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This work presents a symmetric formulation for the coupling of boundary element
method (BEM) with "nite element method (FEM) to compute responses of submerged
elastic structures in a heavy acoustic medium. The acoustic loading derived from BEM is
formulated in a symmetric complex matrix. The symmetry of the acoustic loading matrix is
proven by an acoustic reciprocal principle, which relate two sets of arbitrary surface normal
velocities and surface pressures in terms of surface integrals. The structural equation is
represented by FEM. The fact that the acoustic loading and the structural equation are
symmetric allows us to take the storage and computational advantages of the banded matrix
which has been widely used in conventional "nite element methods. Consequently, the
computational e$ciency of the proposed coupled FEM/BEM is signi"cantly increased. The
proposed method involving 20 000 degrees of freedom can be implemented on a personal
computer. Numerical results are veri"ed by analytical solutions of a constant thickness
spherical shell subject to a point alternating force as well as the previously published
variational solution of a constant thickness spheroidal shell excited by a concentrated force.

( 2000 Academic Press
1. INTRODUCTION

The coupled "nite element method/boundary element method (FEM/BEM) is a
conventional means of computing responses for an arbitrarily elastic structure submerged
in a #uid subjected to alternating external forces. The FEM is used to describe the dynamic
behavior of the structure, while the BEM is used to represent the surface acoustic loading on
the structure. The coupling boundary conditions between the #uid and structure are the
continuity of wetted surface normal velocity and the surface pressure acting as a loading on
the structure. The standard approach to handling the structural equation in coupling with
the acoustic equation is to eliminate the structural displacement variables from the two
equations. By doing so, one obtains an equation which only contains the surface pressure as
the unknown variable to describe the coupled structural/acoustic system [1, 2]. Jeans and
Mathews [3] used a variational formulation to the normal derivative of a surface boundary
integral equation to deal with thin shells submerged in a #uid. The equation governing the
0022-460X/00/230407#16 $35.00/0 ( 2000 Academic Press



408 P.-T. CHEN E¹ A¸.
response is a symmetrically complex matrix using the pressure as a variable. Everstine and
Henderson [4] coupled the surface pressure loading, represented by a Helmholtz integral
equation, with a NASTRAN program which modelled elastic structures. That investigation
also implemented an out-of-core solver to resolve large-scale problems. Everstine [5] also
applied coupled FEM/BEM to deal with low-frequency resonances by treating added mass
derived from the boundary integral equation at low-frequency limits. The matrix associated
with the added mass, although lacking a formal derivation, is identi"ed as symmetric.

Despite their merits, the above investigations are severely limited by the large number of
degrees of freedom in large-scale problems because the derivations of the coupled equations
involve matrix inversions of structural displacement variables for which the displacement
variables are eliminated. Also, the matrices associated with BEM are not symmetric in some
formulations. The degrees of freedom of the matrix inversions are of the order of structural
degrees of freedom, which are generally six times the number of structural nodal points, and
the inverted matrices are fully populated. Such inversions require massive memory storage
and computational capacity, leading to the limitation for large-scale problems. In reference
[5], the execution of a problem having 16 000 degrees of freedom requires many hours of
supercomputer time. For conventional "nite element methods used to form the matrix
equations, the banded nature of the matrix storage leads to tremendous savings in memory
allocation and computational capacity, thereby providing e$cient numerical
implementations. Nevertheless, the banded nature of matrix storage could not be directly
employed by the conventional FEM/BEM schemes as discussed above.

Chen and Ginsberg [6] demonstrated that the acoustic loading on the wetted surface is
a complex symmetric matrix by a surface acoustic reciprocal principle. The symmetry of the
acoustic loading serves as the basis for this work to formulate an e$cient coupled
BEM/FEM. The paper presents a numerical method capable of taking advantage of the
banded nature of the "nite element method and the symmetry of the acoustic loading, thus
leading to savings in memory storage and e$cient numerical execution dramatically. The
computation is implemented on a PC with Pentium II CPU.

2. COUPLED EQUATION FOR BEM/FEM

The coupling boundary condition for the coupled structural equation and acoustic
equation is the continuity of the normal velocities on the wetted surface of these two
equations. Therefore, the degrees of freedom for the structural equation are established in
such a manner that the three linear displacement components of the nodal points on the
wetted surface are oriented in normal and tangential directions to the surface. Rotational
displacements and nodal points other than on the wetted surface could be arbitrarily
oriented, such as the global co-ordinate directions for convenience. If [kK

e
] denotes an

elementary sti!ness matrix de"ned in a global co-ordinate system, then the sti!ness matrix
[k

e
] oriented to the normal surface direction is

[k
e
]"¹T[kK

e
]¹, (1)

where the superscript &&T'' represents matrix transpose. The element transformation ¹ can
be expressed as
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where /
i
and /

j
are proper 3]3 directional cosine matrices for linear displacements on the

wetted surface between the global co-ordinate system and normal surface directions,
respectively, I is a unit 3]3 identity matrix corresponding to those nodal points not on the
surface or to the rotational displacements. The total sti!ness matrix [k] is formed by
summing up the elementary matrices:

[k]"+
e

[k
e
]. (3)

The total sti!ness matrix can then be partitioned into the surface normal degree of freedom
as denoted by a subscript symbol &&n'' and the remaining degrees of freedom by &&i'', which
include the surface tangent displacements, the interior nodal points not in contact with the
#uid, and all the rotational displacements:
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Correspondingly, the submerged structural equation subject to the acoustic loading and
external forces oscillating at a frequency u is
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where M
pq

(p, q"n, i) are global mass matrices corresponding to the n and i degrees of
freedom, x

n
and x

i
are the corresponding displacement variables, f

n
and f

i
are the associated

external alternating forces, P is the discretized surface pressure, and N is a shape factor
matrix arising from shape functions in discretizing the normal displacement and surface
pressure. The shape factor matrix can be identi"ed by considering the virtual work d=
done by the surface pressure against the structure's virtual normal displacement dw:
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where t
i,e

and /
j,e

are the shape functions for pressure and normal displacement, and the
expression +

e
(+

i
P
i
t

i,e
) is the interpolated pressure on the surface in terms of the nodal

pressure P
i
. The inner summation denotes a contribution of the interpolated pressure form

an individual element, while the outer summation represents the contribution from all the
elements on the surface. A similar expression can be used for the displacement. The
coe$cients N

ij
are the coe$cients of the shape factor matrix N.

The surface acoustics relating the surface pressure and normal derivative of the surface
pressure is described by a boundary Helmholtz integral equation:
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where x is a "eld point, y is a source point, dS
y

is the di!erential area integrating with
respect to source point y, LP/Ln is the pressure normal derivative, and G (x, y) is the
free-space Green's function

G(x, y)"
e~*k Dx~yD

4nDx!yD
(8)

in which k is a wave number de"ned as k"u/c, and c is the sound velocity. The X (x) is
de"ned by

X(x)"!

1

4n P
L (1/Dx!yD)

Ln (y)
dSy (9)

which is the solid angle at point x subtended over the wetted surface of the interior domain.
Note that the oscillation time factor is e*ut. The pressure normal derivative relates to the
normal displacement as

LP

Ln
"o

0
u2x

n
, (10)

where o
0

is the #uid density. Discretizing P and LP/Ln in equation (7) leads to the matrix
equation,

[H]MPN"[G]G
LP

LnH, (11)

where MPN and MLP/LnN are discretized nodal values, and [H] and [G] are complex matrices.
By combining equations (10) and (11), the surface pressure MPN relates to the normal
displacement MX

n
N as

MPN"[H]~1[G](o
0
u2)Mx

n
N. (12)

Substituting the above equation into equation (5) leads to the equation for forced vibration
of the submerged structure:
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where K
G

is the sum of the above two matrices, and D
pq

(p, q"i, n) are identi"ed as

D
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The second term of the "rst equation in equation (13) is the acoustic loading which only
applies to the normal displacement x

n
. The e!ects of the acoustic loading on x

i
is through

the matrices D
ni

and D
in
. Equation (13) reveals that the acoustic loading is equivalent to an

additional complex sti!ness matrix on the normal degree of freedom.
It is worthwhile to review conventional ways to handle the coupling of the structural

equation, equation (5), with the acoustic equation, equation (11). Let the above two
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equations be written as
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where I is an identity matrix having the dimension consistent with the variable x
n
, and the

unknown variables are Mx
n
N, Mx

i
N and MPN. The variables can be obtained by solving the

above two equations simultaneously, but the associated matrix of the equation has a large
dimension, requiring huge memory storage for large-scale problems. One way to deal with
such a situation is to express the displacement Mx

n
N and Mx

i
N in terms of pressure variable

MPN from the "rst matrix equation, and then to substitute into the second equation, leading
to a matrix equation containing only pressure MPN as the unknown variable. This
displacement variables elimination process involves structural matrix inversion, and matrix
multiplications, requiring massive memory allocation and computation capacity. Instead of
using the conventional ways, the present method treats the acoustic loading in equation (13)
as an acoustic element. The element is examined in the following section.

3. ACOUSTIC LOADING MATRIX

The surface complex power P, which is de"ned as one half of the surface integral of the
surface pressure P, multiplying the complex conjugate of the normal velocity v*

n
, is

computed as
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where the surface pressure and normal velocity are discretized by the shape functions used
in equation (6). Substituting equation (11) into the pressure variable P

i
of the above

equation and relating LP/Ln to the normal displacement x
n

in equation (10), we have the
surface complex acoustic power expressed in terms of x

n
:
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which is a quadratic form of the matrix o
0
u2[N]T[H]~1[G]. This matrix is identical to the

acoustic loading matrix in equation (13). In a previous study [6], the surface complex power
obtained by an assumed modes expansion for the surface normal velocity is a quadratic
form of the velocity expansion coe$cients whose corresponding matrix is symmetric. The
present matrix o

0
u2[N]T[H]~1[G] arising from the shape function discretization can also

be proved to be symmetric.
The foundation of the matrix symmetry is based on an acoustic reciprocal principle [6]

for a body immersed in an in"nite extent acoustic medium and that for two arbitrary sets of
surface velocities and pressure distributions P

1
,<

1
, and P
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2
, the following relation holds:
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The approximated pressures PM
1

and PM
2

can be interpolated by nodal values P
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and P
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The discretized variables P
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equation (11). The approximated quantities PM
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when the meshes become close to each other. Implement equation (18)

numerically using the approximated quantities in equations (19) and (20), leading to
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where the quantities of the integrals are identi"ed as N
ij
. Consequently, we have the

discretized expression for the reciprocal principle of equation (18) as
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which can be further expressed containing only nodal velocity variables by using equation
(11) to eliminate the pressure variables. Thus, combining equations (22) and (11) leads to
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where Mv
1
N and Mv

2
N are the nodal velocities. Because the velocities Mv

1
N and Mv

2
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arbitrary, equation (23) leads to

NT[H]~1[G]"(NT[H]~1[G])T (24)

which proves that the acoustic loading matrix in equation (13) is symmetric. For
monofrequency oscillations, the phase of surface pressure leads the phase of surface normal
velocity, implying that the imaginary part of the product pv*

n
is positive (the oscillating time

factor is e*ut). The real part of pv*
n

is also positive owing to the positive power emitting from
the surface. Hence, the real and imaginary parts of P in equation (15) are positive. Also,
because the symmetry shown in equation (24), denotes
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where C
R

and C
I
are symmetric real matrices, the complex surface power in equation (17)

can be written as
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The real part of P is associated with the second term, while the "rst term corresponds to the
imaginary part of the power. Owing to the positiveness of both the real and the imaginary
parts of P, equation (26) indicates that C

R
is negative de"nite and C

I
is positive de"nite. This

observation obviously reveals that the acoustic loading matrix in equation (13) presents
inertia e!ects due to C

R
and damping e!ects due to C

I
. The damping e!ects are responsible
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for radiating power into far "elds. This acoustic loading matrix can be viewed as a complex
acoustic "nite element attached to the structural equation with the continuity of the wetted
surface normal displacement. The acoustic "nite element, derived from the boundary
Helmholtz integral equation of equation (7), fully characterizes the acoustic loading e!ects
on the structure. In the following, the above observation of the symmetry complex acoustic
loading "nite element is used to implement numerical computations.

The above formulation for the acoustic loading element stems from boundary integral
equations. The boundary integral equation of equation (7) fails at frequencies coincident
with the interior cavity frequencies of homogeneous Dirichlet boundary conditions. The
discretized equation of the [H] matrix in equation (11) becomes ill-conditioned when the
exciting frequency is close to the interior frequencies, thus providing an erroneous acoustic
loading matrix. This problem could be overcome by using the CHIEF [7] or Burton}Miller
method [8] which makes the matrix [H] invertible.

4. COMPUTATIONAL ASPECTS OF THE SUBMERGED STRUCTURAL EQUATION

This study implements numerical computations by applying the sky-line method
(variable-bands storage method) and using the Cuthill}Mckee algorithm [9] to reduce the
storage bandwidth. The sky-line algorithm is a conventional means of solving real or
complex matrix equations. The underlying concept of this method is that only the
components below the "rst non-zero component in each column change after the Cholesky
decomposition; thus, only these components should be stored and calculated. The e$ciency
of this method is highly dependent on the bandwidths of the matrix. A renumbering
procedure [9] is normally used to minimize bandwidths before solving the equations. Steps
of sky-line method are described as follows.

(1) Identify the sky-line shape: For this method, only the components below the "rst
non-zero component in each column are stored into a one-dimensional array S. An index
array, ¸¸, is used to indicate the position numbers in the array that correspond to the
diagonal elements of the two-dimensional matrix. The last ¸¸ represents the total number
of complex values required for the global sti!ness matrix. Figure 1 presents an illustrative
example.
Figure 1. Array structure of sky-line method.
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(2) Form the global sti+ness matrix [K
G
]: Since the global sti!ness matrix is symmetric,

only the lower matrix (Figure 1) requires to be stored in the one-dimensional array S. The
relationship between the full two-dimensional array [K

G
] and the sky-line one-dimensional

array, S, is

[K
G
](i, j)"S (¸¸(i)#j!i), for i*j.

(3) Decompose the matrix [K
G
] by the Cholesky method: The decomposition is

[K
G
]"¸D¸T,

where ¸ is the lower triangular matrix and D is the diagonal matrix.
(4) Perform forward and backward substitutions to obtain the solution.

5. NUMERICAL EXAMPLES

Numerical examples are presented by selecting constant thickness spherical and
spheroidal shells under concentrated external forces. The point-concentrated forces are
more severe computational circumstances than surface loadings. Previous literature
provides the analytical solution for the spherical shell [10]. Numerical data for the
spheroidal shells were computed by variational formulations published elsewhere [11] in
which the acoustic loading was formulated by a surface variational principle and the
structural equation was derived by Hamilton's principles. In that formulation, the
displacements of the structure and the surface pressure were expanded by a set of assumed
expansion functions. Thus, the variational expression of the formulation becomes a function
of the expansion coe$cients. The equation of the expansion coe$cients can be obtained
when virtual increments were applied to the displacements and surface pressure for the
variational expression. The convergence of the computed results is ensured by the assumed
basis amplitude coe$cients approaching zero when using a su$cient number of expansion
terms. Thus, the variational formulations can be regarded as a numerical/analytical method
whose results are satisfactory for numerical comparisons. The material data for the
spherical shell are listed as follows: the radius of the shell is 1 m, the thickness of the shell is
0)03 m, Young's modulus is 2)07]1011 Pa (N/m2), the Poisson ratio is 0)3, the density of the
shell and water are 7669 and 1000 kg/m3, respectively, and the sound speed of the water is
1524 m/s. An external concentrated alternating force is exerted at one apex. To demonstrate
the e$ciency of using the sky-line memory storage in forming equation (13), we use a full
model of mesh generation for the spherical shell. Figure 2 depicts the element meshes. There
are 3235 nodal points and 19410 degrees of freedom. The shell elements are based on
classical bending plus membrane theories. Initially, we compute the acoustic loading
element o

0
u2NT[H]~1[G] and then solve the displacement variables x

n
and x

i
from

equation (13). Because the response is axisymmetric, we plot the normal displacement along
the arclength of a generator which generates the surface of the sphere by revolving around
a symmetric axis. Figure 3 compares the present method with the analytical solutions [10]
where the apex corresponds to zero arclength. The non-dimensionalized frequencies ka are
1)6 and 2)4. Once the x

n
is known, the surface pressure is computed accordingly by equation

(12) which is persented in Figure 4. Figure 5 illustrates the radiation patterns on the plane
cutting through the arclength, where the radiation pattern is computed by an integral
formula

P (x)"PAP (y)
LG(x, y)

Ln(y)
!

LP(y)

Ln(y)
G(x, y)BdSy, (27)



Figure 2. Finite element meshes for a spherical shell.

Figure 3. Normal displacement along the arclength of a generator of the spherical shell: (a) ka"1)6,
(b) ka"2)4. }d} Analytical solution; }r} present analysis.
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where the "eld point x is assigned to a large distance value, factoring out the simple source
term e~*k DxD/DxD. The symbol &&D D'' denotes the distance of the "eld point from the origin.
According to Figures (3)}(5), the numerical results for ka being 1)6 closely correspond to the
analytical solutions, while some discrepancies are displayed when ka equals 2)4. The errors
could be reduced by further re"ning the meshes. Figures 6 and 7 show the normal
displacement and surface pressure at a position of the apex of the applied force versus



Figure 4. Surface pressure along the arclength of a generator of the spherical shell: (a) ka"1)6, (b) ka"2)4. }d}
Analytical solution; }r} pressure method.

Figure 5. Radiation patterns of the spherical shell: (a) ka"1)6, (b) ka"2)4. }d} Analytical solution; }r}
present analysis.
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scanning exciting frequencies. Also computed herein is the radiated power shown in
Figure 8 by taking the real part of the complex surface power in equation (17) or (26).

Next, we present a slender spheroidal shell whose aspect ratio of major radius to minor
radius is four. The material data and the ratio of shell thickness to the minor radius are
identical to those of the spherical shell studied in the last example. The numerical data used
for comparison are computed by using variational formulations to the surface loading and
structure vibrations [11]. The external exciting source is a point force applied at one of the
two apexes of the shell. Figure 9 depicts the discretized meshes which have 2634 nodal
points and 15 804 degrees of freedom. Figure 10 compares the surface normal displacements
along the arclength of a generator. Figure 11 displays the corresponding surface pressures.
Figure 12 shows the radiation patterns which are laid on the plane containing the arclength.
Some discrepancies are observed for ka equal to 2)4. The exciting frequencies were also



Figure 6. Normal displacement at the apex of the applied point force for the spherical shell versus scanning
frequency ka. The dotted points are the sampled ka values. ** Analytical solution; d present method.

Figure 7. Surface pressure at the apex of the applied point force for the spherical shell versus scanning frequency
ka. The dotted points are the sampled ka values. ** Analytical solution; d present method.
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Figure 8. Radiated acoustic power of the spherical shell versus scanning frequency ka. The dotted points are the
sampled ka values. ** Analytical solution; d present method.

Figure 9. Finite element meshes for a spheroidal shell.
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scanned. Figures 13 and 14 show the responses of the surface normal displacement and the
surface pressure on the apex of the applied force respectively. Those two plots present errors
when ka approaches 3 and the error of the surface pressure is larger than the normal
displacement. This observation correlates with the general perception that surface pressures



Figure 10. Normal displacement along the arclength of a generator of the spheroidal shell: (a) ka"1)6,
(b) ka"2)4. }d} SVP; }r} present method.

Figure 11. Surface pressure along the arclength of a generator of the spheroidal shell: (a) ka"1)6, (b) ka"2)4.
}d} SVP; }r} present method.

Figure 12. Radiation patterns of the spheroidal shell: (a) ka"1)6, (b) ka"2)4. }d} SVP; }r} present method.
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Figure 13. Normal displacement at the apex of the applied point force for the spheroidal shell versus scanning
frequency ka. The dotted points are the sampled ka values. ** SVP; d present method.

Figure 14. Surface pressure at the apex of the applied point force for the spheroidal shell versus scanning
frequency ka. The dotted points are the sampled ka values. ** SVP; d present method.
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Figure 15. Radiated acoustic power of the spheroidal shell versus scanning frequency ka. The dotted points are
the sampled ka values. ** SVP; d present method.
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usually have more errors than normal displacements. Figure 15 illustrates the radiated
power versus the exciting frequency ka. Similarly, numerical errors are observed when ka
approaches 3.

6. COMPUTATIONAL ASPECTS

For problem with a large number of degrees of freedom, the FEM/BEM method
frequently requires intensive numerical computations and large memory storage. Therefore,
an e$cient numerical method should be used. In this study, the computations are
performed on a PC with Intel Pentium II CPU and 512 MB memory. The principal
computation loads occur at the formation of the acoustic loading element
o
0
u2NT[H]~1[G] and solving the system equation of equation (13). The required memory

is dominated by storing the matrix elements of equation (13). The e$ciency of storing the
elements depends on the bandwidth of the system matrix in equation (13). The bandwidth
can be reduced by rearranging the ordering of the nodal points based on the Cuthill}Mckee
algorithm. Table 1 lists the degrees of freedom of equation (13) and the average bandwidths.
It shows that the averaged wavefronts for both numerical examples are small after
renumbering as compared with the total degrees of freedom, indicating the e!ectiveness of
matrix storages.

7. CONCLUSIONS

This study presents a novel symmetric formulation for an acoustic loading interacting
with submerged elastic structures. The coupled BEM/FEM forms a banded symmetric
matrix equation, enabling one to e$ciently handle numerical computations and memory
allocations. The symmetry of the acoustic loading matrix is demonstrated by a surface



TABLE 1

Bandwidths of the coupled equation (equation (13)) for spherical and spheroidal shells

Spherical shell Spheroidal shell

Total degrees of freedom 19 410 15 804
Average wavefront of the matrix 467 248
(after renumbering)
Maximum wavefront of the matrix 3235 2490
(after renumbering)
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acoustic reciprocal principle in which two sets of surface pressures and normal velocities are
related by surface integrals. Also presented herein are two numerical examples subject to
point alternating forces which are severe loading conditions in numerical computations
rather than surface force conditions. Numerical results are compared with analytical
solutions for a spherical shell and variational formulations for spheroidal shells. Comparing
numerical data with previously published results demonstrates the e$ciency of the
proposed method. Moreover, the nature of banded matrix storage provides a highly
e!ective means of handling memory usage as well as computational capacity. Owing to the
symmetric formulations and sky-line memory storage, the method proposed herein can
handle large-scale problems in a small computer, such as a PC, for more than 10 000 degrees
of freedom.
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