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1. INTRODUCTION

The problem of determining the natural frequencies and mode shapes of membranes is
important as a component in the design of many engineering devices. These include
microphones, loudspeakers, pumps, compressors, pressure regulators, antennae for space
communications, etc. A general review of the dynamic aspects of membranes can be found
in review papers by Mazumdar [1]. Recently, there have been many studies of the
non-homogeneous membrane whose non-homogeneity is piecewise continuous [2}5].
However, there are few studies on the non-homogeneous membrane whose
non-homogeneity is continuous in all domains. Masad [6] solved the problem mentioned
above by the "nite di!erence method and the perturbation method. Laura [7] solved the
same problem by the optimized Galerkin}Kantrovitch approach and the di!erential
quadrature method.

In this study, a hybrid method composed of di!erential transforms and the
Kantorovitch method is introduced to solve the above-referenced problems. The con-
cept of di!erential transforms was "rst proposed by Zhou [8] in 1986 and was applied
to solve linear and non-linear initial value problems in electric circuit analysis.
Using di!erential transforms, Chen and Ho [9] proposed a method to solve eigen-
value problems. In this paper, the free vibration problems of a non-homogeneous
membrane are considered. Using the Kantorovitch method and the di!erential
transform technique, any natural frequency and the corresponding mode shape can be
obtained. Finally, the fundamental natural frequencies and mode shapes of
a non-homogeneous membrane are investigated to illustrate the accuracy and e$ciency of
the present method.

2. DIFFERENTIAL TRANSFORM

In order to solve vibration problems by the hybrid method, the basic theory of di!erential
transform is stated brie#y in this section.
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The di!erential transform of a function f (x) is de"ned as

F (k)"
1

k ! C
dkf (x)

dxk D
x/0

. (1)

In equation (1), f (x) is the original function and F (k) is the transformed function, which is
called the T-function.

The di!erential inverse transform of F (k) is de"ned as

f (x)"
=
+
k/0

xkF(k). (2)

From equations (1) and (2), we obtain

f (x)"
=
+
k/0

xk

k! C
dkf (x)

dxk D
x/0

. (3)

Equations (3) implies that the concept of di!erential transform is derived from Taylor series
expansion. In this study we use the lower-case letter to represent the original function and
the upper-case letter to stand for the transformed function (T-function).

From the de"nitions of equations (1) and (2), it is readily proven that the transformed
functions comply with the following basic mathematics operations which are required in
this study.

Original function T-function

f (x)"g(x)$h(x), F (k)"G (k)$H(k), (4)

f (x)"cg(x), F (k)"cG (k), (5)

f (x)"
dg(x)

dx
, F (k)"(k#1)G(k#1), (6)

f (x)"
dgm(x)

dx
, F (k)"(k#1)(k#2)

2(k#m)G(k#m), (7)

f (x)"g(x)h(x),
F (k)"

k
+
r/0

G (r)H(k!r), (8)

f (x)"xm,
F (k)"d (k!m)"G

1,

0,

k"m,

kOm,
(9)

f (x)"sin(jx),
F (k)"

jk

k !
sin A

nk

2 B . (10)

In actual applications, the function f (x) is expressed by a "nite series and equation (2) can
be written as

f (x)"
n
+
k/0

xkF(k). (11)

Equation (11) implies that +=
k/n`1

xkF(k) is negligibly small. In fact, n is decided by the
convergence of natural frequency in this study.
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3. USING DIFFERENTIAL TRANSFORM TO ANALYZE THE FREE VIBRATION
PROBLEM OF A NON-HOMOGENEOUS RECTANGULAR MEMBRANE

When the non-homogeneous rectangular membrane vibrates in one of its normal modes,
the problem is governed by the dimensionless di!erential equation and boundary
conditions as follows:

L2u

Lx2
#

L2u

Ly2
#u2o (x, y)u"0, (12)

u"0, at x"0, 1, (13)

u"0 at y"0, ¸-where L is an arbitrary positive constant. (14)

Here, u is the transverse displacement, u is natural frequency, and o (x, y) represents
a non-homogeneous factor which is related to the tension and density of the membrane.

By the Kantorovitch method [10, 11] we seek the solutions of the form

u (x, y)"f (x)a(y), (15)

where a(y) satis"es BC equation (14).
Substituting Eq. (15) into equation (12) results in an error, or residual, function e(x, y).

Then requiring that

P
1

0
P

L

0

e(x, y)a(y) dy dx"0, (16)

one obtains

P
1

0

M f A#[M#u2N(x)] f Ndx"0, (17)

where

M"

:L
0

aA(y)a(y) dy

:L
0

a2(y) dy
, N(x)"

:L
0

o (x, y)a2 (y) dy

:L
0

a2 (y) dy
.

For a comparison of previous works [6, 7], we set o (x, y)"o (x) and a(y)"sin( jny/¸)
where j"1, 2, 3,2; then from equation (17), we have

f A#Cu2o(x)!
j2n2

¸2 D f"0. (18)

Substituting equation (15) into equation (13), we obtain BCs:

f (0)"0, f (1)"0. (19, 20)

For ease of demonstration, set j"j"jN ; is a "xed positive integer chosen.
Moreover, taking di!erential transforms of equation (18) and using equations (4)} (8), we

obtain

(k#1)(k#2)F(k#2)#u2
k
+
r/0

P (r)F(k!r)!
jN 2n2

¸2
F (k)"0, (21)

where F(k) and P(k) are T-functions of f (x) and o (x) respectively. Equation (21) is
a recursive algebraic equation which is suitable for symbolic computer implementation.
Using equation (1), BC equation (19) becomes

F (0)"0. (22)
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Using equation (11), BC equation (20) becomes

n
+
k/0

F (k)"0. (23)

Equations (22) and (23) are algebraic equations which are suitable for symbolic computer
implementation.

Let
F (1)"c. (24)

Substituting equations (22), (24) and k"0 into equation (21), we have

F (2)"0. (25)

Substituting equations (22), (24), (25) and k"1 into equation (21), we have

F (3)"c A
jN 2n2

6¸2
!

P (0)

6
u2B . (26)

Following the same recursive procedure [9], we calculate up to the nth terms F(n) with
n being decided by the convergence of the natural frequency as described later.

Substituting F (0)!F (n) into equation (23), we have

c[g(n)(u)]"0, (27)

where g(n)(u) is a polynomial of u corresponding to n. For non-trivial solutions of mode
shapes, we have cO0 and

g(n) (u)"0. (28)

Solving equation (28), we get

u"u(n)
ij
N where i"1, 2,2 . (29)

u(n)
ij
N is the ith estimated natural frequency corresponding to jN and n, with n being decided by

the equation
Du(n)

ij
N !u(n~1)

ij
N D)e, (30)

where u(n~1)
ij
N is the ith estimated natural frequency corresponding to jN and n!1 and where

e is a small value set by us. If equation (30) is satis"ed, then we have the ith natural frequency
corresponding to jN , u

ij
N"u(n)

ij
N .

Substituting u
ij
N into F (0)!F (k) and using equation (11), we have

f
i
(x)"

n
+
k/0

xkF*(k), (31)

where F*(k) is F(k) whose u is substituted by u
ij
N . Moreover, any ith mode shape of

a non-homogeneous membrane corresponding to jN is obtained as

u
ij
N (x, y)"f

i
(x)sin A

jNny

¸ B . (32)

Moreover, changing jN and following the procedure proposed above, all natural frequencies
and the corresponding mode shapes of a non-homogeneous membrane can be obtained.

At "rst glance, the method introduced in this section appears very involved
computationally, but actually these algebraic computations, can be "nished quickly using
symbolic computational software}Mathematics, for example.
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4. PROBLEM SOLVING AND RESULTS

To demonstrate the method introduced in this study, two problems are solved here.
Problem 1.

GE f A#Cu2(1#0)1x)!
j2n2

¸2 D f"0 where ¸"0)2, (33)

BCs f (0)"0, f (1)"0. (34, 35)

Taking the di!erential transform of equations (33) and using equation (4)}(9), we obtain

(k#1)(k#2)F(k#2)#u2
k
+
r/0

[d(r)#0)1d(r!1)]F(k!r)

(36)

!

n2

¸2
F (k)"0,

where we take j"1 for the fundamental natural frequency.
Using equation (1), BC equation (34) becomes

F(0)"0. (37)

Using equation (11), BC equation (35) becomes

n
+
k/0

F (k)"0. (38)

For ease of demonstration, list the computation and results corresponding to n"11.
Let

F (1)"c. (39)

Substituting equations (37), (39) and k"0 into equation (36), we have

F (2)"0. (40)

Substituting equations (37), (39), (40) and k"1 into equation (36), we have

F(3)"c(41)1234!0)166667u2). (41)

Substituting equations (37), (39)}(41) and k"2 into equation (36), we have

F (4)!c (!8)33333]10~3u). (42)

Following the same recursive procedure, we calculate up to the 11th term F (11).
Substituting F (0)!F (11) into equation (38), we have

g(11)(u)"36654)9!680)6794u2#5)04408u4!0)0186291u6

#3)42538]10~5u8!2)50521]10~8u10

"0. (43)

Solving equation (43), we get real roots as follows:

u"$15)6154, $16)2989, $19)0854. (44)

Considering the fundamental natural frequency, we take

u(11)
11

"15)6154. (45)
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When n"10, by the same way, we obtain

u(10)
11

"15)6049. (46)

From equations (45) and (46), we have

Du(11)
11

!u(10)
11

D"0.0105)e, (47)

where e is a small value set by us. If e is acceptable, from equation (47) we have
u

11
"15)6154, and u

11
is the fundamental natural frequency. Substituting u

11
into

F(0)!F (11) and using equation (11) we obtain

f
1
(x)"c (x#0)483232x3!2)03201x4#0)070054x5

!0)589158x6#1)18456x7!0)0610072x8

#0)247231x9!0)322904x10#0)0200402x11). (48)

Substituting equation (48) and jN"1 into equation (32), we obtain the fundamental mode
shape as

u
11

(x, y)"f
1
(x) sin A

ny

¸ B . (49)

The convergence of the fundamental natural frequency is shown in Figure 1 where
u

11
converges to 15)61333 (n"20, e"0). Moreover, the comparison between

cross-sections of mode shapes (along the x-axis, at y"¸/2) of a homogeneous membrane
and a non-homogeneous membrane are shown in Figure 2. It is clear that the
inhomogeneity shifts the mode shape peak towards regions of higher mass concentration.
Finally, values of the fundamental natural frequency (e"0) are given in Table 1. From the
comparison between the present results and those of previous work [6, 7] in Table 1,
excellent agreement is observed.
Figure 1. The convergence of the fundamental natural frequency of a non-homogeneous membrane with
o(x)"1#0)1x.



Figure 2. A cross-section of the fundamental mode shape for o(x)"1#0)1x, along the x-axis, at y"¸/2:
*L* homogeneous; *K* non-homogeneous.

TABLE 1

¹he fundamental natural frequencies of homogeneous (H) membrane and non-homogeneous
(NH) membrane with o (x)"1#0)1x

¸ H NH [6] NH [7] NH [present]; e"0

1)0 4)44288 4)33538 4)33539 4)33538 (n"17)
0)8 5)02900 4)90719 4)90719 4)90719 (n"17)
0)6 6)10616 5)95790 5)95790 5)95790 (n"17)
0)4 8)45900 8)25220 8)25221 8)25220 (n"18)
0)2 16)0190 15)6133 15)61334 15)61333 (n"20)
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Problem 2.

GE f A#Cu2 (1#0)1 sin nx)!
j2n2

¸2 D f"0 where ¸"0)2, (50)

BCs f (0)"0, f (1)"0. (51, 52)

Taking di!erential transform of equation (50) and using equations (4)}(10), we obtain

(k#1)(k#2)F(k#2)#u2
k
+
r/0
Cd (r)#0)1

nr

r!
sin A

nr

2 BD F (k!r) !

n2

¸2
F(k)"0,

(53)

where we take j"1 for the fundamental natural frequency. Using equation (53) and by the
same way as described in Problem 1, we obtain results as follows. The convergence of the
fundamental natural frequency is shown in Figure 3 where u

11
converges to 15)37381

(n"56, e"0). Moreover the comparison between cross-sections of mode shapes (along the
x-axis, at y"¸/2) of a homogeneous membrane and a non-homogeneous membrane are



Figure 3. The convergence of the fundamental natural frequency of a non-homogeneous membrane with
o(x)"1#0)1 sin nX.

Figure 4. A cross-section of the fundamental mode shape for o (x)"1#0)1 sin nX, along the x-axis and at
y"¸/2: *L* homogeneous; *K* non-homogeneous.

TABLE 2

¹he fundamental natural frequencies of homogeneous (H) membrane and non-homogeneous
(NH) membrane with o (x)"1#0)1 sin nx

¸ H NH [present]; e"0

1)0 4)44288 4)26541 (n"30)
0)8 5)02900 4)82806 (n"32)
0)6 6)10616 5)86207 (n"35)
0)4 8)45900 8)12044 (n"43)
0)2 16)0190 15)37381 (n"56)
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shown in Figure 4. It is clear that the inhomogeneity shifts both sides of the mode shape
towards the inside. Finally, values of the fundamental natural frequency (e"0) are given in
Table 2.
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CONCLUSION

In summary, using the hybrid method to solve the free vibration problems of
a non-homogeneous rectangular membrane consists of four main steps. The steps are using
the Kantorovitch method to get an ODE with variable coe$cient, transforming the ODE
into algebraic equations, solving the equations, and inverting the solution of the equations
to obtain any natural frequency and the corresponding mode shape. The calculated results
are highly compatible with those of previous studies on this subject.
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