characteristic equation of the system always adds a new pair of



STABILITY SWITCHES OF DELAYED DYNAMIC SYSTEMS 219
conjugate characteristic roots with positive real parts for each crossing of time delay at
q
2j~1,k

, but removes such a pair for each crossing of time delay at q
2j,k

. Considering
equation (12), we can "nd that more characteristic roots change their sign of real parts from
negative to positive at q

1,k
(corresponding to $iu

1
) than those from positive to negative at

q
2, l

(corresponding to $iu
2
). A similar assertion holds true for the delay crossing at q

3,m
and q

4,n
(corresponding to $iu

3
and $iu

4
), and so on. Hence, the characteristic equation

of system must have eventually some roots of positive real parts when the time delay
increases. That is, the system must "nally be unstable with increase in time delay, and the
number of stability switches must be "nite.

In summary, we have the following theorem.

Theorem 1. Assume that equation (1) has no pure imaginary characteristic roots satisfying
Q(iu)"0; then, the following statements are true.

(a) If F(u)"0 has no positive root, the system is delay-independent stable or unstable for
any given time delay, depending on whether the system which is free of time delay is
stable or not.

(b) Assume that F (u)"0 has only on simple positive root u. If the system free of time delay
is asymptotically stable, then there exists exactly one q

c
'0 such that the system

remains asymptotically stable when q3[0, q
c
), and becomes unstable when q*q

0
. If the

system is unstable for q"0, it is unstable for arbitrary time delay.
(c) If F(u)"0 has at least two positive roots u

1
'u

2
'2'u

p
'0 and the roots are

simple, then a ,nite number of stability switches may occur as q increases from zero to
in,nity, and the system becomes unstable ,nally.

If the system is of one or two dimensions, the analysis on the number of real roots of F (u)
is considerably easy. When it is high dimensional and involves some unknown parameters,
however, pure numerical consideration is time-consuming. In this case, it is better to use
some analytical tools to determine the number of real roots of F (u) with unknown
parameters. The generalized Sturm criterion serves this purpose e!ectively.

2.2. A BRIEF REVIEW ON THE GENERALIZED STURM CRITERION

The generalized Sturm criterion is a useful tool to determine the number of real roots of
polynomial F (u) with unknown parameters. In the generalized Sturm criterion, the
so-called &&discrimination sequence'' plays a role as important as that of the Sturm sequence,
which works e!ectively for the polynomials with given parameters.

Let f (x) be a real polynomial of order n. We "rst de"ne the Bezout matrix (cf. references
[6, 7]) of f (x) and f @(x) as the discrimination matrix of f (x) and denote it by discr( f ). Then,
we de"ne the discrimination sequence of f (x) as the principal sub-determinant sequence of
discr( f ) taken in order, and denote it by

D
1
( f ), D

2
( f ),2, D

n
( f ). (13)

This sequence can be simply obtained by using a short MAPLE routine discr in
Appendix A.

Given a real number sequence x
1
, x

2
,2,x

n
(x

1
O0), the sign sequence [s

1
, s

2
,2, s

n
],

with s
i
"sign(x

i
), (i"1, 2,2, n), is called the sign table of the original sequence.

The modi"ed sign table [e
1
, e

2
,2, e

n
] can be written down by following the two rules
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given below:

(1) For any segment [s
i
, s

i`1
, s

i`2
,2, s

i`j
] with s

i
O0, s

i`1
"s

i`2
2"s

i`j~1
"0 and

s
i`j

O0 of a given sign table, [s
i`1

, s
i`2

,2, s
i`j~1

] is replaced by
[!s

i
, !s

i
, s

i
, s

i
, !s

i
, !s

i
, s

i
, s

i
,2].

(2) All the other terms in the table are kept unchanged.

Then, the generalized Sturm criterion can be stated as follows.

Theorem 2. ¸et f (x) be a polynomial of order n and D
1
( f ), D

2
( f ),2, D

n
( f ) be the

corresponding discrimination sequence. Assume that the number of variations of signs in the
modi,ed sign table is v, and l is the positive integer satisfying D

l
( f )O0, D

m
( f )"0 (m'l);

then (a) the number of distinct pairs of conjugate complex roots of f (x) is v; (b) the number of
distinct real roots of f (x) is l%2v; (c) in order that the function f (x) has repeated roots, it is
necessary that l(n.

2.3. PREDICTION OF STABILITY SWITCHES IN PARAMETER SPACE

On the basis of the above discussion, the analysis on stability switches for delayed
dynamic systems with unknown parameters can be completed as follows. First, "nd out the
characteristic function and the corresponding function F (u). Then, run the MAPLE routine
discr to obtain the discrimination sequence of F (u) and the factors d

i
. Afterwards, divide the

parameter region concerned into some sub-regions by plotting the graphs of d
i
and the

curves determined by Routh}Hurwitz conditions corresponding to q"0. Finally, use
Theorem 2 (the generalized Sturm criterion) to check the number of real roots of F (u) and
use Theorem 1 to predict the stability switches in the parameter space.

3. STABILITY SWITCHES OF GROUND VEHICLES

In this section, the stability of two models of ground vehicle is analyzed to demonstrate
how to investigate the stability switches of delayed systems with unknown parameters. One
is the active suspension of a quarter car model equipped with a &&sky-hook'' damper; the
other is a four-wheel steering car with a time delay in driver's response taken into account.
The stability of these two models has been reported in a number of previous publications,
but mainly limited to relatively simple cases. For example, the stability of an undamped
quarter car model with active suspension was analyzed for a given time delay in reference
[9] by using the D-subdivision method. For the quarter car model equipped with a passive
damper and a &&sky-hook'' damper, the delay-independent stability was given in reference
[1]. Numerical analysis was made in reference [10] to investigate the stability and Hopf
bifurcation for the four-wheel steering vehicle with given parameters. In this paper,
attention is paid to the analysis of stability switches for di!erent parameter combinations.

3.1. ACTIVE SUSPENSION FOR A QUARTER CAR MODEL WITH &&SKY-HOOK'' DAMPER

We "rst consider the stability switches of a linearized quarter car model equipped with an
active suspension. The equation of motion of the system yields

m
b
xA#cN

s
(x@!y@)#kM

s
(x!y)#u"0,

m
t
yA!cN

s
(x@!y@)!kM

s
(x!y)!u#kM

t
(y!f )"0, (14)
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where ( )@,d( )/dtM , x is the vertical displacement of the vehicle body m
b
, y the vertical

displacement of the unsprung mass m
t
, f is the road disturbance, cN

s
*0, the kM

s
*0 and

kM
t
*0 are the damping coe$cient, the sti!ness of suspension, and the sti!ness of the tyre

respectively. The system parameters are given as follows: m
b
"290 kg, m

t
"59 kg,

cN
s
"0&980 N s/m, kM

s
"16 812 N/m, kM

t
"19 000 N/m.

To reduce the vibration of the vehicle body and the suspension deformation as well, an
active control force u is introduced through linear feedback of vehicle body velocity. This
control strategy is called &&sky-hook'' damper. From a practical point of view, the above
feedback involves a time delay caused mainly by the hydraulic actuator. Thus, the control
force generated by the sky-hook damper takes the form

u"gN x@(tN!q6 ), (15)

where the feedback gain DgN D is approximately within 0}2000 (N s/m).

Let w
s
"JkM

s
/m

b
, b"m

b
/m

t
, q"q6 w

s
, k

t
"kM

t
/kM

s
, c"cN

s
/Jm

b
kM
s
, and g"gN /Jm

b
kM
s
. One

can cast equation (14) into

xK#c
s
(xR !yR )#(x!y)#gxR (t!q)"0,

yK!cb(x5 !yR )!b(x!y)#k
t
by!gbxR (t!q)"0, (16)

where the dot represents the derivative with respect to the new time t"tN /w
s
. The

dimensionless parameters of the vehicle become

b"4)9153, k
t
"1)1301, c"0}0)4438, g"0}0)9078. (17)

The characteristic equation of equation (16) reads

D(j, q),j4#c(1#b)j3#(1#b#k
t
b)j2#ck

t
bj#k

t
b#gj(j2#k

t
b)exp(!jq)"0.

(18)

Obviously, one has

D(j, 0)"j4#(c (1#b)#g)j3#(1#b#k
t
b)j2#k

t
b (c#g)j#k

t
b"0. (19)

From the Routh}Hurwitz criterion, one can readily know that D(j, 0) is Hurwitz stable if
and only if

g#c'0, g2#cb(1#k
t
)g#cg#c2bk

t
'0. (20)

When q'0, the function F (u) is in the form

F (u)"u8#b
1
u6#b

2
u4#b

3
u2#b

4
. (21)

By using discr, one obtains the discrimination sequence

1, d
0
, d

0
d
1
, d

1
d
2
, d

2
d
3
, d

3
d
4
, d

4
d
5
, d2

5
d
6
, (22)

where the coe$cients in equation (21) and the expressions of d
i
in equation (22) are listed in

Appendices B and C respectively. In what follows, the stability switches of this quarter car
model will be discussed for di!erent combinations of passive damping ratio c and feedback
gain g.
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3.1.1. Analytic results

To keep the discussion broad enough, we consider a larger region of X"M(g, c) :
Dg D(1, 0(c(0)5N than the parameter combinations in equation (22). As c is varied from
0 to 0)5, d

0
'0 and d

6
'0 always hold. In X, the graph of d

5
"0 is composed of two

V-shaped curves. The curves determined by d
3
"0 and d

4
"0 coincide with the wide

V-shaped curve. The graphs of d
1
"0 and d

2
"0 intersect with the narrow V-shaped curve

respectively. As shown in Figure 1, the region X is divided into 11 sections, which are
numbered from the left to the right and from the top to the bottom by 1, 2,2, 11,
respectively.

The second condition in equation (20) is now in the form: g'!0)5067c or
g(!10)9634c. As the conditions g'!c and g(!10)9634c cannot hold true at the same
time, the Routh}Hurwitz condition is simpli"ed to

g'!0)5067c. (23)

The graph, denoted by RHb, of g"!0)5067c coincides with the left boundary of the
narrow V-shaped region. This implies that the system which is free of time delay is
asymptotically stable when the parameters are chosen from the sub-regions of 2, 3, 5, 6, 8,
9 and 11, and becomes unstable if the parameter combinations are taken from the
sub-regions of 1, 4, 7 and 10.

It is easy to "nd that the number of variations of sign tables of the discrimination
sequence, as shown in Table 1, is 2 for all sub-regions, except for those (numbered as 2, 5 and
8) in the narrow V-shaped section, where the number of variations of sign tables is 4. It
follows that F (u)"0 has exactly 2("(8!2]2)/2) distinct positive roots when the
parameters are taken from the sub-regions 1, 3, 4, 6, 7, 9, 10 and 11, and has no real roots
(0"8!2]4) if the parameters are in the sub-regions of 2, 5 and 8. Thus, the system is
delay-independent stable in the narrow V-shaped region (the sub-regions 2, 5 and 8), and it
may exhibit a "nite number of stability switches in the other sub-regions.
Figure 1. Parameter division by d
i
for a quarter car model with a delayed sky-hook damper. The curves,

symmetrical to the c-axis, in this graph are given by C
1
: d

1
"0; C

2
: d

2
"0; C

3
: d

3
"0, d

4
"0, d

5
"0; and

C
4
: d

5
"0. The left part of the narrow V-shaped curve C

4
is also the boundary of the region determined by the

Routh}Hurwitz conditions.



TABLE 1

Sign tables of the discrimination sequence of a quarter car model with sky-hook damper

Sub-regions d
0

d
1

2 d
5

d
6

D
1

D
2

2 D
7

D
8

(sign tables) l!2v

1, 3 # ! ! ! ! ! # 1 1 !1 1 1 1 1 1 4
2 # ! ! ! ! # # 1 1 !1 1 1 1 !1 1 0

4, 6, 7, 9 # # ! ! ! ! # 1 1 1 !1 1 1 1 1 4
5, 8 # # ! ! ! # # 1 1 1 !1 1 1 !1 1 0

10, 11 # # ! # # # # 1 1 1 !1 !1 1 1 1 4

S
T

A
B

IL
IT

Y
S
W

IT
C

H
E

S
O

F
D

E
L

A
Y

E
D

D
Y

N
A

M
IC

S
Y

S
T

E
M

S
223



224 Z. H. WANG AND H. Y. HU
From Theorem 2, we see that only when the parameters are taken from the boundary of
the two V-shaped regions, can the function F (u) have probably repeated real roots. In
contrast, on the other common boundaries outside the narrow V-shape region, F (u) has
two distinct simple positive roots. For example, on the common boundary, determined by
d
2
"0, of sub-regions 6 and 9 the modi"ed sign table of the discrimination sequence is

[1, 1, 1, !1, !1, 1, 1, 1] since the original sign table of the discrimination sequence is
[1, 1, 1, 0, 0, 1, 1, 1]. As the variation number of the modi"ed sign table is 2, F (u) has two
distinct simple positive roots. Thus, the system possesses a "nite number of stability
switches when the parameters are taken from the common boundaries except for the two
V-shaped lines.

Though all the sub-regions, except for those numbered as 2, 5 and 8, cause the polynomial
F(u) to have two distinct positive roots, the dynamic behaviors of the system do have
di!erences in these sub-regions. Let the time delay be varied from 0 to in"nity. When the
parameters are chosen from the sub-regions 1, 4, 7 and 10, the system may undergo a "nite
number of stability changes from instability to stability, then to instability and so on, and
eventually become unstable. However, if the parameters are taken from the sub-regions 3, 6,
9 and 11, the system "rst remains stable, then becomes unstable, again becomes stable and
so on, and eventually becomes unstable. This will be demonstrated in the next subsection by
numerical examples.

3.1.2. Numerical examples

Example 1. g"0)6 and c"0)4.

The point (0)6, 0)4) falls into the sub-region 3, where the function F (u) has exactly two
distinct real roots. In fact, the two real roots are u

`
"0)8647 and u

~
"0)5922 with

F@(u
`

)'0 and F@(u
~

)(0. The corresponding critical values of time delay are

q
1,0

"1)9987, q
1,1

"9)2650, q
1,2

"16)5313, q
1,3

"23)7976, q
1,4

"31)0639,2

and

q
2,0

"7)1771, q
2,1

"17)7870, q
2,2

"28)3969, q
2,3

"39)0068, q
2,4

"49)6167,2

They can be ranked as

q
1,0

(q
2,0

(q
1,1

(q
1,2

(q
2,1

(q
1,3

(q
2,2

(2 (24)

We claim that the system is asymptotically stable for q3[0, q
1,0

), unstable for q3[q
1,0

, q
2,0

],
asymptotically stable again for q3 (q

2,0
, q

1,1
), and eventually unstable for all q*q

1,1
.

The "rst three conclusions lie in the facts that F@(u
`

)'0 and F@(u
~
)(0, and that the

system is asymptotically stable for q"0.
To show the fourth conclusion, we observe that, in the sequence (24) of critical values of

time delay, q
1,1

is followed immediately by q
1,2

, but any q
2,k

cannot be followed by q
2,k`1

since q
1,k`1

!q
1,k

"2n/u
`
(2n/u

~
"q

2,k`1
!q

2,k
and q

1,0
(q

2,0
. Thus, the system has

at least two characteristic roots of positive real parts if q'q
1,1

. This means that the system
is unstable for all q'q

1,1
.

Special attention should be paid to the case of q'q
1,2

. For q'q
1,2

, we cannot simply
follow the conditions F@(u

`
)'0 and F@(u

~
)(0 to conclude that the system is

asymptotically stable for q3 (q
2,1

, q
1,3

), (q
2,2

, q
1,4

), etc. This can be veri"ed as follows. Take
q"203 (q

2,1
, q

1,3
) as an example, and let R (u),Re(D (iu, q)) and I(u),Im(D(iu, q)).

Then, R(u) has exactly two positive roots o
1
"3)3017 and o

2
"0)7666, which yields
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I(o
1
)"!67)2561 and I(o

2
)"!1)4871. Thus, one has

2
+
k/1

(!1)k sgn I (o
k
)"0, (25a)

which contradicts the stability condition (cf. reference [3] or Appendix E)

2
+
k/1

(!1)k sgn I(o
k
)"(!1)22"2. (25b)

Therefore, the system is unstable for q3 (q
2,1

, q
1,3

), (q
2,2

, q
1,4

), etc., and in turn, the system is
unstable for all q*q

1,1
. As a result, the number of stability switches is 2.

Example 2. g"0)3 and c"0)1.

We have u
`
"0)7863 and u

~
"0)6438, and the critical time delays are

q
1,0

"2)1610, q
1,1

"10)1516, q
1,2

"18)1422, q
1,3

"26)1329, q
1,4

"34)6096,2

and

q
2,0

"7)0050, q
2,1

"16)7645, q
2,2

"26)5241, q
2,3

"36)2836,2

They are ranked as

q
1,0

(q
2,0

(q
1,1

(q
2,1

(q
1,2

(q
1,3

(q
2,2

(q
1,4

(q
2,3

(2. (26)

One can similarly "nd that the system is asymptotically stable for [0, q
1,0

), (q
2,0

, q
1,1

) and
(q

2,1
, q

1,2
), and unstable for [q

1,0
, q

2,0
], [q

1,1
, q

2,1
] and [q

1,2
,#R). Hence, the system

exhibits "ve stability switches.

Example 3. g"!0)5 and c"0)2.

We have u
`
"0)8389 and u

~
"0)6034, and the critical time delays are

q
1,0

"5)7548, q
1,1

"13)2451, q
1,2

"20)7353, q
1,3

"28)2256,2

and

q
2,0

"2)1638, q
2,1

"12)5769, q
2,2

"22)9900, q
2,3

"33)4301,2

They are ranked as

q
2,0

(q
1,0

(q
2,1

(q
1,1

(q
1,2

(q
2,2

(q
1,3

(q
2,3

(2. (27)

The system is asymptotically stable for (q
2,0

, q
1,0

) and (q
2,1

, q
1,1

), and unstable for
[0, q

2,0
], [q

1,0
, q

2,1
] and [q

1,1
,#R). Hence, the number of stability switches is 4.

The numerical examples show that, in the sense of stability switches, the stability
behavior of the quarter car model with a delayed sky-hook damper is rather complicated.
The system may change its stability many, but "nite, times as the time delay varies. If all the
critical values of time delay were increasingly ranked, then the change of stability must be
ended as soon as any q

1,k
is followed by q

1,k`1
in this sequence of time delay, and the system

is unstable for all q*q
1,k

. The increase in time delay usually results in instability of the
system, but it also o!ers a way to stabilize an unstable suspension system.
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3.2. FOUR-WHEEL STEERING VEHICLE WITH TIME DELAY IN DRIVE'S RESPONSE

Now, we consider the &&bicycle model'' of a four-wheel steering vehicle. Let v be the lateral
velocity, r the yaw angular velocity, y the vertical coordinate in a "xed frame, t the heading
angle of the vehicle, and d

f
and d

r
the steering angles applied on the front and rear wheels

respectively. When the time delay in driver's response is taken into account, the motion of
system can be described by a set of "ve-dimensional di!erential equations with a time delay
as follows [10]:

m(vR#r;)"2F
f
cos d

f
#2F

r
cos(kddf#k

r
r),

I
z
rR"2aF

f
cos d

f
!2bF

r
sin(kddf#k

r
r),

yR "v cos t#; sint, (28)

tQ "r,

d0
f
"!G

K
m

¹
s

y(t!q)#
¸

;
yR (t!q)#

1

¹
s

d
fH#f (t),

where; is the constant moving speed of the vehicle, I
z
the inertia moment of rotation of the

vehicle body with respect to the vertical axis through the center of gravity, a and b the
distances from the center of mass to the front and rear axles respectively, F

f
and F

r
the

lateral forces generated by the contact between the tyre and the road surface at each of the
front and the rear wheels respectively, ¸ the preview distance of the driver, q the time delay
in driver's response, and f (t) the external disturbance. Moreover, we use the geometric
relations and the truncated Magic model of tyre force

a
f
"arctan

v#ar

;
!d

f
, a

r
"arctan

v!br

;
!d

r
, (29a)

F
f
"!C

1
a
f
#C

3
a3
f
, F

r
"!D

1
a
r
#D

3
a3
r
, (29b)

as well as the control strategy between the front wheels and the rear wheels [10],

kd"!

C
1

D
1

, k
r
"

2(aC
1
!bD

1
)#m;2

2D
1
;

. (29c)

The vehicle is said to be under-steered, neutral steered and over-steered if aC
1
!bD

1
(0,

aC
1
!bD

1
"0 and aC

1
!bD

1
'0 respectively. In the following discussion, the system

parameters are chosen as [10]: m"1300 kg, I"3000 kgm2, a"1)0 m, b"1)6 m, C
1
"

44400 N/rad, D
1
"43600 N/rad (or D

1
"25600 N/rad for over-steered), C

3
"44400 N/rad,

D
3
"44 400 N/rad, ¹

s
"0)2 s, K

m
"0)02.

As analyzed in reference [10], the system has nine steady states including the trivial one.
After some necessary manipulation, one can get the characteristic function of the linearized
equations corresponding to the trivial solution as follows:

D(j, q),j5#c
04

j4#c
03

j3#c
02

j2#(c
13

j3#c
12

j2#c
11

j#c
10

)exp(!jq), (30)

where the coe$cients are listed in Appendix D. According to the Routh}Hurwitz criterion,
the trivial solution for q"0 is asymptotically stable if and only if

a
0
'0, a

4
'0, a

4
a
3
!a

2
'0, a

4
a
3
a
2
!a2

4
a
1
!a2

2
#a

4
a
0
'0, (31a)

a
4
a
3
a
2
a
1
!a

4
a2
3
a
0
!a2

4
a2
1
#2a

4
a
1
a
0
!a2

2
a
1
#a

3
a
2
a
1
!a2

0
'0, (31b)
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where a
i
"c

0i
#c

1i
(i"0}4) are the coe$cients of polynomial D(j, 0). The function F (u)

can be readily written out as

F (u)"u10#(c2
04
!2c

03
)u8#(!2c

04
c
02
#c2

03
!c2

13
)u6

#(c2
02
!c2

12
#2c

13
c
11

)u4#(2c
12

c
10
!c2

11
)u2!c2

10
, (32)

which has obviously at least one positive root since F (0)"!c2
10
(0 and F(#R)P#R.

This means that the system cannot be delay-independent stable. By using discr, we get the
discrimination sequence of F(u) as

1, d
0
, d

0
d
1
, d

1
d
2
,2, d

6
d
7
, d2

7
d
8
. (33)

Since the expressions of d
6
, d

7
are lengthy, all the terms of the discrimination sequence are

omitted in this paper. In what follows, we consider the following parameter combinations:

D"M(¸,;) : 5 m/s(;(40 m/s, 10 m(¸(120 mN. (34)

In the case of the under-steered vehicle, it is easy to know that the Routh}Hurwitz
conditions hold true in the whole given region. This means that the system is asymptotically
stable for q"0. In addition, we have d

0
(0, d

1
'0, d

3
'0, d

5
'0, d

6
(0, d

7
'0 and

d
8
'0. By plotting the graphs of d

2
"0 and d

4
"0, the given region D in the parametric

space of (¸, ;) is divided into "ve sub-regions as shown in Figure 2. The sign tables of the
discrimination sequence are given in Table 2. The numbers of variation of all sign tables are
the same, namely, 4. Thus, for each of the parameter combinations in the given region, F (u)
has exactly 1("(10!2]4)/2) simple positive root. Once this positive root is found, it is
easy to obtain the minimal time delay q

0
satisfying equations (6a)}(6b). Then, the system

remains asymptotically stable for 0)q)q
0

and becomes unstable for all q*q
0
.

When the vehicle is over-steered, the region D is divided into eight sub-regions, which are
numbered from the top to the bottom sub-regions by 1, 2,2, 8 respectively as shown in
Figure 2. Parameter division of a 4WS vehicle model by d
i
in the under-steered case. The equation d

4
"0 gives

the curves C
1

and C
2
. The graph of d

2
"0 is denoted by C

3
.



TABLE 2

Sign tables of the discrimination sequence of a 4=S vehicle model in the under-steered case

Sub-regions d
0

d
1

2 d
7

d
8

D
1

D
2

2 D
9

D
10

(sign tables) l!2v

1, 3, 5 ! # # # ! # ! # # 1 !1 !1 1 1 !1 !1 !1 !1 1 2
2 ! # # # # # ! # # 1 !1 !1 1 1 1 1 !1 !1 1 2
4 ! # ! # # # ! # # 1 !1 !1 !1 !1 1 1 !1 !1 1 2
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Figure 3. Parameter division of a 4WS vehicle model by d
i
in the over-steered case. RHb is determined by the

Routh}Hurwitz conditions. The graph of d
4
"0 is composed of two curves C

1
and C

6
. The graph of d

5
"0 is

composed of two curves C
3

and C
5
. The graph of d

6
"0 is the same as that of d

7
"0, and is composed of two

curves C
2

and C
5
, and C

4
is the graph of d

2
"0.
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Figure 3. As in Figure 1, the curve RHb denotes the boundary determined by the
Routh}Hurwitz stability conditions for the system without time delay. The sub-region 1 is
such a region that the system is unstable for q"0, while the other sub-regions are those that
ensure that the system is asymptotically stable for q"0. The sign tables of the
discrimination sequence are shown in Table 3.

From Table 3, we see that F(u) has exactly 1("(10!2]4)/2) simple positive root in
every sub-region except for the parameter combinations on the two common boundaries of
sub-regions 3 and 4, as well as 5 and 7, where F (u) has repeated roots. Therefore, sub-region
1 is a region where the system is unstable for all given time delays. In the other sub-regions,
for almost all the parameter combinations in the given region, there exists a q

0
depending on

the parameters so that the system is asymptotically stable for q3[0, q
0
), and unstable for all

q'q
0
.

Here are two numerical examples: (1) ;"30 and ¸"40, (2) ;"30 and ¸"60. In the
under-steered case, the critical time delays are q

0
"0)2899 and 0)2108, and the

corresponding frequencies of self-excited vibration are u"2)4586 and 3)3027 respectively.
In the over-steered case, the critical time delays are q

0
"0)1943 and 0)1412, while the

corresponding vibration frequencies are u"2)6654 and 3)4454 respectively.
In summary, for the four-wheel steering vehicle with the time delay in driver's response

taken into account, the stability behavior of the system is relatively simple. As the time
delay is varied from zero to in"nity, only two cases may occur. If the system which is
free of time delay is unstable, then the system is unstable for any time delay. Or, there
exists a speci"c value q

0
'0 such that the system remains asymptotically stable for

any q3[0, q
0
) and becomes unstable for any q*q

0
if the system is asymptotically

stable when q"0. Numerical examples show that the critical time delays are usually very
short. Thus, a driver's slow response may cause undesirable instability of the four-wheel
steering vehicle.



TABLE 3

Sign tables of the discrimination sequence of a 4=S vehicle model in the over-steered case

Sub-regions d
0

d
1

2 d
7

d
8

D
1

D
2

2 D
9

D
10

(sign tables) l!2v

1, 2, 8 ! # # # ! # ! # # 1 !1 !1 1 1 !1 !1 !1 !1 1 2
3, 7 ! # # # # # ! # # 1 !1 !1 1 1 1 1 !1 !1 1 2
4 ! # # # # # # ! # 1 !1 !1 1 1 1 1 1 !1 1 2
5 ! # # # # ! # ! # 1 !1 !1 1 1 1 !1 !1 !1 1 2
6 ! # ! # # ! # ! # 1 !1 !1 !1 !1 1 !1 !1 !1 1 2
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4. CONCLUDING REMARKS

With an increase of time delay from zero to in"nity, a linear, high-dimensional, dynamic
system under di!erent parameter combinations may have various stability switches. If the
system has no more than one single stability switch, the stability structure of the system is
relatively simple. Otherwise, the system can either be destabilized by decreasing time delay
or be stabilized by increasing time delay. The approach proposed in the paper enables one
to know easily under what parameter combinations the system has no stability switch, one
stability switch, or more than one stability switches. Thus, the approach can be considered
as a new method of parameter division for linear dynamic systems involving a time delay.

A great di!erence in stability switches exists between the two models of ground vehicle
under the parameter combinations concerned. For example, there are some parameter
combinations for the quarter car model with active suspension such that the system is
delay-independent stable, i.e., asymptotically stable for any given time delay. However, the
four-wheel steering vehicle does not possess such parameters, and it has no more than one
stability switch. Furthermore, under any parameter combination, an unstable four-wheel
steering vehicle cannot be stabilized by increasing the time delay of driver's response. While
the quarter car model with active suspension exhibits complicated phenomena of stability
switches, there are some parameter combinations such that an unstable quarter car model
with active suspension can be stabilized by increasing the time delay in velocity feedback.

Finally, one can readily list a number of open problems related to the stability switches.
For example, when F(u) has repeated real roots, no results on stability switches are
available. In addition, if F (u) has at least two distinct positive roots, a rough conclusion
states that the system has a "nite number of stability switches, only no analytical tools are
available for predicting the exact number of stability switches.
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APPENDIX A: MAPLE ROUTINE discr

'discr :"proc(poly, var)
' local f, g, tt, d, bz, i, ar, j, mm, dd:
' f :"expand(poly): d :"degree(f, var):
' g :"tt*var?d#di!(f, var):
' with(linalg):
' bz :"subs(tt"0, bezout(f, g, var)): ar :"[ ]:
' for i to d do
' ar :"[op(ar), row(bz, d#1!i..d#1!i)] od:
' mm:"matrix(ar): dd :"[ ]:
' for j to d do
' dd :"[op(dd), det (submatrix(mm, 1..j, 1..j))] od:
' dd :"map(primpart, dd)
'end:

APPENDIX B: THE COEFFICIENTS OF F (u) IN EQUATION (21)

b
1
"!2!2b!2k
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APPENDIX C: THE EXPRESSIONS FOR d
i
IN EQUATION (22)
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APPENDIX D: THE COEFFICIENTS IN EQUATION (30)
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APPENDIX E: A STABILITY CRITERION FOR RETARDED SYSTEM WITH TIME DELAY

Consider an n-dimensional linear autonomous dynamic system with a time delay.
Assume the characteristic function to be in the form of equation (1), and
R(u),Re(D(iu, q)) and I(u),Im(D(iu, q)). Let o
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"0 denote the non-negative real zeros of R and I respectively. Then,

the zero solution of the system is asymptotically stable if and only if
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