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The system of di!erential equations governing the analysis of rotationally symmetric
shells under time-dependent or static surface loadings is formulated with the transverse,
meridional, and circumferential displacements as the dependent variables. The thickness of
the shell may vary, and four homogeneous boundary conditions may be prescribed at each
boundary edge of the shell. The governing di!erential equations for each Fourier harmonic
are obtained by use of Fourier series in the circumferential direction of the shell. In#uence
coe$cients at each of the node points along the shell meridian are obtained for each Fourier
component by employing ordinary "nite di!erence representations for the meridional
co-ordinate derivatives. With these in#uence coe$cients, a set of homogeneous #exibility
equations governing the free vibration characteristics of the shell is obtained and solved for
the frequencies and mode shapes for each Fourier component. The solutions under
time-dependent or static surface loadings and due to initial displacements and velocities are
then obtained by expanding the solutions in terms of the modes of free vibration of the shell
for each Fourier component. The solution for the total shell response is obtained by Fourier
series summation. Solutions for typical shells have been found to be in excellent agreement
with solutions by the method of temporal and spatial "nite di!erences. Solutions for
a parabolic shell are presented as an example. The solution is also presented for a published
cylindrical shell example and is seen to be in excellent agreement with the published "nite
element method results. ( 2000 Academic Press
1. INTRODUCTION

In the absence of closed-form solutions for the general shell problem, several investigators
have obtained solutions by numerical methods. These investigators include Penny [1], who
solved the symmetric bending problem of a general shell in 1961 by "nite di!erences;
Radkowski, et al. [2], who solved the axisymmetric static problem in 1962 by "nite
di!erences; and Budiansky and Radkowski [3], who employed "nite di!erence methods to
solve the unsymmetrical static bending problem in 1963.

The solution to the static problem of rotationally symmetric shells of revolution subjected
to both symmetrical and non-symmetrical loading was obtained also by Kalnins [4] in
1964. Starting with the equations of the linear classical bending theory of shells, in which the
thermal e!ects were included, Kalnins derived a system of eight "rst order ordinary
di!erential equations which he solved by direct numerical integration over preselected
segments of the shell. Gaussian elimination was used to solve the resulting system of matrix
equations obtained by providing continuity of the fundamental variables at the segmental
division points.

In 1965, Percy et al. [5] also developed a "nite element technique for the analysis of shells
of revolution under both axisymmetric and asymmetric static loading by idealizing the shell
as a series of conical frusta.
0022-460X/00/230515#29 $35.00/0 ( 2000 Academic Press
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The solution for the free vibration characteristics of rotationally symmetric shells with
meridional variations in the shell parameters by means of his multi-segment direct
numerical integration approach was also obtained by Kalnins [6] in 1964. Subsequently, in
1965, the solution for the response of an arbitrary shell subjected to time-dependent surface
loadings was obtained by Kraus and Kalnins [7] by means of the classical method of
spectral representation. The solution was expanded in terms of the modes of free vibration
as determined previously by Kalnins [6], and the orthogonality of the normal modes was
proved for an arbitrary shell.

In 1966, Klein [8] also published an article in which he describes a matrix displacement
"nite element approach to the linear elastic analysis of multi-layer shells of revolution under
axisymmetric and asymmetric dynamic and impulsive loadings. The method of solution
involves the idealization of the shell as a series of conical frusta joined at nodal circles.

Subsequently, Smith [9, 10] published reports containing numerical procedures for the
analysis of rotationally symmetric thin shells of revolution under time-dependent impulsive
and thermal loadings. The "eld equations consisted of eight "rst order partial di!erential
equations with respect to the meridional co-ordinate of the shell, and the solution for each
Fourier harmonic was obtained by employing low order "nite di!erence representations for
all time and spatial derivatives.

In 1973, Smith [11] published a report giving numerical procedures for "nding the
dynamic response of rotationally symmetric thin shells of revolution under time-dependent
surface and thermal loadings utilizing a higher order "nite di!erence representation of
spatial derivatives than that used in references [9] and [10]. The "eld equations consisted of
eight "rst order di!erential equations, while the time derivatives were represented by
ordinary backward "nite di!erences, thus resulting in stable implicit solutions for all
choices of the time increment.

In 1973, Bushnell [12] compared the "nite di!erence energy method and the "nite
element method for stress, buckling, and vibration analysis of shells of revolution. In
reference [12], several "nite element and &&"nite di!erence element'' models are discussed.
Bushnell [13] uses model 4 described therein, in which the tangential displacements u

i
and

v
i
are staggered between the normal displacements w

i~1
and w

i
. This results in a &&"nite

di!erence element'' which is incompatible in normal displacements and derivatives thereof
at element boundaries. It is also stated in reference [12] that for &&"nite di!erence element''
model 6, for which the displacements u

i
, v

i
, and w

i
are established at the same set of points

and the integration areas for membrane and bending energy are the same, numerical results
were unsuccessful and that discontinuities may exist for all variables at element boundaries.
It is also indicated in reference [12] that for &&"nite di!erence element'' model 7, for which
the displacements u

i
, v

i
, and w

i
are taken at the same set of points but by use of di!erent

integration areas for membrane and bending energies, successful numerical results were
found in a limited number of cases. We thus observe that numerical di$culties are
associated with the formulations of references [12, 13] for both the case of a "nite di!erence
mesh with the displacements u

i
and v

i
staggered with respect to the displacements w

i
and for

the case for which u
i
, v

i
and w

i
are taken at the same set of points in the "nite di!erence

mesh.
In 1975, Radwan and Genin [14] published their development of the equations for the

determination of the non-linear response of thin elastic shells of arbitrary geometry under
either static or dynamic loading through the use of assumed, known, or calculated mode
shape functions. The geometric non-linearities were considered by employing the
strain}displacement relations of the Sanders}Koiter non-linear shell theory. Introduction
of the mode shape functions into the system of governing equations leads to a system of
ordinary di!erential equations for the generalized time co-ordinates.
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In 1975 also, Bathe et al. [15] published their reviews and development of a general "nite
element incremental formulation for the non-linear static and dynamic analysis of systems
with large displacements, large strains, and material non-linearities. Numerical solution of
the continuum mechanics equations was achieved by use of isoparametric "nite element
discretization. Solutions involving large displacements and large strains were presented.
Numerical time integration of the "nite element equations of motion is used for dynamic
analysis. Inasmuch as the given development is general, it is naturally applicable to the "nite
element analysis of shell structures by use of successive time steps in the case of dynamic
analysis.

In 1977, Smith [16, 17] published reports giving numerical procedures for the analysis of
rotationally symmetric thin shells of revolution under continuous time-dependent
distributed surface and thermal loadings by formulation of the system of equations in terms
of the transverse, meridional, and circumferential displacements of the shell as the
dependent variables and use of both a high order "nite di!erence representation of the
spatial derivatives and explicit relations for the dependent variables for the second and
succeeding time increments.

In 1983, Chang et al. [18] published their development of procedures for the linear
dynamic analysis of rotationally symmetric shells using "nite elements and modal
expansion. This involved the use of doubly curved axisymmetric shell "nite elements in
conjunction with Fourier series expansions for the loadings and dependent variables in the
circumferential direction of the shell.

In 1983, Smith [19, 20] presented numerical formulations for determining both static and
dynamic solutions for rotationally symmetric thin shells of revolution subjected to
distributed loadings which may be discontinuous. Formulation of the system of equations
was in terms of the three displacements as the dependent variables and use of an ordinary
"nite central di!erence representation for the spatial derivatives..

In 1985, Kwok [21] published an excellent description of his use and the advantages of
the curvilinear "nite di!erence (CFD) energy method for the geometrically non-linear static
analysis of general thin shells of arbitrary geometry, pointing out therein that no limitations
to applying it to the solution of shell structures involving material non-linearities,
temperature-dependent materials, and dynamic loadings should be expected. Kwok
adopted the Newton}Raphson iterative method to solve his equations in lieu of a linear
incremental approach.

In 1988, Naraikin [22] published his development of a method for the dynamic analysis
of shells by which the "eld equations were represented by a system of eight linear "rst order
partial di!erential equations with four displacements and four forces as the dependent
variables. Solutions are indicated for only homogeneous boundary conditions; and the
displacements, internal forces, and loads are represented in the circumferential direction of
the shell by Fourier series expansions. Fourier transformations in the time variable produce
a system of equations which is integrated numerically to obtain fundamental solutions
which are subsequently converted to the time domain by an inverse Fourier transformation.

In 1989, Teng and Rotter [23] published their development of a new doubly curved
isoparametric "nite element formulation for the elastic}plastic large de#ection analysis of
shells of revolution under axisymmetric and torsional static loading. Although only these
loadings were considered in reference [23], the development used a Fourier series
representation of the displacement variables in the circumferential direction of the shell and
was presented in a manner to facilitate extension to non-symmetric bifurcation buckling
from the primary axisymmetric path and to elastic non-symmetric non-linear analysis.

In 1988, Wimmer [24] published his application of a two-dimensional Hermitian "nite
di!erence method to the static analysis of thin plates and arbitrarily curved shells of
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laminated construction for which a linear shear deformation theory was used. The basic
system of equations was formulated in tensor notation as a system of "rst order equations
which is transformed to algebraic form by use of appropriate two-dimensional Hermitian
"nite di!erence operators. Since the system of equations is given in tensor notation, shells of
arbitrary curvature may be analyzed under static application of loads.

In 1991, Smith [25] completed development of procedures for determining the total shell
response of any rotationally symmetric general shell under time-dependent (or static)
surface loadings by the modal superposition method. The solutions treated there are
accomplished by "rst determining the free vibration characteristics of the shell through the
use of in#uence coe$cients for the discretized shell. Subsequently, the time-dependent solution
is expanded in terms of the modes of free vibration of the shell to obtain the total shell response
as a summation of the several modal contributions. The procedures used are analogous to those
given by Norris et al. [26] and illustrated therein by a simply supported beam.

In 1991, Moy and Lam [27] reported their formulations for both a ring element and
a quadrilateral shell "nite element for the geometrically non-linear analysis of either thin or
thick axisymmetric shells under static loadings. The development is based upon the use of
internal transverse shear stress unknowns to alleviate the problem of shear locking
associated with thin shell "nite element formulations. Good agreement between the
buckling loads found by use of these new elements and published earlier results were
indicated in the report.

In 1994, Smith [28] published a second report in which numerical procedures were
demonstrated for determining the dynamic response of rotationally symmetric open-ended
thin shells of revolution under continuous time-dependent distributed surface and thermal
loadings by use of a high order "nite di!erence representation of the spatial derivatives and
explicit expressions for the displacement variables within the boundary edges of the shell for
the second and succeeding time increments. Reference [28] constitutes a revision to the
formulation and accompanying program of reference [16] to provide stable solutions for
either free, partially restrained, or fully restrained boundaries.

In 1995, Smith [29] published his development of the formulation for the "nite di!erence
analysis of general open-ended rotationally symmetric shells under either static or
time-dependent continuous loadings for which a variable nodal point spacing may be used
in the meridional "nite di!erence mesh. As in reference [19], the governing di!erential
equations were formulated in terms of the displacements w, u

(
, and uH and Fourier

expansion was used in the circumferential direction of the shell. The complete system of
equations is solved implicitly for the "rst time increment after using low order central
di!erence variable nodal point spacing representations for all spatial derivatives and using
ordinary time derivatives. Explicit relations are used to obtain the displacements w

n
, u

(n
,

and uHn
within the boundary edges of the shell for the second and later time increments. The

remaining fundamental variables are, for the second and later time increments, found from
separate implicit solutions at each boundary. The selection of a time increment which, in
conjunction with the spatial "nite di!erence mesh, is expected to produce numerically stable
solutions is obtained from an explicit empirical relation for the time increment in terms of
the minimum spatial increment.

In 1997, Smith [30] published his development of improvements to the formulation and
"nite di!erence representations used in reference [9]. These improvements included the
addition of inertia forces and applied loadings in the circumferential direction of the shell
and incorporation of the meridional co-ordinate s as the spatial variable in lieu of the
co-ordinate z along the axis of symmetry of the shell. Solution formulations by both the
explicit method and the implicit method for time-dependent loadings are included.
Solutions found by the two methods show favorable comparison.
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In 1998, Smith [31] published a second report on the "nite di!erence analysis of
rotationally symmetric shells under either static or dynamic loadings for which a variable
node point spacing may be used in the spatial "nite di!erence mesh and for which an
eigenvalue analysis of the explicit coe$cient matrices to evaluate numerical stability (or
instability) of the solution for given choices of spatial mesh and time increment for the case
of dynamic loadings was incorporated. Additionally, the "nite di!erence representation for
second and fourth derivatives was altered from that used in reference [29] to provide
a consistent order of truncation error for all derivatives, thus departing from a central
derivative representation for second and fourth derivatives.

In summary of the above references, we note that the only publications dealing
speci"cally with the analysis of thin isotropic general shells under either symmetric or
non-symmetrical loads by the modal superposition method are reference [7] by Kraus and
Kalnins, reference [14] by Radwan and Genin, and reference [18] by Chang et al. In
reference [7], the frequencies and modes of free vibration are determined by the
multi-segment direct numerical integration approach developed by Kalnins in references
[4] and [6]. This segmentation of the shell into short segments to accomplish the direct
numerical integration is due to loss of accuracy in the integration for shells which have
a length of meridian factor b greater than 3}5 as determined experimentally [4]. In reference
[14], introduction of the assumed, known, or calculated mode shape functions into
LaGrange's equations of motion results in a system of ordinary di!erential equations for
the generalized time co-ordinates. We note, however, that determination of the frequencies
and mode shape functions is not given in reference [14]. It is merely indicated therein that
these functions can be found by a "nite element analysis. In reference [18], the solution for
each Fourier harmonic is obtained by determining the natural frequencies and mode shapes
by use of doubly curved axisymmetric shell "nite elements followed by expansion of the
solution in terms of the meridional mode shapes and time-dependent &&modal participation
factors''. The solution for each Fourier component is given by a superposition of the several
modal contributions. The total response is then given by a second summation of the
separate solutions for the total number of Fourier components used to represent the
loadings.

In this article, our purpose is to report procedures implemented by Smith [25] for
determining the total shell response of any rotationally symmetric general shell, which may
have variable thickness along the shell meridian, under time-dependent (or static) surface
loadings by the modal superposition method as described previously in this introduction.

The use of ordinary "nite di!erence representations for the derivatives in the governing
di!erential equations formulated in terms of the displacements to determine the frequencies
and mode shapes [19, 20] results in advantages over the methods used in references
[7, 14, 18]. It avoids the necessity for multisegment direct numerical integration in reference
[7] and the possible adverse e!ects of shear locking behaviour for thin shells [27, 32] for the
"nite element formulations of references [14, 18]. In contrast to solutions found by the "nite
di!erence energy method of references [12, 13], it also provides solutions for which
continuity of all displacements and derivatives thereof exist at every node point in the "nite
di!erence mesh.

2. GOVERNING DIFFERENTIAL EQUATIONS

Our system of governing equations will be based on the linear classical theory of shells as
given by Reissner [33]. Surface loadings and inertia forces in each of the displacement
directions w, u

(
, and uh will be considered. All rotary inertia terms and thermal e!ects will



Figure 1. Typical shell of revolution.
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be neglected. The thickness h of the shell may vary along the meridian, and we assume
continuity of h and its derivatives through the second order. We assume that o/R

(
@1 and

that o/Rh@1. Hence, we take Nh("N
(h and Mh("M

(h .
The geometry and co-ordinate system for the middle surface of our shell is shown in

Figure 1. Shell element membrane and shear forces are shown in Figure 2, and shell element
bending and twisting moments are shown in Figure 3.

We assume that the material of the shell is both homogeneous and isotropic. Inasmuch as
we are not considering thermal loadings, the quantities E and l will remain constant. Thus,
we assume that

E"constant, l"constant. (1)

Our system of governing equations involving the stress}strain relations, strain}
displacement relations, and the force equilibrium equations can be reduced to a system of
equations consisting of three di!erential equations in terms of three unknown
displacements w, u

(
, and uh . It will be convenient, however, to incorporate into our system

of equations as unknowns at the boundary edges of the shell the remaining quantities which
enter into the natural boundary conditions at /"constant. In the classical theory of shells,
the quantities which appear in the natural boundary conditions on a rotationally symmetric
edge of a shell of revolution are the generalized displacements w, u

(
, uh , and b

(
and the

generalized forces Q, N
(
, N, and M

(
. Thus, our system of equations will consist of the three

"eld equations in terms of the displacements w, u
(
, and uh and a de"nition of b

(
, Q, N

(
, N,

and M
(

at each boundary in terms of the displacements w, u
(
, and uh together with four

equations prescribing the appropriate four of the quantities w, u
(
, uh , b

(
, Q, N

(
, N, and



Figure 2. Shell element membrane and shear forces.
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M
(

at each boundary of the shell. The quantities N and Q are the e!ective shear resultants
and are de"ned as

N"Nh(#
sin/

r
Mh( , Q"Q

(
#

1

r
Mh(,h. (2, 3)

We de"ne the quantities w, u
(
, uh , b

(
, Q, N

(
, N, and M

(
to constitute the primary

variables in our system of equations. The variables bh , Nh , Nh( , Mh , Mh( , Q
(
, and Qh are

designated as the secondary variables. From two of our "ve useful equations of equilibrium,
we "nd

Q
(
"

1

r
Mh(,h#M

(,s
#

cos/

r
(M

(
!Mh), (4)

Qh"
1

r
Mh,h#Mh(,s#

2 cos /

r
Mh( . (5)

By substituting equations (4) and (5) into the remaining three equations of equilibrium,
our three reduced equations of equilibrium in terms of the force variables thus become

Nh(,h#rN
(, s

#(N
(
!Nh )cos/#

1

R
(

Mh(,h#
r

R
(

M
(, s

#

cos/

R
(

(M
(
!Mh )#rp

(
!

chr

g
u
(, tt

"0, (6)



Figure 3. Shell element bending and twisting moments.
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1

r
Mh,hh#2Mh(,hs#

2 cos /

r
Mh(,h#rM

(, ss

#2 cos/M
(, s

!

sin/
R
(

(M
(
!Mh )!cos/Mh, s

!Nh sin /!

r

R
(

N
(
#rp!

chr

g
w

, tt
"0, (7)

Nh,h#rNh(,s#2 cos/Nh(#
sin /

r
Mh,h

#sin/Mh(,s#
2 sin/ cos/

r
Mh(

#rph!
chr

g
uh, tt"0. (8)

To formulate our system of equations in terms of the displacements w, u
(
, and uh , we

express the stress resultants Nh , N
(
, Nh( , Mh , M

(
, Mh( , N, and Q in terms of the

displacements and substitute the appropriate quantities into the equations involving the
force variables. This complete development may be found in reference [25].

The boundary conditions to be considered at the boundary s
0

are

w(s
0
, h, t)"0 or Q(s

0
, h, t)"0, (9a)

u
(
(s
0
, h, t)"0 or N

(
(s
0
, h, t)"0, (9b)
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uh(s0 , h, t)"0 or N(s
0
, h, t)"0, (9c)

b
(
(s
0
, h, t)"0 or M

(
(s
0
, h, t)"0, (9d)

with similar boundary conditions at the boundary s
N
.

For the initial conditions, we will prescribe initial values of the displacements and
velocities in each of the displacement directions w, u

(
, and uH . Thus, the initial conditions to

be considered are typically

w (s, h, t
0
)"w@ (s, h, t

0
), wR (s, h, t

0
)"wR @(s, h, t

0
), (10a, b)

where the primed variables indicate speci"ed values of the initial displacements and
velocities. To solve our system of equations, we expand all loadings and dependent
variables in the circumferential direction of the shell in Fourier series. The Fourier series
representations of the loadings p

(
, p, the primary variables w, u

(
, b
(
, Q, N

(
, and M

(
, and the

secondary variables Nh , Mh , and Q
(

are typically

p
(
"

P
+
n/0

p
(n

(s, t)cos nh#
P
+
n/1

pN
(n

(s, t)sin nh. (11a)

The loading ph , the primary variables uh and N, and the secondary variables bh , Nh( , Mh( ,
and Qh are typically

ph"
P
+
n/1

phn (s, t)sin nh#
P
+
n/0

pN hn(s, t)cos nh. (11b)

Upon substituting equations (11) into our single system of equations involving h, s, and
t as the independent variables, we obtain P#1 separate decoupled systems of equations in
the variables s and t to solve in lieu of the single system of equations in the variables h, s, and
t. For each system we obtain two separate sets of equations, one for the variables which are
designated without a bar and another for the variables which are designated with a bar.
Here and elsewhere in the sequel where double signs occur in the equations, the upper sign
is to accompany the "rst set of equations and the lower sign is to apply to the second set.
Single signs will apply to both sets. The rather lengthy coe$cients A

1
}A

9
, B

1
}B

12
, C

1
}C

8
,

and D
1
}D

46
, which involve geometric and material parameters, loading terms, and the

Fourier component designator n, appearing in the system of equations so found for each
Fourier component may be found in reference [25].

With the referenced de"nition of coe$cients, our "eld equations for each Fourier
component of loading are given by

!A
1
w
n, sss

!A
2
w

n, ss
#A

3
w

n,s
#A

4
w

n

#A
5
u
(n,ss

#A
6
u
(n,s

#A
7
u
(n
$A

s
uhn,s$A

9
uhn

!

chr

g
u
(n, tt

"!rp
(n

, (12a)
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!B
1
w
n, ssss

!B
2
w
n, sss

#B
3
w
n, ss

#B
4
w
n, s

#B
5
w
n

#B
6
u
(n,sss

#B
7
u
(n,ss

#B
8
u
(n,s

#B
9
u
(n

$B
10

uhn,ss$B
11

uhn,s$B
12

uhn!
chr

g
w
n, tt

"!rp
n
, (12b)

$C
1
w
n, ss

$C
2
w
n, s

GC
3
w
n
GC

4
u
(n,s

GC
5
u
(n

#C
6
uhn,ss#C

7
uhn,s#C

8
uhn!

chr

g
uhn, tt"!rphn . (12c)

The primary variables b
(n

, N
(n

, M
(n

, N
n
, and Q

n
in terms of the displacements are

b
(n
"!w

n, s
#

1

R
(

u
(n

, (13a)

N
(n
"K(D

1
w

n
#u

(n,s
#D

2
u
(n
$D

3
uhn ), (13b)

M
(n
"D(!w

n, ss
!D

2
w

n, s
#D

4
w
n
#

1

R
(

u
(n,s

#D
5
u
(n
$D

6
uhn ), (13c)

N
n
"$D

34
w
n, s

GD
35

w
n
GD

36
u
(n
#D

37
uhn, s#D

38
uhn , (13d)

Q
n
"!Dw

n, sss
!D

39
w
n, ss

#D
40

w
n, s

!D
41

w
n
#D

42
u
(n,ss

#D
43

u
(n,s

#D
44

u
(n
$D

45
uhn, s$D

46
uhn . (13e)

The variables N
n
and Q

n
may also be given by

N
n
"Nh(n#D

33
Mh(n , Q

n
"Q

(n
#D

9
Mh(n . (14a, b)

The secondary variables in terms of the displacements are

bhn"$D
9
w
n
#D

33
uhn , (15a)

Nhn"K (D
7
w
n
#lu

(n,s
#D

8
u
(n
$D

9
uhn), (15b)

Mhn"DA!lw
n, ss

!D
8
w

n, s
#D

10
w
n
#

l
R
(

u
(n,s

#D
11

u
(n
$D

12
uhnB , (15c)

Q
(n
"DC!w

n, sss
!D

13
w

n, ss
#D

14
w

n,s
!D

15
w

n
#

1

R
(

u
(n,ss

#D
16

u
(n,s

#D
17

u
(n
$

(1#l)D
12

2
uhn,s$D

18
uhnD , (15d)

Nh(n"D
19

(GD
9
u
(n
#uhn, s!D

8
uhn), (15e)
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Mh(n"D
20

($2nw
n, s

G2D
21

w
n
GD

22
u
(n
#sin/uhn, s#D

23
uhn ), (15f )

Qhn"D
24

($D
25

w
n, ss

$D
26

w
n, s

GD
27

w
n
GD

28
u
(n,s

GD
29

u
(n
#D

30
uhn, ss#D

31
uhn,s#D

32
uhn ). (15g)

Equations (13) will be written for each boundary and incorporated into our system of
equations for determining or de"ning w

n
, u
(n

, and uhn on the range of the variale s and b
(n

,
N
(n

, M
(n

, N
n
, and Q

n
at the boundaries of the shell. The remaining variables may then be

found from equations (13)} (15).
The boundary conditions to be considered at the boundary s

0
for each Fourier harmonic

are

w
n
(s
0
, t)"0 or Q

n
(s
0
, t)"0, (16a)

u
(n

(s
0
, t)"0 or N

(n
(s
0
, t)"0, (16b)

uhn (s0 , t)"0 or N
n
(s
0
, t)"0, (16c)

b
(n

(s
0
, t)"0 or M

(n
(s
0
, t)"0, (16d)

with similar boundary conditions at s
N
.

The initial conditions for each Fourier harmonic are typically

w
n
(s, t

0
)"w@

n
(s, t

0
), wR

n
(s, t

0
)"wR @

n
(s, t

0
), (17a, b)

where the primed variables are speci"ed quantities.
The system of equations (12)} (17) has been solved numerically by Smith [19, 20, 30] by

use of ordinary spatial and temporal "nite di!erence representations and by Smith [28] by
use of high order spatial "nite di!erences and ordinary temporal "nite di!erences. Our
purpose here is to present solutions by the modal superposition method as obtained by
Smith [25], thus eliminating problems of numerical instability associated with references
[19, 20, 28, 30].

3. FREQUENCIES AND NORMAL MODE SHAPES FOR THE nth FOURIER COMPONENT

For the "eld equations (12) subject to the homogeneous boundary conditions typi"ed by
equations (16), we envision a separate set of frequencies and mode shapes for each of the
Fourier components used to represent the loadings. We will therefore develop our solutions
for frequencies and normal mode shapes for the general Fourier component n. The three
non-homogeneous "eld equations governing the shell response for the Fourier component
n are given by equations (12). The frequencies and normal mode shapes may be obtained
from the corresponding set of homogeneous "eld equations subject to appropriate
homogeneous boundary conditions. Thus, with only the inertia forces acting on the shell,
the homogeneous "eld equations will be
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g
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We may separate the variables in equations (18) by assuming that

w
n
"=

n
(s) )F (t), u

(n
";

(n
(s) )F (t), uhn";hn (s) )F (t), (19)

where the functions =
n
(s), ;

(n
(s), and ;hn (s) represent the normal mode shapes and F (t)

represents the time variation of the normal mode free vibration.
If we substitute equations (19) into equations (18), we "nd

FG (t)#u2
n
F (t)"0, (20)

where F (t) represents a periodic motion with a frequency of u
n
/2n and the separation

constant u
n
is seen to be the circular frequency of free vibration of the shell for the Fourier

component n in rad/s.
We "nd our three "eld equations governing free vibration of the shell for the nth Fourier

component of loading to be
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In theory, equations (21) could be solved either in closed form or numerically, subject to
appropriate boundary conditions, for the frequencies u

in
(i"1, 2, 3,2,R). We choose

in lieu of a direct solution the use of the #exibility method of analysis for the discretized shell
to be described subsequently.

To determine the frequencies u
mn

and the mode shapes U
mn

, only the inertia forces will be
acting on the shell. The boundary conditions to be considered are given by equations (16).
We discretize the shell by dividing the shell meridian into N equal increments between the
boundary at s

0
and the boundary at s

N
. Thus, we will have N#1 node points on the

interval s
0
)s)s

N
together with additional node points beyond each boundary in our

"nite di!erence mesh for the discretized shell. We use this ordinary "nite di!erence mesh to
determine in#uence coe$cients d

ij
for the shell by applying a total meridionally distributed

unit loading for the Fourier component n at each of the N#1 node points and in each of
the co-ordinate directions w

n
, u

(n
, and uhn by use of the procedures contained in reference

[19] and described in reference [20], which use equations (12) with inertia forces deleted
and with application of appropriate loadings and boundary conditions. Details of this
"nite di!erence development for "nding the in#uence coe$cients d

ij
may be found in

reference [25].
The dynamic displacements of the node points of the discretized shell are

D
n
(s, t)"[w

n
(s
0
, t),2, w

n
(s
N
, t), u

(n
(s
0
, t),2, u

(n
(s
N
, t), uhn (s0 , t),2, uhn(sN , t)]T. (22)

The accelerations are

DG
n
(s, t)"[wK

n
(s
0
, t),2, wK

n
(s
N
, t), uK

(n
(s
0
, t),2, uK

(n
(s
N
, t), uK hn (s0 , t),2, uK hn(sN , t)]T, (23)

where the double dots over the displacement variables w
n
, u

(n
, and uhn indicate second

derivatives with respect to time.
We lump the mass at the nodal point circles and note that in general the mass associated

with any particular node point has three degrees of freedom, one in each of the three
co-ordinate directions w

n
, u

(n
, and uhn . The mass matrix M associated with each of the

N#1 node points along the meridian of the discretized shell is therefore a 3N#3 by
3N#3 diagonalized matrix with all o!-diagonal elements equal to zero. Thus,

M"

cDs

r
0
g

[0)5hr, hr,2, hr, 0)5hr, 0)5hr, hr,2, hr, 0)5hr, 0)5hr, hr,2, hr, 0)5hr]D, (24)

where the superscript D indicates a diagonalized matrix, c is the weight of the shell material
per unit volume, h"h (s) along the shell meridian, r is the radius of the middle surface of the
shell measured normal to the axis of symmetry, r

0
is the reference radius at the boundary s

0
,

and g is the gravitational acceleration constant.
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The inertia force matrix F
n

for the discretized shell is given by

F
n
"MDG

n
(s, t). (25)

The dynamic displacements in equation (22) result from the inertia forces de"ned by
equation (25). These displacements may be expressed by in#uence coe$cients d

ij
, where

d
ij

represents the displacement at node point i due to a total meridionally distributed unit
loading for the Fourier component n at node point j. For shells with variable radius r, the
matrix of in#uence coe$cients d

ij
thus determined will not be symmetric since the

circumferential loadings thus imposed vary linearly with r. To obtain our #exibility matrix,
we require that the circumferential loading at each node point be constant. We choose to
accomplish this by multiplying the coe$cients d

ij
by the factor r

0
/r
j
to obtain

d"C
r
0
r
j

d
ijD , (26)

where r
j
is the radius r of the middle surface of the shell at the node point j, and where

i"1,2, 3N#3, j"1,2, 3N#3.

The matrix of in#uence out coe$cients d thus determined consists of a 3N#3 by 3N#3
array of values which together constitute the #exibility matrix for the shell under the
appropriate boundary conditions given by equation (16).

By applying D'Alembert's Principle, we obtain the equations of dynamic equilibrium for
the nth Fourier component of the shell as

D
n
(s, t)"!dF

n
. (27)

To determine the normal modes of vibration, the initial displacements and velocities are
zero. Thus, inasmuch as the free vibration of the shell has been shown to consist of
a periodic motion with frequency u

n
, we may represent the displacements D

n
(s, t) as

D
n
(s, t)"sin u

n
tD

n
(s), (28)

where
D

n
(s)"[=

n
(s
0
),2,=

n
(s
N
),;

(n
(s
0
),2, ;

(n
(s
N
),

;hn (s0),2, (;hn (sN )])T (29)

and where=
n
, ;

(n
, and ;hn represent the 3N#3 half amplitudes of free vibration at the

N#1 node points on the interval s
0
)s)s

N
.

The accelerations in equations (23) will be given by

DG
n
(s, t)"!u2

n
sin u

n
tD

n
(s). (30)

If we substitute equations (24) and (30) into equation (25), we have

F
n
"!

cDsu2
n
sinu

n
t

r
0
g

[0)5hr=
n
(s
0
), hr=

n
(s
1
),2, hr=

n
(s
N~1

),

0)5hr=
n
(s
N
), 0)5hr;

(n
(s
0
), hr;

(n
(s
1
),2,
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hr;
(n

(s
N~1

), 0)5hr;
(n

(s
N
), 0)5hr;hn (s0 ),

hr;hn (s1),2, hr;hn (sN~1
), 0)5hr;hn (sN )]T. (31)

If we substitute equations (26), (28), and (31) into equation (27) and cancel the common
terms sinu

n
t (since sinu

n
t is not necessarily zero), we obtain

g

cDsu2
n

D
n
(s)"[d

ij
][0)5h=

n
(s
0
), h=

n
(s
1
),2, h=

n
(s
N~1

), 0)5h=
n
(s
N
),

0)5h;
(n

(s
0
), h;

(n
(s
1
),2, h;

(n
(s
N~1

), 0)5h;
(n

(s
N
),

0)5h;hn(s0 ), h;hn (s1),2, h;hn (sN~1
), 0)5h;hn(sN )]T. (32)

Equations (32) are the #exibility equations for the discretized shell. These equations can
be rewritten in the form

(A!j
mn

I)U
mn
"0, (33)

where

A"[a
ij
]

a
ij
"

h (s
0
)

2
d
ij
, ( j"1, N#2, 2N#3)

a
ij
"

h (s
N
)

2
d
ij

( j"N#1, 2N#2, 3N#3)

( j"2,2, N;

a
ij
"h (s)d

ij
j"N#3,2, 2N#1;

j"2N#4,2, 3N#2)

H (i"1, 2, 3,2, 3N#3), (34)

j
mn
"

g

cDsu2
mn

, u
mn
"A

g

j
mn

cDsB
1@2

, (35)

U
mn
"[=

mn
(s
0
),2,=

mn
(s
N
),;

(mn
(s
0
),2, ;

(mn
(s
N
),;hmn

(s
0
),2,;hmn

(s
N
)]T, (36)

I is the unit matrix with 3N#3 diagonal elements, and the "rst subscript m on all variables
is associated with the mth eigenvalue for the Fourier component n.

In practice, when we specify M(M"3 min to 6 max) of the displacements w
n
(s
0
, t),

u
(n

(s
0
, t), uhn (s0 , t), w

n
(s
N
, t), u

(n
(s
N
, t), and uhn(sN , t) to be zero, we will obtain for the rows

and columns of equations (33) M rows and M columns which will be zero. Before solving for
the eigenvalues and eigenvectors associated with equations (33), we will condense the
coe$cient matrix to a 3N#3!M by 3N#3!M matrix and the displacement vector to
a 3N#3!M column matrix. Thus, we will have only 3N#3!M values of u

n
corresponding to the 3N#3!M degrees of freedom of the shell.
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The system of equations (33) has non-trivial solutions if and only if the determinant of the
coe$cient matrix for U

mn
vanishes. Thus,

DA!j
mn

I D"0 (37)

is our frequency equation for the 3N#3!M values of j
mn

and subsequent determination
of the 3N#3!M mode shapes.

After solution of equation (37) for our 3N#3!M eigenvalues j
mn

and mode shapes, the
frequencies u

mn
will be found from equations (35). We expect 3N#3!M real and positive

values of u
mn

to correspond to the 3N#3!M degrees of freedom of the shell. The
eigenvalues and eigenvectors of equation (37) will be evaluated by a convergent iterative
procedure which will determine successively the 3N#3!M real values of each. These
quantities will be found by use of a standard subroutine given in reference [25] and credited
to others therein.

4. PROPERTIES OF THE NORMAL MODE SHAPES

By analogy with equation (31), we de"ne the characteristic loading for the mth mode to be
the static loading q

mn
expressed in terms of the mode shape functions U

mn
as

qi
mn
"u2

mn
MiUi

mn
(i"1, 2, 3,2, 3N#3), (38)

where U
mn

is given by equation (36).
It may be shown [25, 26] that, for any two mode shape functions U

mn
and U

kn
,

i/3N`3
+
i/1

MiUi
mn

Ui
kn
"0 (mOk). (39)

Equation (39) is the equation of orthogonality between any two normal modes.
If m"k,

i/3N`3
+
i/1

Mi(Ui
mn

)2"ANY CONSTANT. (40)

We normalize the mode shape functions U
mn

by setting the constant in equation (40)
equal to unity and designate the normalized function for the mth mode shape as U1

mn
. Thus,

our normalizing condition is

i/3N`3
+
i/1

Mi(UM i
mn

)2"1. (41)

After normalization of the mode shapes UM
mn

in accordance with equation (41), we
designate the normalized characteristic loading Q

mn
to be

Qi
mn
"u2

mn
MiUM i

mn
(i"1, 2, 3,2, 3N#3). (42)

Static de#ections due to Q
mn

will be given by

D
mn

(s)"dQ
mn

. (43)
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If we substitute equations (26) and (42) into equation (43), we "nd equation (32), with the
normalized mode shapes UM

mn
appearing on both sides of the equation in lieu of the

half-amplitudes appearing therein. Thus, it is seen that the static loading given by equation
(42) produces the de#ections UM

mn
which constitute the normalized shapes of the mth

vibration mode of the shell.

5. REPRESENTATION OF STATIC LOADINGS BY SUPERPOSITION OF NORMALIZED
CHARACTERISTIC LOADINGS

We designate the static nodal point loading due to the loadings p
n
(s), p

(n
(s), and phn (s)

applied over the interval s
0
)s)s

N
as

P
n
(s)"

Ds

r
0

[0)5p
n
(s
0
)r

0
, p

n
(s
1
)r

1
,2, p

n
(s
N~1

)r
N~1

,

0)5p
n
(s
N
)r

N
,0)5p

(n
(s
0
)r

0
, p
(n

(s
1
)r

1
,2,

p
(n

(s
N~1

)r
N~1

, 0)5p
(n

(s
N
)r

N
, 0)5phn (s0)r

0
,

phn(s1 )r
1
,2, p

n
(s
N~1

)r
N~1

, 0)5phn(sN )r
N
]T. (44)

We wish to represent the loading P
n
(s) as a superposition of the appropriate contributions

of the loadings given by equation (42). Thus, if we let t
mn

represent the participation factor
for mode m for the nth Fourier component of loading, we may represent the loading at any
co-ordinate location i as

Pi
n
"

m/3N`3~M
+

m/1

t
mn

Qi
mn

(i"1, 2, 3,2, 3N#3). (45)

It can be shown [25, 26] that

t
mn
"

+ i/3N`3
i/1

Pi
n
UM i

mn
u2

mn

. (46)

6. DYNAMIC RESPONSE UNDER IMPULSIVE LOADINGS
FOR THE nth FOURIER COMPONENT

The dynamic response of the shell under impulsive loadings will be determined by
a superposition of the several modal contributions. For this purpose, we assume that the
initial displacements and velocities are zero and that the impulsive loadings p

n
(s, t), p

(n
(s, t),

and phn(s, t) vary with time in the same manner throughout the interval s
0
)s)s

N
of the

shell.
It has been shown by Norris et al. [26] that the total response due to initial displacements

and velocities in conjunction with impulsively applied forces may be determined by
independently evaluating the response due to initial displacements and velocities and the
response due to the impulsive forces and superimposing the results. We thus consider "rst
the response due to impulsive loadings and will subsequently evaluate the response due to
initial displacements and velocities.
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We designate the time-dependent nodal point impulsive loading due to the loadings
p
n
(s, t), p

(n
(s, t), and phn (s, t) applied over the interval s

0
)s)s

N
as

P
n
(s, t)"P

n
(s) f (t), (47)

where the P
n
(s) represent the maximum instantaneous values attained by the dynamic

loading and where f (t) is the time function de"ning the temporal variation of the loading.
By analogy with equation (45), we represent the time-dependent loadings in equation (47)

by

P (i, t)
n

"

m/3N`3~M
+

m/1

f (t)t
mn

Qi
mn

(i"1, 2, 3,2, 3N#3). (48)

From equations (32), (43), and (45), it can be seen that the static loading given by equation
(45) produces the de#ections

Di
n
"

m/3N`3~M
+

m/1

t
mn

UM i
mn

(i"1, 2, 3,2, 3N#3) (49)

at each of the co-ordinate locations i on the shell meridian. We may similarly represent the
dynamic de#ections D (i, t)

n
under the loadings given by equation (48) as

D (i, t)
n

"

m/3N`3~M
+

m/1

g
mn

(t)t
mn

UM i
mn

(i"1, 2, 3,2, 3N#3), (50)

where the dynamic load factors g
mn

(t) are to be determined for each mode m. Similar
summations with the appropriate upper limits may be used to obtain the dynamic
displacements for the symmetric and antisymmetric components of loading for the Fourier
component n"0.

7. MODAL DYNAMIC LOAD FACTORS FOR IMPULSIVE LOADINGS

To determine the dynamic load factor g
mn

(t), we consider the dynamic equilibrium of the
shell under the impulsive loadings given by equation (48) and the inertia forces MiDG (i, t)

n
,

where Mi is given by equation (24) and where the displacements D (i, t)
n

are represented by
equation (50). By also writing the displacements D (i, t)

n
in terms of the in#uence coe$cients

d
ij

for the shell as utilized previously in equation (27) and by applying D'Alembert's
Principle, we "nd the equations for the dynamic displacements D (i, t)

n
at the several node

points i of the shell to be

[D (i, t)
n

]"[d][P (j, t)
n

!MjDG (j, t)
n

] (i"1, 2, 3,2, 3N#3; j"1, 2, 3,2, 3N#3). (51)

By substituting equations (42), (48), and (50) into equation (51), we have

m/3N`3~M
+

m/1

[d][ f (t)t
mn

u2
mn

MjUM j
mn
!t

mn
gK
mn

MjUM j
mn

]

!

m/3N`3~M
+

m/1

g
mn

t
mn

UM i
mn
"0 (i"1, 2, 3,2, 3N#3; j"1, 2, 3,2, 3N#3). (52)
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From equation (32), however, we obtain

1

u2
mn

[UM i
mn

]"[d][MjUM j
mn

] (i"1, 2, 3,2, 3N#3; j"1, 2, 3,2, 3N#3). (53)

By substituting equation (53) into equation (52), we "nd

m/3N`3~M
+

m/1
C f (t)t

mn
UM i

mn
!

gK
mn

t
mn

UM i
mn

u2
mn

!g
mn

t
mn

UM i
mnD"0 (i"1, 2, 3,2, 3N#3). (54)

By multiplying equation (54) by the quantity UM i
kn

Mi for the kth general mode and
summing the resulting 3N#3 equations, we obtain

i/3N`3
+
i/1

m/3N`3~M
+

m/1
C f (t)t

mn
UM i

kn
UM i

mn
Mi!

gK
mn

t
mn

UM i
kn

UM i
mn

Mi

u2
mn

!g
mn

t
mn

UM i
kn

UM i
mn

MiD"0

(i"1, 2, 3,2, 3N#3; j"1, 2, 3,2, 3N#3!M). (55)

By virtue of equations (39) and (41), the double sum in equation (55) reduces to

gK
mn
#u2

mn
g
mn
"u2

mn
f (t). (56)

The solution of equation (56) is

g
mn

(t)"u
mn P

t

t0

f (q) sin u
mn

(t!q) dq, (57)

where f (q) is used to de"ne the temporal variation of the loading.
With the UM i

mn
determined from equation (41), the t

mn
found from equation (46), and with

g
mn

found from equation (57), we may evaluate the Fourier components of the dynamic
displacements D (i, t)

n
in the absence of initial displacements and velocities from equation (50).

The velocities DQ (i, t)
n

and the accelerations DG (i, t)
n

may be found by appropriate di!erentiations
of g

mn
(t) and using the resulting expressions found from equation (50).

8. DYNAMIC RESPONSE DUE TO INITIAL DISPLACEMENTS AND VELOCITIES
FOR THE nth FOURIER COMPONENT

The development of the system of equations (50) for the dynamic displacements D (i, t)
n

was
based on the assumption of zero values for the initial displacements and velocities at all
node points i along the shell meridian. The solution for the time-dependent displacements
D (i, t)
In

due to initial displacements D (i, t0)
In

and initial velocities DQ (i, t0)
In

other than zero remains to
be determined for addition to the already determined D (i, t)

n
caused by only the impulsive

loadings P (i, t)
n

to determine the total time-dependent displacements D (i, t)
Tn

due to the
combined e!ects of impulsive loadings and initial displacements and velocities. Thus, we
represent the total displacements D (i, t)

Tn
as

D (i, t)
Tn

"D (i, t)
n

#D (i, t)
In

(i"1, 2, 3,2, 3N#3). (58)
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We represent the column vector of displacement D (i, t)
In

by the right-hand side of equation
(22). The velocities DQ (i, t)

In
and the accelerations DG (i, t)

In
will be given by appropriate

di!erentiations of the right-hand sides of equation (22).
For any time t*t

0
, the inertia forces acting on the shell will, in the absence of impulsive

loadings, be given by

F(i, t)
In

"MDG (i, t)
In

, (59)

where the diagonalized mass matrix M is given by equation (24).
If we neglect damping, the only forces causing the de#ections D (i, t)

In
in equation (58) will be

the inertia forces F(i, t)
In

given by equation (59). It is clear from equations (27) and (32) that the
dynamic displacements D (i, t)

In
may thus be represented by a superposition of the normalized

mode shapes UM i
mn

multiplied by a suitable time function gI
mn

(t). Thus, we represent the
dynamic displacements D (i, t)

In
as

D (i, t)
In

"

m/3N`3~M
+

m/1

gI
mn

(t)UM i
mn

(i"1, 2, 3,2, 3N#3), (60)

where the time functions gI
mn

(t) are yet to be determined for each mode m.
The velocities DQ (i, t)

In
and the accelerations DG (i, t)

In
will be given by appropriate

di!erentiations of gI
mn

(t) and using the resulting expressions found from equation (60).
By a development similar to that used in sections 6 and 7 for impulsive loadings, which

may be found in reference [25], we "nd

gI
mn

(t)"gI
mn

(t
0
) cosu

mn
(t!t

0
)#

gR I
mn

(t
0
)

u
mn

sinu
mn

(t!t
0
), (61)

gI
mn

(t
0
)"

i/3N`3
+
i/1

MiUM i
mn

D (i, t0)
In

, g5 I
mn

(t
0
)"

i/3N`3
+
i/1

MiUM i
mn

DQ (i, t0)
In

. (62, 63)

With UM i
mn

found from equation (41) and gI
mn

(t) given by equation (61), the dynamic
displacements D (i, t)

In
due to the initial displacements and velocities of the shell will be found

from equation (60) for the nth Fourier component of response.
The velocities DQ (i, t)

In
and accelerations DG (i, t)

In
will be found by appropriate di!erentiations of

equation (60) and use of the resulting expressions. Similar expressions, with appropriate
change of limits, may be used to obtain the displacements, velocities, and accelerations for
the Fourier component n"0.

9. TOTAL DYNAMIC DISPLACEMENTS UNDER COMBINED IMPULSIVE LOADINGS,
INITIAL DISPLACEMENTS, AND INITIAL VELOCITIES

The solutions discussed previously will be obtained for each of the several Fourier
components used to de"ne the loadings and the initial displacements and velocities over the
middle surface of the shell. The total dynamic response of the shell at any time t will consist
of a double summation of the separate contributions, 3N#3!M contributions for each
separate Fourier component n and P#1 values for the several Fourier components n,
where P is the highest Fourier number used to represent the loadings and the initial
displacements and velocities. It should be noted also that, although the equations developed
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hereinbefore have been written by utilizing the symmetric Fourier components of loadings
and displacements, similar equations with appropriate variables and signs are applicable to
the antisymmetric components. The nth Fourier components of displacements due to
combined impulsive loadings and initial displacements and velocities will be given by
equation (58), together with a similar equation for the antisymmetric components. Similar
equations, with appropriate changes in limits, will be used to "nd the displacements for
n"0.

By observing equation (58) and the correspondence given in equations (22) and (50)
between the D (i, t)

n
and D (i, t)

In
and the displacements w

n
(s, t), u

(n
(s, t), and uhn (s, t), we may now

determine the displacements w (s, h, t), u
(
(s, h, t), and uh (s, h, t) by use of the appropriate

variables in equations (11).

10. FINITE DIFFERENCE RELATIONS FOR VARIABLES OTHER THAN
DISPLACEMENTS

The symmetric Fourier components of the displacements due to combined impulsive
loadings and initial conditions are given as D (i, t)

Tn
by equation (58). The column vectors of

these time-dependent Fourier components of the displacements are identi"ed in terms of the
symmetric displacement components w

n
(s, t), u

(n
(s, t), and uhn(s, t) by equations (22) and

(50). Similar equations de"ne the antisymmetric Fourier components. The remaining
variables of interest are the primary variables b

(n
, N

(n
, M

(n
, N

n
, and Q

n
and the secondary

variables bhn , Nhn , Mhn , Q
(n

, Nh(n , Mh(n , and Qhn (with it being understood here and
elsewhere that the barred variables are included as well) on the interval s

0
)s)s

N
. The

primary variables are given by equations (13), while the secondary variables are given by
equations (15).

Details of the "nite di!erence development for "nding the Fourier components of the
above primary and secondary variables may be found in reference [25]. With these Fourier
components known, the total time-dependent quantities may be found by use of the
appropriate variables in equations (11).

11. RESULTS

To illustrate the utility of the program in reference [25], we include here solutions for
a parabolic shell and compare the solutions obtained by the modal superposition method
with solutions found numerically by the method of "nite temporal di!erences as developed
in references [19, 20]. The geometry and loading for our example parabolic shell are shown
in Figure 4. We assume the initial displacements and velocities to be zero. For the boundary
conditions, we assume that w, u

(
, b

(
, and uh are zero at s

0
and that Q, N

(
, M

(
, and N are

zero at s
N
. We assume a value of 30]106 lb/in2 for E, a value of 0)2835 lb/in3 for c, and

a value of 0)30 for l. We use for illustration only the Fourier components for n"0}8. The
six non-zero components entering into the solution are p

0
"!31)8, p

I
"!50)0,

p
2
"!21)2, p

4
"4)2, p

6
"!1)8 and p

8
"1)0 lb/in2. We specify 72 equal increments Ds

along the shell meridian from s
0

to s
N
.

By using the computer program in reference [25], we obtain the frequencies and their
corresponding normalized mode shapes. We also obtain values of the summed Fourier
series for all primary and secondary variables at all 73 node points from s

0
to s

N
along the

meridian of the shell for our selection of 10 equally spaced times varying from
t"0)12]10~3 s to t"1)20]10~3 s. We show in Table 1 the values of w (s

N
, t), u

(
(s
N
, t),



TABLE 1

Example parabolic shell solutions for w(s
N
, t), u

(
(s
N
, t), Q(s

0
, t), and N

(
(s
0
, t) at h"0 by the

modal superposition method with Ds"0)3220 in

t (10~3 s) w (s
N
, t) (in) u

(
(s
N
, t) (in) Q (s

0
, t)(lb/in) N

(
(s
0
, t)(lb/in)

0 0 0 0 0
0)12 !9)2254]10~3 7)4603]10~5 !9)8818]101 7)8737]102
0)24 !3)2699]10~2 !3)5930]10~4 !6)0753]101 2)4942]103
0)36 !6)5411]10~2 !3)5375]10~3 !6)8868]101 3)8688]103
0)48 !1)0253]10~1 !9)3077]10~3 !7)4672]101 5)0897]103
0)60 !1)3674]10~1 !1)4038]10~2 !6)4719]101 6)6498]103
0)72 !1)6372]10~1 !1)6997]10~2 !6)3864]101 8)2476]103
0)84 !1)8657]10~1 !2)0668]10~2 !6)1417]101 9)0884]103
0)96 !2)0499]10~1 !2)2745]10~2 !6)0946]101 9)7849]103
1)08 !2)1787]10~1 !2)0530]10~2 !5)4391]101 1)0697]104
1)20 !2)2197]10~1 !1)9175]10~2 !2)0805]101 1)0487]104

TABLE 2

Example parabolic shell solutions for w(s, t), u
(
(s, t), at h"0 by

the modal superposition method with Ds"0)3220 in and
t"1)20]10~3 s

s(in) w (s, t)(in) u
(
(s, t) (in)

0)00 0 0
1)93 !1)2048]10~2 5)3845]10~3
3)86 !2)6975]10~2 9)0794]10~3
5)79 !4)0108]10~2 1)1128]10~2
7)72 !6)0163]10~2 1)1637]10~2
9)66 !8)4210]10~2 1)0640]10~2

11)59 !1)0305]10~1 8)3733]10~3
13)52 !1)2011]10~1 5)1228]10~3
15)45 !1)3807]10~1 1)1645]10~3
17.38 !1)6070]10~1 !3)3538]10~3
19)32 !1)8525]10~1 !8)3291]10~3
21)25 !2)0546]10~1 !1)3653]10~2
23)18 !2)2197]10~1 !1)9175]10~2
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Q(s
0
, t), and N

(
(s
0
, t) for the meridian h"0 for each of the 10 selected times. We show in

Table 2 values of w (s, t) and u
(
(s, t) for the meridian h"0 at all node points 6 Ds in apart

between s
0

and s
N

at time t"1)20]10~3 s.
To compare solutions by the modal superposition method with those found by the

temporal "nite di!erence method, we will solve the same parabolic shell example shown in
Figure 4 by the program given in reference [19]. By using Ds"0)3220 in and
Dt"0)15]10~5 s, we develop our solutions at all node points for our selection of 10
equally spaced times varying from t"0)12]10~3 to 1)20]10~3 s. We show in Table 3 the
values of w (s

N
, t), u

(
(s
N
, t), Q(s

0
, t), and N

(
(s
0
, t) for the meridian h"0 for each of the 10

selected times. We list in Table 4 values of w (s, t) and u
(
(s, t) for the meridian h"0 at all

node points 6 Ds in apart between s
0

and s
N

at time t"1)20]10~3 s. It is seen from Tables
1}4 that the solutions obtained for the example parabolic shell by the modal superposition



Figure 4. Example parabolic shell with suddenly applied cosine loading. The loading p (h, s, t)"
!100 cos h(!n/2)h)n/2). The radius r"10#0)15z#0)02z2. The boundary at s

0
is completely "xed, and the

boundary at s
N

is completely free. The thickness h"0)10 in.

TABLE 3

Example parabolic shell solutions for w(s
N
, t), u

(
(s
N
, t), Q(s

0
, t), and N

(
(s
0
, t) at h"0 by the

temporal ,nite di+erence method with Ds"0)3220 in and Dt"0)15]10~5 s

t (10~3 s) w (s
N
, t) (in) u

(
(s
N
, t) (in) Q (s

0
, t)(lb/in) N

(
(s
0
, t)(lb/in)

0 0 0 0 0
0)12 !9)2243]10~3 7)5403]10~5 !9)1698]101 7)7092]102
0)24 !3)2757]10~2 !3)5587]10~4 !6)0106]101 2)4902]103
0)36 !6)5502]10~2 !3)5348]10~3 !6)4980]101 3)8639]103
0)48 !1)0260]10~1 !9)3058]10~3 !7)0207]101 5)0821]103
0)60 !1)3677]10~1 !1)4035]10~2 !5)9294]101 6)6444]103
0)72 !1)6376]10~1 !1)6999]10~2 !5)7579]101 8)2412]103
0)84 !1)8663]10~1 !2)0675]10~2 !5)5757]101 9)0823]103
0)96 !2)0505]10~1 !2)2748]10~2 !5)3576]101 9)7826]103
1)08 !2)1793]10~1 !2)0540]10~2 !4)8344]101 1)0695]104
1)20 !2)2204]10~1 !1)9191]10~2 !4)4525]101 1)0484]104
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methods of this report and the "nite di!erence methods of references [19, 20] are in very
good agreement.

As a second example, we analyze the cylindrical shell shown in Figure 2 of reference [18]
for its symmetric vibration frequencies and maximum de#ection under the static loading
given therein and compare the results with values reported therein as found by the use of
"nite elements. Our comparison solutions may be found by analysis of the cylindrical shell



TABLE 4

Example parabolic shell solutions for w(s, t), u
(
(s, t), at h"0

and t"1)20]10~3 s by the temporal ,nite di+erence method
with Ds"0)3220 in and Dt"1)15]10~5 s

s(in) w (s, t)(in) u
(
(s, t) (in)

0)00 0 0
1)93 !1)2055]10~2 5)3885]10~3
3)86 !2)7020]10~2 9)0855]10~3
5)79 !4)0196]10~2 1)1132]10~2
7)72 !6)0249]10~2 1)1636]10~2
9)66 !8)4288]10~2 1)0634]10~2

11)59 !1)0309]10~1 8)3639]10~3
13)52 !1)2015]10~1 5)1113]10~3
15)45 !1)3809]10~1 1)1517]10~3
17.38 !1)6071]10~1 !3)3673]10~3
19)32 !1)8527]10~1 !8)3433]10~3
21)25 !2)0548]10~1 !1)3668]10~2
23)18 !2)2204]10~1 !1)9191]10~2

Figure 5. Example cylindrical shell under axisymmetric static loading. The boundary conditions at s
0

are
u
(
"0, uh"0, b

(
"0, and Q"0. The boundary conditions at s

N
are w"0, uh"0, N

(
"0, and M

(
"0. The

thickness h"0)008 in. The radial loading o(h, s)"1)0 psi.
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and loading shown in Figure 5. For the boundary conditions, we have u
(
, uh , b

(
, and

Q equal to zero at s
0
and w, uh , N(

, and M
(
equal to zero at s

N
. The only Fourier component

of loading is p
0
"1)00 lb/in2. We take, as in reference [18], a value of 29)6]106 lb/in2 for E,

a value of 0)2835 lb/in3 for c, and a value of 0)29 for l. We obtain solutions for "nite
di!erence meshes which have 200, 100, and 50 equal increments Ds between node points on
the meridional mesh, thus using values of 0)05, 0)10, and 0)20 in, respectively, for Ds. We
show in Table 5 the "rst 21 frequencies as obtained by the "nite di!erence methods of this
report for each of the three values used for Ds together with the "rst 10 frequencies as
obtained by the "nite element method and reported in reference [18]. It can be seen from
Table 5 that the frequencies found by use of "nite di!erence procedures and "nite element
methods for the example cylindrical shell are in very close agreement but that the "nite



TABLE 5

Example cylindrical shell frequencies by ,nite di+erence method and reference [18] ,nite
element method

Mode no. Frequencies by F.D.M. (rad/s) Frequencies by
F.E.M. (rad/s)

Ds"0)05 in Ds"0)10 in Ds"0)20 in

1 0)3000]105 0)3000]105 0)3000]105 0)3001]105
2 0)3981]105 0)3981]105 0)3981]105 0)3983]105
3 0)4005]105 0)4005]105 0)4006]105 *

4 0)4011]105 0)4012]105 0)4014]105 *

5 0)4015]105 0)4015]105 0)4018]105 0)4014]105
6 0)4017]105 0)4018]105 0)4022]105 0)4017]105
7 0)4021]105 0)4022]105 0)4028]105 0)4023]105
8 0)4025]105 0)4027]105 0)4034]105 *

9 0)4031]105 0)4034]105 0)4043]105 0)4032]105
10 0)4040]105 0)4043]105 0)4054]105 *

11 0)4052]105 0)4055]105 0)4067]105 0)4056]105
12 0)4067]105 0)4070]105 0)4084]105 *

13 0)4086]105 0)4090]105 0)4105]105 *

14 0)4111]105 0)4115]105 0)4130]105 0)4113]105
15 0)4142]105 0)4145]105 0)4159]105 *

16 0)4179]105 0)4182]105 0)4193]105 *

17 0)4223]105 0)4225]105 0)4232]105 0)4201]105
18 0)4275]105 0)4276]105 0)4276]105 *

19 0)4337]105 0)4334]105 0)4326]105 *

20 0)4407]105 0)4402]105 0)4381]105 *

21 0)4414]105 0)4414]105 0)4414]105 0)4416]105
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element model used in reference [18] does not yield several of the lower frequencies. The
maximum radial de#ection, w (s

0
), is obtained as 0)1055743]10~3 in by use of either of the

values of 0)05, 0)10, or 0)20 in for Ds. This compares with a closed form solution value of
0)1055743]10~3 in, which constitutes an exact agreement between the value found by the
modal superposition methods of this report and the closed-form solution.

12. CONCLUSIONS

To illustrate the utility of the modal superposition method for shell analysis, we have
included dynamic solutions for a parabolic shell as obtained by the modal superposition
method and as obtained by the "nite di!erence method used in references [19, 20] for easy
comparison. It is seen from a study of the results given in Tables 1}4 that the displacements
as found by the modal superposition method (Tables 1 and 2) are in very good agreement
with the displacements as found by the temporal "nite di!erence method (Tables 3 and 4).
Solutions not shown here for this and other shell examples con"rm that as the time
increment Dt is reduced the displacements found by the temporal "nite di!erence method
will approach the displacements found by the modal superposition method as closely as
may be desired (in the absence of signi"cant round-o! error). This is true because our "nite
di!erence representations for second derivatives of displacements with respect to time
approach the true accelerations as Dt approaches zero.

It is seen from the results in Tables 1 and 3 that the values for N
(
(s
0
, t) as found by the

modal superposition method are also in very good agreement with the values of N
(
(s
0
, t)
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given by the temporal "nite di!erence method. Values for Q(s
0
, t) are also in reasonably

good agreement as found by the two methods. It is not shown herein but at points
s
2
)s)s

N~2
for which the "nite di!erence representations for determining the shell

in#uence coe$cients and for "nding the forces from the nodal displacements are the same,
the forces Q(s, t) as found by the modal superposition methods of this report and as found
by the temporal "nite di!erence methods of references [19, 20] for this and other shell
examples are in very good agreement for all selected times. More accurate values for the
shears at and near the boundary edges of the shell may be obtained by suitable reduction of
the meridional increment Ds.

To show a comparison with results found by the methods of this report and "nite element
methods for modal analysis, we have also analyzed the cylindrical shell shown in Figure 2 of
reference [18] for its symmetric vibration frequencies and maximum radial de#ection for
the static loading given therein. Values of the frequencies given in Table 5 show very good
agreement of the results found here and in reference [18]. It is seen in Table 5, however, that
several of the lower frequencies are not obtained by the "nite element mesh used in reference
[18] and that a "ner "nite element mesh would be required to obtain all of the lower and
higher frequencies. The "nite di!erence methods of this report are well suited to obtain any
desired number of vibration frequencies. For the example cylindrical shell studied here, the
maximum de#ection found by the modal superposition methods of this report and by
closed-form solution are in exact agreement.

The modal analysis methods using "nite di!erences as reported here result in several
advantages over other methods described in this report. The use of "nite di!erences is
simple to implement and provides solutions for which continuity of all displacements and
derivatives thereof exists at every point in the "nite di!erence mesh. The use of
multi-segment direct numerical integration as in reference [7] is also avoided. The possible
adverse e!ects of shear locking behavior for "nite element formulations for thin shells
[27, 32] is also avoided. Use of the modal superposition method itself for analysis also
avoids the numerical stability problem associated with explicit numerical step-by-step
integration for time-dependent solutions and avoids the need to use a large number of time
steps for large values of time t for dynamic solutions.

In summary, we conclude that the modal analysis procedures developed in this report are
well suited for determining the linearly elastic shell response of any rotationally symmetric
general shell under time-dependent surface loadings (continuous or discontinuous) and due
to initial values for the displacements and velocities. Although they are not the most
e$cient procedures available for obtaining solutions for static loadings, the same
procedures may also be used for obtaining such solutions.
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APPENDIX A: NOMENCLATURE

a
ij

elements of matrix A, de"ned for each Fourier component n by equations (34)
A coe$cient matrix in equation (33) for each Fourier component n, with the eigenvalues

removed
A

1
,2, A

9
coe$cients de"ned in reference [26] for equation (12a)

B
1
,2, B

12
coe$cients de"ned in reference [26] for equation (12b)

C
1
,2, C

8
coe$cients de"ned in reference [26] for equation (12c)

D Eh3/12(1!l2), #exural rigidity of the shell
D

1
,2, D

46
coe$cients de"ned in reference [26] for equations (13)}(15)

E Young's modulus
f (t) time functions used to de"ne the time variation of the applied impulsive loadings
g acceleration constant
h thickness of the shell
K Eh/(1!l2 ), extensional rigidity of the shell
Mh , M(

, Mh( moment stress resultants
n integer, designating the nth Fourier component
N, Q e!ective shear resultants
Nh , N(

, Nh( membrane stress resultants
p, ph , p( components of the mechanical surface loads
P i
n

maximum instantaneous dynamic loading at node point i on the shell meridian for the
symmetric Fourier component n

Qh , Q(
transverse shear resultants

r distance of point on the middle surface of the shell from the axis of symmetry
Rh , R(

principal radii of curvature of the middle surface of the shell
s distance from an arbitrary origin along the meridian of the shell in the positive

direction of /
Ds increment of the space variables
s
0

value of the co-ordinate s at the boundary s
0
, denoted also as the boundary z

0
, of the

shell
s
N

value of the co-ordinate s at the boundary s
N
, denoted also as the boundary z

N
, of the

shell
s
i

point on meridional line of the shell at station i
t independent time variable
Dt increment of the time variable t, used to obtain solutions by the temporal "nite

di!erence method
t
0

initial value of the time variable t
uh , u( , w components of displacement of the middle surface of the shell
;hn ,;(n ,=n

functions of s which represent the normal mode shapes and de"ne the displacements
in the co-ordinate directions uhn , u

(n
, and w

n
, respectively, for the nth Fourier

component during free vibration of the shell
z distance of point on the middle surface of the shell measured from the origin along the

axis of symmetry
z
0

value of the co-ordinate z at the boundary z
0
, denoted also as the boundary s

0
, of the

shell
z
N

value of the co-ordinate z at the boundary z
N
, denoted also as the boundary s

N
, of the

shell
bh , b( , angles of rotation of the normal to the middle surface of the shell
c weight of shell material per unit volume
d #exibility matrix for the discretized shell for the Fourier component n
d
ij

displacement at node point i due to a total distributed unit loading for the Fourier
component n at node point j
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D (i, t)
n

nth symmetric Fourier component of displacements at shell meridional station i and
at time t due to impulsive loadings

D (i, t)
In

nth symmetric Fourier component of displacements at shell meridional station i and
at time t due to initial displacements and velocities

D (i, t)
Tn

nth symmetric Fourier component of displacements at shell meridional station i and
at time t due to combined impulsive loadings and initial conditions

g
mn

(t) dynamic load factor for the mth mode of the nth symmetric Fourier component of
impulsive loading

gI
mn

(t) time variation of the mth mode displacements for the nth symmetric Fourier
component due to initial displacements and velocities

h, /, o co-ordinates of any point of the shell
j
mn

eigenvalue of matrix A, equation (34), for the mth vibration mode of the nth Fourier
component, de"ned by equation (35)

l the Poisson ratio
Ui

mn
mode shape ordinate at node point i for the mth vibration mode of the nth symmetric
Fourier component

UM i
mn

mode shape ordinate at node point i for the mth vibration mode of the nth symmetric
Fourier component when normalized by equation (41)

t
mn

modal participation factor for the mth vibration mode of the nth symmetric Fourier
component of impulsive loading, de"ned by equation (46)

u
mn

circular frequency in rad/s associated with the mth vibration mode of the nth
symmetric Fourier component, de"ned by equation (35)
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