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This paper deals with the discrete inverse problem in acoustics. It is assumed that a number
of acoustic sources are located at known spatial positions and that the acoustic pressure is
measured at a number of spatial positions in the radiated "eld. The transfer functions relating
the strengths of the acoustic sources to the radiated pressures are also assumed known. In
principle, the strengths of the acoustic sources can be deduced from the measured acoustic
pressures by inversion of this matrix of transfer functions. The accuracy of source strength
reconstruction (in the presence of noise which contaminates the measured pressures) is
crucially dependent on the conditioning of the matrix to be inverted. This paper examines the
conditioning of this inverse problem, particularly with regard to the geometry and number of
sources and measurement positions and the non-dimensional frequency. A preliminary
investigation is also presented of methods such as Tikhonov regularization and singular value
discarding which can improve the accuracy of source strength reconstruction in poorly
conditioned cases. Results are also presented which enable the solution of the inverse problem
when the time histories of the acoustic sources are time-stationary random processes and
the spectra and cross-spectra are measured at a number of positions in the radiated "eld. The
paper illustrates the possibilities and limitations of the use of inverse methods in the
deduction of acoustic source strength from radiated "eld measurements.
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1. INTRODUCTION

The estimation of the strength of acoustic sources from measurements of their radiated "eld
is a subject which has been studied extensively by acoustical engineers. The most widely
studied problem is that of estimating the angular location of a source relative to an array of
sensors, speci"cally with regard to the detection of sources of underwater sound [1]. Here
however, we consider in detail the problem of estimating the strength of the components of
a source distribution whose position in space is either known or can be modelled with
reasonable accuracy. This problem is of most relevance to engineers who wish to better
understand sources of sound in order to reduce their output. Considerable e!ort was
directed towards this problem during the 1970s when researchers "rst became particularly
concerned with the accurate location of sources associated with jet engines. For example,
Billingsley and Kinns [2] developed an &&acoustic telescope'' which made use of an array of
microphones whose outputs were weighted depending on an assumed source position.
These workers deduced the relationship between the power spectrum of the resulting output
signal and the cross power spectral distribution of an assumed line source upon which the
array is focused. Another approach was that taken by Fisher et al. [3], who derived
a relationship between the source strength distribution associated with an uncorrelated line
022-460X/00/240643#26 $35.00/0 ( 2000 Academic Press
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source and the cross-correlation functions evaluated between microphones located on a polar
arc surrounding the source. This work forms the basis of the &&polar correlation'' technique.
Fisher et al. demonstrated that the technique was intrinsically unable to resolve sources
separated by less than one-half of an acoustic wavelength. A further approach to the source
reconstruction problem was that taken by Maynard et al. [4] who introduced the use of
near"eld acoustic holography (NAH). In this case, the "eld impinging on an array that is
placed close to the region of the source is decomposed into its constituent plane wave
components through the use of a wavenumber transform. Subsequent extrapolation of this
"eld to the plane of the source then follows from the solution of the Helmholtz equation in the
wavenumber domain. By undertaking measurements in the near"eld source components can
be resolved which are separated by distances of much less than one-half wavelength. The
implementation of this technique is described in more detail by Veronesi and Maynard [5]
and its practical use has been clearly described by Hald [6,7] and Ginn and Hald [8].

In addition to these approaches to the problem, another method for reconstructing an
estimate of the source distribution has been used by a number of workers. For example, in
a later paper on the polar correlation technique, Tester and Fisher [9] described an
&&automatic source breakdown technique'' which relied on a pre-supposed model of the jet
noise source distribution. Tester and Fisher proceeded to "nd the strengths associated with
their model which minimized the di!erence between the measured cross-spectra of the
microphone array signals and those predicted by their model. A very similar approach to
the source identi"cation problem was later taken by Filippi et al. [10]. These workers
introduced a numerical technique which again enabled identi"cation of an a priori chosen
model for the source distribution. The essence of this approach was to "nd the distribution
of source strength used in the model which minimized a cost function which quanti"ed
the mean square error between the measured "eld and the output of the model. The
models used by Filippi et al. consisted of either a decomposition of the radiated "eld into
spherical harmonics or a discretized representation of the source distribution in a
Kircho!}Helmholtz representation of the source and sound "eld. As an example, these
workers modelled the radiation from a vibrating beam, expressed the "eld in terms of
spherical harmonics up to sixth order, and deduced the source strengths associated with 19
discrete elements of the beam. They introduced 10% random error into their simulated
measurements and studied the accuracy to which the source distribution could be
reconstructed as a function of the position of the measurements made. They noted that the
technique became more accurate as the measurement array was moved closer to the source
distribution. The connection between this type of approach and that of NAH was made by
Veronesi and Maynard [11] who also used a discretized version of a Kircho!}Helmholtz
representation of source distributions but for those with arbitrary geometry. A matrix of
transfer functions was then de"ned which related the strengths of these discrete sources to
the acoustic pressure at a number of "eld points. This matrix was then expressed in terms of
its singular value decomposition (SVD) and Veronesi and Maynard pointed out the
similarity between the matrix operations in the SVD and those used in NAH. The generality
of the SVD as a method of relating source and "eld was subsequently exploited by Borgiotti
[12], Photiadis [13] and Elliott and Johnson [14], all of whom made use of the technique to
de"ne a set of spatially orthogonal source strength distributions and study the e$ciency of
their radiation to the far "eld. Kim and Lee [15] also used the SVD in connection with
a Kircho!}Helmholtz representation of the source and radiated "eld which enabled the
"eld at a number of discrete points to be expressed in terms of the source distribution at
a number of discrete points. These authors used the SVD in order to deal with any
ill-conditioning of the matrix to be inverted. The technique was found to be successful in
practice when applied to the radiation from a cabinet mounted loudspeaker.
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More recently, Stoughton and Strait [16] have studied the use of the least-squares
method for the identi"cation of the distribution of source strength associated with a line
source and Grace et al. [17,18] have studied the aeroacoustic inverse problem of identifying
the unsteady surface pressure along a streamlined airfoil from the measurement of the
radiated sound "eld. Grace et al. made use of Tikhonov regularization in order to deal with
ill-conditioning, although the choice of the regularization parameter in the inversion
process was made arbitrarily. Fisher and Holland [19] have also recently made use of the
same approach in the identi"cation of the sources of shock-cell noise in supersonic jets,
although no explicit use was made of regularization techniques.

In summary therefore, there appear to have been two main categories of approach to the
source reconstruction problem. The "rst category relies on &&Fourier transform'' relationships
between source and "eld, whilst the second uses what may be described as a &&model based''
approach although, as pointed out by Veronesi and Maynard [11], there is a close connection
between the two methods. It is the second, more general, approach that we study further in
this work. In particular, we show that, once the sources are well modelled, the accuracy of
source strength reconstruction using this technique is determined entirely by the properties of
the matrix of transfer functions used in the model which describes the source and "eld and the
amount of measurement noise. We again use the singular value decomposition to both
evaluate the errors in source reconstruction with a given microphone array and to improve
the accuracy of reconstruction. In this paper, we "rstly reintroduce the analytical basis of the
technique with a view to maximizing the accessibility of the work to acoustical engineers.
Furthermore, we concentrate on the e!ect of the geometry of the problem on its conditioning
and guidelines are given for the design of microphone arrays which enable good results to be
achieved. The paper begins with an introduction to the general least-squares estimation
problem and sets out the analytical framework for subsequent analysis using the SVD and
other techniques for improving estimation accuracy, such as Tikhonov regularization. We
also introduce within this framework a convenient technique for the analysis of source
distributions having a stationary random output as a function of time. In particular, we
deduce the relationship between cross-spectra measured between microphones in the
radiated "eld and the cross-spectral distribution of the modelled sources.

The main results of this paper demonstrate the in#uence of the geometrical arrangement
of sources and sensors on the conditioning of the problem and in particular the
improvements in conditioning produced by making measurements in the near "eld of the
sources. Furthermore, results are presented which show the power of singular value
discarding and Tikhonov regularization in enabling good results to be achieved even when
the problem is poorly conditioned. We also show, however, that the use of singular value
discarding also has consequences for the spatial resolution of the technique, and we explain
our results in terms of the radiation e$ciency of a set of spatially orthogonal source strength
distributions which are de"ned naturally by the SVD. In a subsequent paper, we deal in
more detail with methods for improving the conditioning of problems of this type which do
not require a priori knowledge of the source strength distribution or measurement noise. In
particular, we focus on the use of generalized cross validation [20] for choosing either the
regularization parameter or the singular values to be discarded.

2. THEORETICAL BACKGROUND

2.1. THE LEAST-SQUARES SOLUTION TO THE ESTIMATION PROBLEM, THE SINGULAR VALUE
DECOMPOSITION AND REGULARIZATION METHODS

The basis of the approach is illustrated in Figure 1 which shows a digrammatic
representation of both the real source and measurement array and the modelled sources



Figure 1. Schematic of the model based approach to source strength estimation.
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and modelled measurement array. The output of the model can be written as

p"Hq, (1)

where the vector p is a complex vector of Fourier transforms of model microphone outputs
and the matrix H is a matrix of complex frequency response functions relating the source
strengths in the model to the output of the model microphones. The vector q is a complex
vector of source strength Fourier transforms whose values we wish to determine. Note that
in general the nature of the model sources is described by the elements of the matrix H.
Thus, for example, if the chosen source model were a combination of monopole and dipole
type sources, then the respective monopole and dipole strengths would be de"ned in the
vector q whilst the radiation patterns of these sources would be de"ned by the elements of
the matrix H. When written in full equation (1) becomes
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where we have assumed that the vector p is of order M (i.e., there are M microphones), the
vector q is of order N (i.e., there are N sources), and the matrix H is of order (M]N).
Furthermore, we assume that we have an Mth order vector of measured complex Fourier
transforms given by

p( T"[pL
1
(u)pL

2
(u)2pL

M
(u)]. (3)

It is now assumed that the measured vector of pressures is equal to the modelled vector of
pressures plus a vector e whose components represent the departure of the measurements
from the model and which may include, for example, the e!ect of contaminating noise.
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Thus,

p("Hq#e. (4)

We now seek the solution for the vector q of modelled source strengths that ensures the
&&best "t'' of the modelled sound "eld to the measured data. The traditional approach to
problems of this type is to "nd the &&least-squares'' solution for the complex source strength
vector q which ensures the minimization of the sum of the squared errors (&&residuals'')
between the measured microphone outputs and the model microphone outputs. It is also
generally assumed that the number of microphones M is greater than or equal to the
number of sources N. The complex error vector can be written as

e"p(!p"p(!Hq, (5)

and the cost function for minimization is de"ned by

J"
M
+

m/1

De
m
(u) D2"eHe, (6)

where the superscript H denotes the Hermitian transpose of a vector (i.e., the complex
conjugate of the transposed vector). It is readily shown [21] that the optimal estimate of the
source strength vector that minimizes this function is given by

q
0
"H`p( , (7)

where H`"[HHH]~1HH is the pseudo-inverse of the matrix H. It can also be shown that
this minimum is unique provided that the matrix HHH is positive de"nite, i.e., provided that
qHHHHq'0 for all vectors qO0. Since, in this problem, qHHHHq"pHp, which is the sum
of the squared magnitudes of the Fourier spectra of the model microphone outputs, we are
assured of the positive de"nitiveness of HHH and the existence of a unique minimum. Note
that when the number of microphones M is made equal to the number of modelled sources
N, the solution reduces to q

0
"H~1p( . When M is less than N, no solution exists for the

source strength vector unless some further constraint is introduced [21].
Now note that we can decompose any arbitrary complex matrix such as the matrix

H into the form [22}24]

H"URVH, (8)

where in the case M'N, the (M]N) matrix R is given by
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and comprises the matrix of N singular values p
n
of the (M]N) matrix H. The matrix U is

of order (M]M) and its columns comprise the left singular vectors of the matrix H, whilst
the matrix V is of order (N]N) and its columns comprise the right singular vectors of the
matrix H. The matrices U and V are unitary and have the properties UHU"UUH"I and
VHV"V VH"I. It is usual to arrange the singular values p

1
, p

22
p
N

in descending order
of magnitude in the matrix de"ned by equation (9).

Returning to the least-squares solution for the optimal source strength Fourier spectra
when the number of microphones M exceeds the number of source elements N, it follows
[25] from substitution of equation (8) into equation (7) that

q
0
"VR`UHp( , (10)

where the matrix R` is the pseudo-inverse of R and can be written as [25]
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Thus, any very small singular value will result in large elements of the matrix R`. This
in turn will yield very large values of the solution. A traditionally used approach
to the stabilization of this solution is simply to discard any small singular values
of the matrix H in computing the source strength estimate given by equation (10).
Thus, for example, one simply discards the (N!D) smallest singular values and thus
sets the terms (1/p

N
, 1/p

N~1
,2 , 1/p

D`1
) to zero in the above matrix. We will refer

to this matrix as R`
D

where D denotes the number of singular values left after
discarding.

Another approach to stabilizing the solution given by equation (10) follows from an
alternative de"nition of the cost function for minimization. Rather than simply minimizing
the sum of the squared errors between the measured microphone spectra and the model
output spectra we minimize a cost function which also penalizes the sum of the squared
model source strengths. We therefore choose to minimize

J
R
"eHe#bqHq, (12)

where b is a small regularization parameter.
It is again readily shown [23] that this cost function is minimized by the optimal estimate

of the source strength Fourier spectra de"ned by

q
R
"[HHH#bI]~1HHp( . (13)

Use of the SVD in this expression then shows that

q
0
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R
UHp( , (14)
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where the matrix R`
R

is given by [25]
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Thus, any particularly small squared singular value will e!ectively be increased by the
addition of the regularization parameter b and the inversion of the matrix is thus stabilized.

2.2. THE SOLUTION FOR THE SOURCE STRENGTH CROSS-SPECTRA

The analysis leading to equations (10) and (14) above is perfectly general and applicable
in practice to acoustic sources that have a deterministic time history (either periodic or
transient, for example) which therefore readily yield measurable Fourier spectra. However,
in practical acoustics one is often faced with a source strength distribution which has a time
dependence that can be regarded as random with stationary statistical properties. In this
case, the spectra of the measured acoustic pressure will often be estimated from a series of
"nite length time histories of random data. Thus, for example, we can de"ne the Fourier
spectrum of the ith segment of data of duration ¹ as measured at the mth microphone by
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and similarly de"ne the complex vector p(
i
whose elements are pL
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assume that the modelled acoustic source strengths have analogously de"ned Fourier
spectra q
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which minimizes the mean square errors between the ith Fourier spectra
measured at the microphones and those deduced from the model. That is we assume
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We may now formally de"ne the matrix of optimally estimated acoustic source strength
auto- and cross-spectra by

S
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T
q
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q
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where E[ ] denotes the expectation operator. It then follows from substitution of equation
(17) into equation (18) that

S
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p
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where we have de"ned the matrix of measured acoustic pressure auto- and cross-spectra by

S
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i
p; H
i
] (20)

In practice of course, this latter quantity is estimated by, for example, averaging over a large
(but "nite) number of data segments of duration ¹.

Note that it is also possible to write the solution given by equation (19) in terms of the
SVD of the matrix H. It follows directly from the argument presented above that we may
write

S
qq0

"MVR`UHNS
p
L
p
L MVR`UHNH. (21)

We may also choose to discard a number of small singular values of the pseudo-inverse
matrix R` and replace this matrix by R`

D
or indeed, replace R` by its Tikhonov regularized

counterpart denoted above by R`
R

.

3. CONDITIONING OF ACOUSTIC TRANSFER FUNCTION MATRICES

3.1. SENSITIVITY OF SOLUTIONS TO CONDITION NUMBER

Assume for the moment that we are interested in solving the inverse problem posed when
the number of microphones M is equal to the number of source elements N (i.e., the matrix
H is square). The sensitivity of the solution for q to small deviations or errors in H and p( is
determined by the condition number of the matrix H which has to be inverted. This
condition number is usually de"ned as

i (H)"EHE EH~1E , (22)

where EHE denotes the 2-norm of the matrix H. (See reference [22] for the de"nitions of the
various matrix norms). The 2-norm of H turns out to be equal to the largest singular value
of H and is also equal to the square root of the largest eigenvalue of the matrix HHH [22].
Thus, in terms of the singular value decomposition, EHE"p

.!9
and EH~1E"1/p

.*/
,

where p
.!9

and p
.*/

are, respectively, the maximum and minimum singular values of H.
Therefore, for a square matrix H,

i (H)"p
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/p
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. (23)

A simple argument can be used to demonstrate the importance of the condition number to
the sensitivity of the solution q

0
"H~1p( to errors, for example, in the measurement of p( .

Assume for the moment that small deviations of p produce small deviations dq in the
solution. That is, we assume that Hq"p and that

H(q#dq)"(p#dp). (24)

A useful property of the matrix 2-norms is that EA BE)EAE EBE for two matrices A and
B [22]. Since dq"H~1dp it therefore follows that EdqE)EH~1E EdpE. It also follows that
EpE)EHE EqE and therefore we can write

EdqE EpE)EHE EH~1E EdpE EqE (25)
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and using the de"nition of the condition number shows that

EdqE
EqE

)i (H)
EdpE
EpE

. (26)

This important and well-established result demonstrates clearly that the sensitivity of the
solution for q is determined by the condition number of the matrix H to be inverted; a large
ratio of maximum to minimum singular value of H will greatly amplify small perturbations
in p. In practical terms, extraneous noise introduced into the measurement of the acoustic
pressure will have a disproportionately large e!ect on the solution for the source strength
vector q if the matrix is &&badly conditioned'' with a large i (H). A more sophisticated
analysis [22] can be used to study the sensitivity of the solution to errors in the matrix
H itself and again, the errors produced in the solution are found to be in proportion to the
condition number of H.

When the matrix H is not square, its condition number is de"ned by

i (H)"EHE EH`E. (27)

The 2-norm of H` is given by 1/p
n
, where p

n
is the smallest non-zero singular value of H,

and therefore the condition number of a non-square matrix can be written as

i(H)"p
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n
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It is also easy to show, by using a very similar argument to that presented above for the case
of a square matrix H, that the sensitivity to errors in the measurement p( of the &&least-
squares'' solution given by equation (7) is also described by equation (26) but with the
condition number de"ned by equation (27).

It is also important to evaluate the dependence upon condition number of the sensitivity
of the solution given by equation (21) for the matrix of auto-spectra and cross-spectra of
acoustic source strength, this being evaluated from the matrix of auto-spectra and cross-
spectra of measured acoustic pressures. In this case, we can again write the solution given by
equation (1) in the form

S
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pp
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and now assuming that errors dS
pp

in the measured pressure cross-spectral matrix result in
errors dS

qq
in the source strength cross-spectral matrix shows that
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We have again used the de"nition of the condition number of a non-square matrix H given
by equation (27), above, and since the ratio of maximum to minimum singular values of
H will be the same as those of HH, we can write

EdS
qq

E
ES

qq
E
)i (H)2

EdS
pp

E
ES

pp
E

. (33)

This result, which is generalization to non-square matrices H of that "rst derived in
reference [26], demonstrates clearly that the estimation of acoustic source strength auto-
and cross-spectra is even more sensitive to errors (because of squared condition number) in
the measurement of pressure spectra than when simply attempting to estimate source
strength Fourier spectra. This is perhaps not surprising since the auto-spectrum is
proportional to the square of the Fourier spectrum and one would expect errors to be
equivalently ampli"ed. However, estimating the power spectrum is often the only option in
practice and this result emphasizes the need to deal e!ectively with poorly conditioned
problems through the use of regularization methods.

3.2. FACTORS AFFECTING CONDITION NUMBER

The basic characteristics of the discrete inverse problem in acoustics are revealed by
studying a simple source/sensor geometry. This is shown in Figure 2 and consists of a linear
array of nine-point monopole sources spaced apart from one another by a distance r

ss
. The

same number of sensors are spaced apart by a distance r
mm

in a line array which is in turn
a distance of r

ms
from the source array. Figure 3 shows a plot of the condition number of the

matrix H as a function of kr
ss
"ur

ss
/c

0
where u denotes the angular frequency and c

0
is the

sound speed (assumed here to be 344 m/s). The curves shown depict the variation in
condition number for a range of values of the ratio r

ms
/r

ss
. It is clear that the matrix of

transfer functions becomes badly conditioned as both kr
ss

becomes small and as the distance
of the receiving array from the source array becomes large. Figure 4 shows how the nine
singular values of the matrix H in this case vary with the distance r

ms
at the particular

non-dimensional frequency given by kr
ss
"0)366 (e.g., at a frequency of 200 Hz when

r
ss
"0)1 m). It is clear that the singular values decay with distance from the source array
Figure 2. An array of nine-point monopole sources and an array of nine sensors.



Figure 3. Variation of the condition number of the matrix H with the ratio r
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Figure 4. Singular values of the matrix H for the model of Figure 2: circle: r
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such that when, for example, r
ms

/r
ss
"30, the smallest singular value has reached a very low

value and this results in a large value of condition number.
This behaviour can be understood by making reference to the interpretation given by

previous workers [11}14] to the SVD when used in connection with acoustic radiation
problems. First, recall that the relationship between the vector of radiated pressures p and
the vector of acoustic source strengths q can be expressed in terms of the SVD of the transfer
function matrix H such that

p"URVHq. (34)

Now note that since the unitary matrix U has the property U~1"UH, then
premultiplication of both sides of this equation by U~1 results in

UHp"RVHq. (35)
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We may now interpret UHp"p8 as the vector of transformed complex pressures and
VHq"q8 as the vector of transformed complex source strengths which are related by

p8 "Rq8 . (36)

That is to say, since R is a diagonal matrix of real singular values, each element of the vector
of transformed pressures is simply related to the corresponding element of the vector of
transformed source strengths, the singular values determining the extent to which a given
transformed source strength results in the corresponding transformed radiated pressure. As
pointed out previously by Veronesi and Maynard [11], Borgiotti [12] and Photiadis [13],
the transform operation q8 "VHq is somewhat analogous to a Fourier wavenumber
transform (of, for example, the surface velocity distribution in a planar radiation problem)
whilst the operation p8 "UHp is a similar transform of the pressure "eld (analogous to the
Fourier wavenumber transform of radiated pressure in the planar radiation problem). The
analogy between this transformation process and that used in planar NAH cannot,
however, be pushed too far. The essence of planar NAH is the clear relationship between
a given spatial Fourier component of the surface velocity distribution and the
corresponding spatial Fourier component in the radiated "eld pressure; such component
either propagate or decay exponentially with distance from the source. In the more general
transformation process associated with the SVD it should be noted that the transformation
process itself varies with &&distance from the source''; the elements of the matrices U and
V are determined entirely by source/sensor geometry and the transformed pressures and
source strengths are related by a single real number (the singular value) which again
speci"cally depends upon geometry.

This transformation process can perhaps be better understood by observing the elements
of the matrices U and V for the nine source/nine sensor model investigated above. Figure
5 shows the elements of the matrices UH and VH for the particular value r

ms
"3 m (i.e.,

r
ms

/r
ss
"30) of distance of the sensor array from the source array and for the non-

dimensional frequency kr
ss
"0)183. Note that the rows of UH and VH de"ne the set of

orthonormal basis functions which are at the heart of the transformation process. The
spatial distribution of these functions is clear. Note that the rows have been plotted in order
of descending singular value and that, at least in this case, the &&low spatial frequencies'' are
associated with large singular values whilst the &&high spatial frequencies'' are associated
with small singular values. A similar plot is shown in Figure 6, but in this case, the
source/sensor distance has been reduced to r

ms
"0)3 m (i.e., r

ms
/r

ss
"3) although kr

ss
remains the same as for the case illustrated in Figure 5. Again it is the low spatial frequencies
that are associated with the large singular values, although it should be noted that the form
of the orthogonal basis functions di!ers from those illustrated in Figure 5, emphasizing the
geometry speci"c nature of the transformation process. Some further properties of the
behaviour of the condition number, in particular its oscillating dependence on frequency are
described in more detail in reference [27].

It is therefore evident that in the case studied above, the small singular values are associated
with high spatial frequencies. Thus, for example, discarding these small singular values in the
process of generating an acceptable solution to the inverse problem, inevitably leads to
a deterioration in the spatial resolution of the inversion technique; the reconstructed results
b

Figure 5. Row elements of the matrices UH and VH for the source/sensor geometry illustrated in Figure 2 with
r
ms
"3 m (r

ms
/r

ss
"30) and kr

ss
"0)183 (100 Hz). The left-hand column shows the singular values of

H corresponding to the rows of UH and VH.
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following the process of singular value discarding are inevitably a &&spatially low pass "ltered''
version of the true source distribution. Whilst it is di$cult to be general and each
source/sensor geometry must be considered on its own merits, these observations are entirely
consistent with the known behaviour of, for example, planar NAH, which requires close
deployment of the measurement array in order to capture the evanescent "eld associated with
high spatial frequencies in the source distribution. Measurement arrays deployed far from the
source have an intrinsically limited spatial resolution.

3.3. OTHER GEOMETRICAL FACTORS AFFECTING CONDITION NUMBER

A comprehensive study of the in#uence of the geometric parameters on the condition
number is presented in reference [27]. Here we will summarize the main "ndings of this
work. Figures 7}9 show the variation of condition number with a range of parameters for
source/sensor geometries consisting, respectively, of linear arrays of six sources and sensors,
rectangular arrays of 35 sources and sensors and square arrays of 100 sources and sensors.
The dependence is shown on the following parameters:

(1) Non-dimensional frequency kr
ss
, where r

ss
is the distance between sources.

(2) Ratio (r
ms

/r
ss
) of source plane/sensor plane distance to distance between sources.

(3) Ratio (r
mm

/r
ss
) of distance between sensors to distance between sources.

(4) The eccentricity (e) which de"nes the displacement of the sensor array from a symmetric
position relative to the sources.

First note that parts (b) of each of Figures 7}9 demonstrate the important point that, at
the particular value of kr

ss
"0)55, the smallest condition number is produced when

r
mm

"r
ss

and e"0, i.e., the distance between sensors is made equal to the distance between
sources. This is particularly so when r

ms
/r

ss
is small (i.e., the sensors are close to the sources).

Parts (c) and (d) of the "gures also demonstrate the e!ect of the eccentricity e and show that
the minimum values of condition number at r

mm
"r

ss
are only increased by the

displacement of the sensors from the symmetric position. This increase in condition number
due to eccentricity is particularly pronounced in the case of a large number of sources and
sensors.

Parts (e) of the "gures emphasize that r
mm

/r
ss
"1 produces a minimum in the condition

number for all values of kr
ss

less than about 2, these plots being produced for speci"c values
of r

ms
/r

ss
"1. Finally, parts (f ) of the "gures again illustrate the dependence of condition

number on kr
ss
, but for a range of values of r

ms
/r

ss
, again illustrating the increase of

ill-conditioning as r
ms

/r
ss

is increased when e"0.
Figure 10 shows the variation of condition number with kr

ss
for a range of models having

increasing numbers of sources and sensors. In all cases r
mm

/r
ss
"1 and r

ms
/r

ss
"1 and e"0.

The plot clearly shows the steady increase of condition number with the increase in the
number of sources and sensors used.

Finally, reference [27] describes a series of simulations which investigate the e!ect of
using di!erent sensor array geometries with a given source array geometry. Five di!erent
source arrays were chosen (two orthogonal line arrays, a cross array, an X array, and
a square array) and in each case the condition number was evaluated for "ve di!erent sensor
b

Figure 6. Row elements of the matrices UH and VH for the source/sensor geometry illustrated in Figure 2 with
r
ms
"0)3 m (r

ms
/r

ss
"3) and kr

ss
"0)183 (100 Hz). The left-hand column shows the singular values of

H corresponding to the rows of UH and VH.



Figure 7. (a) A geometrical arrangement of 6 sources and 6 microphones. Variation of the condition number
i(H): (b) kr

ss
+0)55 ("300 Hz), e"0, (c) kr

ss
+0)55 ("300 Hz), e"!0)5r

ss
, (d) kr

ss
+0)55 ("300 Hz), e"0)8r

ss
,

(e) r
ms

/r
ss
"1, e"0, (f ) r

mm
/r

ss
"1, e"0.
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Figure 8. (a) A geometrical arrangement of 35 sources and 35 microphones. Variation of the condition number
i(H): (b) kr

ss
+0)55 ("300 Hz), e"0, (c) kr

ss
+0)55 ("300 Hz), e"!0)5r

ss
, (d) kr

ss
+0)55 ("300 Hz), e"0)8r

ss
,

(e) r
ms

/r
ss
"1, e"0, (f ) r

mm
/r

ss
"1, e"0.
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arrays. The consistent "nding of these studies was that the condition number was
minimized when the geometry of the sensor array exactly matched the geometry of the
source array. Two examples are shown in Figures 11 and 12. A remarkable reduction in



Figure 9. (a) A geometrical arrangement of 100 sources and 100 microphones. Variation of the condition
number i(H): (b) kr

ss
+0)55 ("300 Hz), e"0, (c) kr

ss
+0)55 ("300 Hz), e"!0)5r

ss
, (d) kr

ss
+0)55 ("300 Hz),

e"0)8r
ss
, (e) r

ms
/r

ss
"1, e"0, (f ) r

mm
/r

ss
"1, e"0.
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Figure 10. A comparison of condition numbers i (H) of 6 models: r
ss
"r

mm
"r

ms
"0)1 m, and the microphone

array is placed symmetrically with respect to the source array (i.e., e"0).
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condition number is a!orded by matching the geometry of the sensor array to the geometry
of the source array.

In summary, therefore, the acoustical inverse problem appears to be best conditioned
when the number of sources and sensors is small, when the geometrical arrangement of
sensors closely matches the assumed source array geometry, when the distance between the
sources is the same as the distance between sensors, when the sensor array is placed close to



Figure 11. Condition numbers for the "ve di!erent types of microphone array when used with the line source
array. Black thick solid: line microphone array I, grey thick solid: line microphone array II, black thin: microphone
array, grey thin: ]microphone array, dotted: square microphone array.
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the source array and when the sensor array is positioned symmetrically with respect to the
source array.

4. SIMULATIONS OF THE EFFECT OF SINGULAR VALUE DISCARDING AND
TIKHONOV REGULARIZATION ON SOURCE RESOLUTION

Following the establishment of general guidelines on the conditioning of the inverse
problem, we will now demonstrate how e!ectively the use of singular value discarding can
help retrieve useful solutions for the strength of acoustic sources, despite ill-conditioning of
the matrix to be inverted. A series of simple simulations can be used to demonstrate the



Figure 12. Condition numbers for the "ve di!erent types of microphone array when used with the source array.
Black thick solid: line microphone array I, grey thick solid: line microphone array II, black thin: cross microphone
array, grey thin: ]microphone array, dotted: square microphone array.
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main features of the approach. The geometry dealt with is illustrated in Figure 2 and
consists of linear arrays of nine sources and sensors. For the purpose of this exercise it is
assumed that the central source in the array has a unit strength, whilst all the other sources
are assumed to have a strength of zero.

Figure 13 shows a series of graphs depicting the distribution of source strength deduced
from the simulated measured pressure "eld when the matrix H is inverted using singular
value discarding. In computing these results it was assumed that kr

ss
"0)366 (i.e.,

a frequency of 200 Hz when r
ss
"0)1 m). The e!ects of di!erent levels of noise were

simulated by adding random numbers to the &&true'' pressure "eld computed for the assumed
source distribution. Figure 13 shows results for 10 and 20% random noise and for four
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positions of the measurement array relative to the source array (r
ms
"0)5r

ss
, 2r

ss
, 3r

ss
, and

30r
ss
). The columns of graphs in Figure 13 correspond, respectively, to the cases when none,

one, three and "ve of the smallest singular values of the matrix H are discarded before
computing the solution for the source strength vector q

0
.

With reference to the uppermost row of graphs in Figure 13, where r
ms
"0)05 m

(r
ms
"0)5r

ss
) and the problem is well conditioned, it is clear that progressively discarding the

singular values of H gives a progressively poorer spatial resolution of the source strength
distribution. Note that very close to the true value of q

0
is recovered, even in the presence of

noise, when the problem is well conditioned and no singular values are discarded. However,
as the sensor array is moved further from the source array and the conditioning worsens,
discarding singular values improves the source strength estimate but at the expense of
a decrease in spatial resolution. Thus, for example, in the case of r

ms
"30 r

ss
(the fourth row

of graphs in Figure 13(a)) it can be seen that when no singular values are discarded (the
graph in the left-most column) the magnitude of the source strength estimate is seriously in
error. This is also true of the graphs in the second and third columns, which correspond,
respectively, to the cases where one and three singular values have been discarded.
However, once "ve singular values have been discarded (in the case of the graph in the
right-most column), at least the correct order of magnitude of source strength is recovered,
although the true source is very poorly resolved spatially. The results shown in Figure 13(b),
which correspond to the case where 20% noise is added to the true values, show very similar
trends to those of Figure 13(a) which correspond to the addition of 10% noise.

Figure 14 shows the result of Tikhonov regularization of the solution, again for the
addition of 10 and 20% noise. Very similar e!ects are observed to those associated with
singular value discarding; the solution when appropriately regularized is capable of
retrieving an estimate of the source strength magnitude which is at least of the correct order
even if the source strength distribution is not well resolved spatially. It also becomes
apparent that choosing too high a value of the regularization parameter b results in even
poorer resolution and poorer estimates of the source strength magnitude (see the results in
the right-most column of Figure 14). We will return to the choice of an optimal value for b in
a later paper.

5. CONCLUSIONS

The conditioning of the discrete inverse problem in acoustics is shown to be highly
dependent on the geometry of sources and measurement positions and the frequency of the
radiated sound. In particular, the problem generally becomes badly conditioned in the
low-frequency limit when the wavelength of the radiated sound becomes large compared to
the distance between the sources. However, the conditioning of the problem generally
becomes improved when the measurements are made at positions close to the acoustic
sources and when the geometry of the measurement positions is chosen to &&match'' the
geometry of the source array. Techniques such as Tikhonov regularization and singular
value discarding are shown to be useful methods for improving the accuracy of source
strength reconstruction when the problem is poorly conditioned. Methods for choosing the
b

Figure 13. Resolution capability of the singular value discarding technique for the 9 monopole source and
9 microphone model (Figure 2) with the change of the distance r

ms
and the singular values discarded. Graphs show

the magnitude of q
0

(m3/s) as a function of position x (m) (Ist column: discarding no singular value, 2nd column:
discarding the last singular value, 3rd column: discarding the last 3 singular values, 4th column: discarding the last
5 singular values): kr

ss
"0)366 ("200 Hz): (a) 10% noise, (b) 20% noise.
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regularization parameter or the singular values to be discarded will be described in
a companion paper together with some experimental results. This paper will also describe
techniques for e$ciently dealing with acoustic sources whose strengths are a time stationary
random processes when measurement of the matrix of cross-spectra of radiated acoustic
pressures are required.
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