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A normal mode expansion method for the vibrational responses of non-homogeneous
linear piezoelectric materials without damping is presented. It can be applied directly to
arbitrary piezoelectric composites, which are widely used in vibrational and acoustic
sensor/actuator/transmitter applications. In the present article it is shown that if the normal
modes are given, the displacement "eld can be expanded as the linear superposition of
normal modes, while the modal coe$cients can be represented in terms of surface and
volume integrals directly over the six types of distributed excitations without solving the
quasi-static solution explicitly. The present treatment is a modi"cation of an earlier work by
Liu [11] using a di!erent de"nition of the so-called quasi-static solution, and the damping
e!ect has been neglected for simplicity. A simple example is given to exemplify the
application of the present formulation.
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1. INTRODUCTION

Since the piezoelectric e!ect was discovered by the Curie brothers in 1880, piezoelectric
materials have been widely used as primary elements in acoustic transmitters, signal
processing elements [1], sensors [2], actuators [3], and resonators [4] in both mechanical
and electrical applications. The main feature of a piezoelectric material is its ability to
convert mechanical energy into electrical energy and vice versa. In some cases, the behaviors
of a piezoelectric material can practically be modelled as lumped parameter elements with
the given electrical or mechanical impedances [4]. For a detailed study of the
electromechanical responses of a structure involving piezoelectricity, however,
three-dimensional continuum modelling is required for design purposes [5}7]. Mindlin [8]
introduced the linear theory for a piezoelectric solid. Tierstein [9] derived the orthogonality
relation of vibrational modes for a homogeneous piezoelectric solid. For a pure
homogeneous elastic solid without piezoelectricity, it can be shown that, once the normal
modes have been given, the modal coe$cients for the displacement "eld can be represented
in terms of surface and volume source integrals over the distributed excitations [10]. In the
present article it is shown that if the normal modes are given, the displacement "eld can be
expanded as the linear superposition of normal modes, while the modal coe$cients can be
represented in terms of surface and volume integrals directly over the six types of distributed
excitations without solving the quasi-static solution explicitly. The present treatment is
a modi"cation of an earlier work by Liu [11] using a di!erent de"nition of the so-called
quasi-static solution, and the damping e!ect has been neglected for simplicity.
2-460X/00/230423#12 $35.00/0 ( 2000 Academic Press
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2. BASIC EQUATIONS

Consider a linear piezoelectric material occupying the space domain< with its boundary
S, then, the stress tensor q

ij
and electric displacement d

j
are related linearly to the gradients

of displacement vector u
k

and electric potential u, respectively, as

q
ij
"C

ijkl
L
l
u
k
#e

kij
L
k
u, d

j
"e

jkl
L
l
u
k
!e

jk
L
k
u, (1, 2)

where C
ijkl

are elastic constants, e
kij

are piezoelectric constants, e
jk

are dielectric permittivity
constants, and L

l
means L/Lx

l
, i.e., the partial derivative with respect to the lth Cartesian

co-ordinate. As in electrostatics, the negative gradient of the potential "eld u equals the
electric "eld intensity. Summation convention over dummy indices is assumed unless
otherwise mentioned. The fundamental law of linear momentum gives
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#of

j
"ouK
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(3)

and the law of electrostatics gives

L
j
d
j
"q, (4)

where o is the mass density, f
j
is the body force per unit mass, and q is the density of free

charge. By substituting the constitutive equations (1) and (2) into the above fundamental
laws, the governing equations for non-homogeneous linear piezoelectric materials will be
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The above two relations constitute four equations with four unknowns u
j
and u. For the

displacement "eld u
j
, the initial conditions at time t"0 are

u
j
(x, 0)"u0

j
(x),

uR
j
(x, 0)"v0

j
(x). (7)

The initial displacement u0
j
(x) and initial velocity v0

j
(x) must be speci"ed as functions of the

space co-ordinates x"(x
1
, x

2
, x

3
) for each point inside the volume <. The boundary

conditions for stress, displacement, normal electric displacement, and electric potential
should also be speci"ed on the boundary surface:

n
i
q
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"tL

j
(x, t), x3S

1
, u

j
"uL

j
(x, t), x3S

2
,

n
j
d
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3
, u"uL (x, t), x3S

4
, (8)

where S
1
XS

2
"S

3
XS

4
"S is the boundary surface, and S

1
WS

2
"S

3
WS

4
"0 is empty,

i.e., there is no intersection between S
1

and S
2
, nor between S

3
and S

4
. The prescribed

boundary values tL
j
, uL

j
, dL , and uL are given functions of the boundary position x and time t.

The initial}boundary value problem formulated as equations (5)}(8) de"nes the most
general case for non-homogeneous linear piezoelectric solid with arbitrary initial conditions
and dynamic excitations.
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3. METHOD OF NORMAL MODE EXPANSION

Similar to the normal mode expansion method used for an elastic solid [10], we expand
the solutions u

j
(x, t) and u (x, t) of equations (5)}(8) as the summations of two parts:

u(x, t)"U(x, t)#+
n

q
n
(t)un(x), (9)

u (x, t)"U(x, t)#+
n

q
n
(t)un (x), (10)

where the bold-face letters u, un and U denote the vectors (u
1
, u

2
, u

3
), (un

1
, un

2
, un

3
) and

(;
1
,;

2
,;

3
) respectively. The "rst part MU (x, t), U(x, t)N is the special solution which

satis"es the following quasi-static equations without time-derivative terms:
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and the non-homogeneous boundary conditions
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where ¹
ij

and D
j

are the stress and electric displacement corresponding to MU, UN,
respectively, i.e.,
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The second parts of equations (9) and (10) consist of superposition of the normal mode
solutions Mun (x), un(x)N, n"1, 2,2, which are the non-trivial solutions of the following
eigenvalue problem:
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(17)

where qn
ij

and dn
j

are the stress and the electric displacement corresponding to Mun, unN,
respectively, i.e.,

qn
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kij
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This eigenvalue problem has non-trivial solutions only for discrete values of circular
frequencies u

n
, n"1, 2,2 . Following the same procedures as Tierstein's [9], it can be

easily proved that, in the case of u
m
Ou

n
, by using the mass density o (x) as weighting

function, the mode shapes um (x) and un (x) of two di!erent modes are orthogonal to each
other:

P
V

o (x)um (x) ' un(x) d3v"N
m
d
mn

(no summation over m), (19)
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where dot && ) '' denotes the vector inner product, d
mn

is Kronecker's symbol and
N

m
":

V
oum ) umd3v (no summation over m) is the generalized modal mass for the mth mode.

It should be emphasized that the above result holds for the most general case where all the
material properties could be inhomogeneous. In contrast to equation (19), however, there
exists no orthogonality relation between um and un. This is due to the fact that the potential
"eld is considered to be static in the usual formulation of linear piezoelectricity. Unlike the
displacement "eld, there is no simple way to get the explicit expression for the quasi-static
part of the potential "eld. A suitable orthogonal basis for the potential "eld has been
proposed in reference [11] by the present author. Following a similar derivation as shown
below, the expansion coe$cients for the potential "eld can be expressed analytically only
when a suitable orthogonal basis is adopted [11].

The expansion equations (9) and (10) have already satis"ed all the boundary conditions in
equation (8). Upon substituting equations (9) and (10) into the governing equations (5) and
(6), and using relations (11), (12), (15), and (16), we see that equation (6) has been
automatically satis"ed, and equation (5) results in

=
+
n/1

Mo (x)qK
n
#o (x)u2

n
q
n
Nun (x)"!oUG . (20)

As in a standard treatment of mechanical vibrations, we multiply equation (18) by um (x) and
integrating over the volume<, we have the decoupled equation of motion for the mth mode:

qK
m
#u2

m
q
m
"!FG

m
(t), (21)

where F
m
(t) is de"ned as

F
m
(t)"

1

N
m
P
V

o (x);
j
(x, t) ) um

j
(x) d3v. (22)

Note that F
m
(t) is the mth Fourier coe$cient of U(x, t). Thus the quasi-static part U(x, t) can

be expanded as

U(x, t)"+
m

F
m
(t)um(x). (23)

The initial conditions for q
m
(t) can be easily derived as

q
m
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where j
m

and i
m

are de"ned as

j
m
"

1

N
m
P
V

o (x)u0
j
(x) ) um

j
(x) d3v, (25)
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respectively. For later convenience, we introduce the de"nition of the generalized
co-ordinate qN

m
(t):

qN
m
(t)"q

m
(t)#F

m
(t). (27)
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The governing equation and initial conditions for qN
m
(t) are

qNG
m
#u2

m
qN
m
"u2

m
F

m
(t), qN

m
(0)"j

m
, qNQ

m
(0)"i

m
. (28)

According to equation (9), if the normal mode solutions um (x) of equations (15)}(17) are
assumed to be given by analysis or experiment, the solution for the displacement "eld u (x, t)
can be expressed in terms of the special solution U(x, t) and modal coe$cients q

m
. Referring

to equations (21) and (23), both U and q
m

will be given with the knowledge of F
m
(t), which,

however, depends on the special solution U itself by equation (22). Fortunately, by
substituting equation (15) into equation (22) and taking successive partial integrations with
the usage of equations (11), (12), (18), (14), and (16), the integral in equation (22) of the
unknown integrand over the volume < can readily be expressed as
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where tm
j
"n

i
qm
ij

and dm"n
j
dm
j

are the surface traction and the normal electric displacement
due to the mth mode shape Mum, umN, respectively, ¹

j
"n

i
¹

ij
and D"n

j
D

j
are the surface

traction and the normal electric displacement due to the special solution MU, UN
respectively. That is, the coe$cient F

m
(t) can be expressed as a volume integral over the

body force and free charge excitation plus the boundary integral terms. By using the
boundary conditions in equation (17), the above equation leads to

N
m
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S4

dmuL (x, t)d2s. (30)

Thus, the function F
m
(t) can be expressed as integrals over known quantities. Accordingly,

the unknown special solution U (x, t) is completely determined by equation (23) without
solving equations (11)}(13). Combining equations (9), (23) and (27), the response of the
displacement "eld is simply

u (x, t)"+
m

qN
m
(t)um (x). (31)

The generalized co-ordinate qN
m
(t) in the above equation is determined by equation (28) with

F
m
(t) given by equation (30). To further simplify the above formulae and the ensuing

derivations, we introduce the following de"nitions:

A
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D
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(t),N~1

m P
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um(x)dK (x, t)d2s,

t
m
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m P
S4

dm(x)uL (x, t)d2s,

Q
m
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m P
V

um(x)q(x, t)d3v. (32)

The time function A
m
(t) is the combined modal excitation function of the mth mode. The

mechanical quantities B
m
(t), ¹

m
(t) and ;

m
(t) are referred to as the participation factors to

the mth mode due to body force, boundary traction and boundary displacement
respectively. Similarly, the electrical quantities Q

m
(t), D

m
(t) and t

m
(t) are referred to as the

participation factors to the mth mode due to free charge density, boundary electric
displacement and applied boundary voltage respectively. With the above de"nitions, we
obtain

A
m
(t)"B

m
#¹

m
#;

m
#D

m
#t

m
#Q

m
. (33)

From equations (28) and (32), the governing equation and initial conditions for qN
m
(t) are

qNG
m
#u2

m
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m
"A

m
(t), qN

m
(0)"j

m
, qNQ

m
(0)"i

m
. (34)

The combined modal excitation function A
m
(t) can be carried out through equations (33)

and (32). The initial values j
m

and i
m

are given by equations (25) and (26) respectively. The
solution of equation (34) is

qN
m
(t)"j

m
cosu

m
t#

i
m

u
m

sin u
m
t#

1

u
m
P

t

0

A
m
(q)sinu

m
(t!q) dq. (35)

Once the generalized co-ordinate qN
m
(t) is obtained by the above equation, the displacement

u(x, t) can be determined from equation (31) completely. This is the general solution for the
vibration of non-homogeneous linear piezoelectric solid under various excitations. Six types
of excitations are considered: the body forces, the boundary traction forces, the speci"ed
boundary displacements, the free charges, the boundary electric displacements and the
applied boundary voltages. For the special case of zero initial conditions, i.e., no velocity
and displacement at time t"0, thus j

m
"i

m
"0, the solution of qN

m
(t) reduces to

qN
m
(t)"

1

u
m
P

t

0

A
m
(q)sinu

m
(t!q) dq. (36)

When the excitation A
m
(t) is the unit delta function, the impulse response function h

m
(t) of

qN
m
(t) can be determined from equation (36) as

h
m
(t)"

1

u
m

sinu
m
t (37)
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and equation (36) can be rewritten simply as a convolution integral of the combined modal
excitation function and the impulse response function:

qN
m
(t)"P

t

0

A
m
(q)h

m
(t!q) dq. (38)

By the above derivations, a normal mode expansion method of the displacement "eld for
the non-homogeneous linear piezoelectric solid is obtained. It is trivial exercise to check
that when the piezoelectric constants approach zero, the formulation reduces to a normal
mode expansion fomalism for linear but non-homogeneous elastic solids. Of course, the
present method, requires the knowledge of free-vibration solution. If the exact analytical
solution of free-vibration problem does not exist, we may resort to the numerical method,
e.g., "nite element method [7]. Once we get the normal mode solution, either analytically or
numerically, the displacement "eld can be calculated by equations (31) and (35)
accompanied with de"nitions in equations (25), (26), (32), and (33).

4. EXAMPLE

To illustrate the above we consider the forced shear motion of a piezoelectric plate with
monoclinic symmetry. In Figure 1, the dimensions in both x

1
and x

3
directions are in"nite,

i.e., !R(x
1
(R,!R(x

3
(R. The x

3
-axis is chosen to be perpendicular to the

plane of mirror symmetry. The thickness of the plate is 2h, !h(x
2
(h. We assume that

there are no variations for all "eld quantities along both x
1

and x
3

directions. The
governing equations are [9]

C
66

u
1,22

#e
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u
,22

"ouK
1
, C

22
u
2,22

#C
24

u
3,22

"ouK
2
,

C
24

u
2,22

#C
44

u
3,22
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3
, e

26
u
1,22

!e
22

u
,22

"0. (39)

The given shear stresses and voltage on two side faces are

C
66

u
1,2

#e
26

u
,2
"p

1
(t), x

2
"h,

C
66

u
1,2

#e
26

u
,2
"!p

2
(t), x

2
"!h,

u"<
1
(t), x

2
"h, u"<

2
(t), x

2
"!h. (40)

The signs of stresses p
1

and p
2

are chosen such that the positive directions for them are in
the positive x

1
-axis. It is clear that only u

1
is coupled to potential "eld u. We will neglect the

motions of u
2

and u
3

in the following.
The normal mode solutions which satisfy the homogeneous BC's corresponding to

equation (40) will "rst be solved. For even modal numbers n"0, 2, 4,2, the normal mode
solutions are

un(x)"cos g
n
x, un(x)"e (cos g

n
x!cos g

n
h), (41)

where g
n
"nn/2h, e"e

26
/e

22
, x"x

2
. The subscript 1's for the displacement "eld and 2's for

the x
2
-co-ordinate are omitted in equation (41) and the following expressions. For odd

modal numbers n"1, 3, 5,2, the normal mode solutions are

un (x)"sin g
n
x, un(x)"e[sin g

n
x!(x/h)sin g

n
h], (42)



Figure 1. In"nite piezoelectric plate of thickness 2h.
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where g
n

satis"es tan g
n
h"(CM

66
e
22

/e2
26

)g
n
h and (n!1)n/2h(g

n
((n#1)n/2h, and

CM
66
"C

66
#e2

26
/e

22
is the equivalent shear modulus. Following the solution formalism

derived in the previous sections, we can get the general solution easily. According to
equation (31), the general solution could be expressed as

u(x, t)"
=
+
0

qN
n
(t)un(x). (43)

The generalized co-ordinate qN
n
(t) can be calculated by equation (35) as

qN
n
(t)"

1

u
n
P

t

0

A
n
(q)sinu

n
(t!q) dq, (44)

where u
n
"g

n
c is the nth modal circular frequency, and c"(CM

66
/o)1@2 is the shear wave

speed. We have assumed that the initial conditions are zero. The combined modal excitation
A

n
(t) is calculated via equations (32) and (33). Because only stress and potential are

prescribed at the boundary, we merely have to evaluate ¹
n
(t) and t

n
(t) in equations (32) and

(33). Although the boundary surfaces involved in equations (32) are in"nite in both x
1

and
x
3

directions, we need to only integrate over unit length in both directions. The result of
A

n
(t) is

A
n
(t)"N~1

n
[un (h)p

1
(t)#un (!h)p

2
(t)!<

1
(t)Dn (h)#<

2
(t)Dn(!h)], (45)

where Dn (x)"e
26

un
,2
!e

22
un
,2

, and the generalized mass N
n
(per unit area) is

N
n
"oP

h

~h

[un(x)]2dx. (46)

Equations (41)}(46) constitute the general solution for arbitrary <
1
(t), <

2
(t), p

1
(t) and

p
2
(t). To give an explicit numerical example, we assume <

1
(t)"<

2
(t)"0 and apply the

triangular transient loads in the x
1

direction on both sides:

p
1
(t)"p

2
(t)"p(t)"G

p
0
t/¹, 0)t(¹/2,

p
0
(1!t/¹), ¹/2)t(¹,

0, ¹)t or t(0,

(47)

where p
0

is the peak total applied force per unit area, and ¹ is the duration of excitation. It
is obvious that only even modes will be excited. For even modes, the generalized masses are
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N
0
"2oh, N

n
"oh, n"2, 4, 6,2, and the combined modal excitation A

n
(t) will be

A
n
(t)"G

p (t)/oh,

(!1)n@22p (t)/oh,

n"0,

n"2, 4, 62 .
(48)

To express the results in dimensionless forms, we de"ne the references for various physical
quantities:

d"
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0
h
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"

p
0
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0
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uN "e
26
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22
"the reference for potential, (49)

p6 "p
0
/2"the reference for stress,

where ¹
0
"2h/c is the one-way travel time for shear stress wave propagating through the

plate thickness. The generalized co-ordinates can be expressed in the dimensionless forms:
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n"2, 4, 6, 2

The scaled displacement, potential and stress can then be expressed as
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Figure 3. Scaled displacement for di!erent t. t"0)2¹
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In Figure 2, we show the stress distributions at various times t for the case in which
duration ¹ is set to be 0)2¹

0
. Note that x"h means the upper surface, and x"!h means

the lower surface in Figure 1. In the beginning, as the transient shear forces are applied at
the boundaries, the stress waves travel from two sides into the solid. The amplitude of the
stress wave is exactly equal to that of excitations. At time t"0)2¹

0
, when the excitations

stop, the wave fronts reach the depth 0)4h, which is equal to the product of wave speed c and
time 0)2¹

0
. At time t"0)6¹

0
, when the upward and downward travelling waves coincide in

space, the stress waves cancel out, and this solid is temporarily in a stress-free state. For
t*¹"0)2¹

0
, the stress distribution will repeat itself with the interval of ¹

0
, which can be

easily checked by equations (49) and (52). When the stress waves impinge on the boundary,
the re#ected stresses are reversed.

In Figures 3 and 4, the corresponding displacement and potential distributions at various
times t are shown. As the stress waves travel back and forth, the elastic deformation also
travels back and forth with a steady rigid-body motion. It is easily checked that the scaled
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amplitude of elastic de#ection is 0)05. Note that the propagation speed of electric
disturbance is also the equivalent shear wave speed c. In fact, in the piezoelectric equations
(5) and (6), the speed of light is assumed to be in"nity.

5. CONCLUSION

The normal mode expansion formulation for non-homogeneous linear piezoelectric
solids is developed. It can be shown that, with the given normal modes, the displacement
"eld can be expanded as the linear superposition of normal modes with the modal
coe$cients represented as surface and volume integrals over the exciting source functions.
Six types of excitations are considered. These results can be used as a foundation for modal
testing methods and for general dynamic analysis for linear piezoelectric materials. Because
the theory covers generally non-homogeneous materials, it can be applied directly to
arbitrary con"guration of elastic-piezoelectric composites, which are widely used in the
vibrational and acoustic sensor/actuator/transmitter applications. A simple example is
given to exemplify the application of the present formulation.
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