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1. INTRODUCTION

The free vibrations of circular plates attracted investigators nearly two centuries ago [1, 2].
The vibrations of uniform plates have been studied by now quite extensively [3}6].
Although the circular plates of variable thickness received much less attention than the
uniform plates, still, they have been investigated quite intensively. An exact solution was
derived by Conway et al. [7] by noting an analogy [8, 9] that exists between the free
vibration of truncated-cone beams and linearly tapered plates for the special case when the
Poisson ratio equals one third. Convey et al. [7] derived natural frequencies for clamped
tapered circular plates. Series of solutions have been provided by Soni [10] for plates with
quadratically varying thickness. The method of Frobenius was utilized by Jain [11].
Frequency parameters of clamped and simply supported plates were computed, for the "rst
two modes, for various values of a taper parameter and in-plane force, both for linear and
parabolic variations of thickness. A perturbation method based on a small parameter was
employed by Yang [12]. Zeroth- and "rst order asymptotic solutions were obtained for the
natural frequencies of a clamped plate with linearly varying thickness. Lenox and Conway
[13] obtained an exact expression for the buckling mode for the annular plate; at the later
stage they performed the numerical computerized calculations for natural frequencies.

Most of the reported solutions utilized approximate techniques. Laura et al. [14] used the
Rayleigh}Ritz method with polynomial co-ordinate functions that identically satisfy the
external boundary conditions to study the vibrations and elastic stability of polar
orthotropic circular plates of linearly varying thickness. Lal and Gupta [15] utilized
Chebychev polynomials to obtain the frequencies of polar orthotropic annular plates of
variable thickness. Gorman [16] and Kanaka Raju [17] employed the most universal
technique, that of the "nite element method for studying the dynamic behavior of polar
orthotropic annular plates of variable thickness.

As far as the exact solutions are concerned, one very important paper should be
mentioned. Harris [18] obtained a closed-form solution for both the mode shapes and the
natural frequencies of the circular plate that is free at its edge. The sti!ness was given as
D(r)"D

0
(1!r2/R2)3, where D

0
is the sti!ness at the center, r the polar co-ordinate and

R the radius.
The present note shares, with the paper by Harris [18], the property of o!ering exact,

closed-form solution the natural frequency. However, whereas Harris [18] solves a direct
vibration problem, we pose the inverse problem. Namely, we postulate the vibration mode
and pursue the following objective: "nd the variation of the sti!ness that leads to the
postulated vibration mode. In some circumstances such a problem has a unique solution
with a remarkable by-product: a closed-form expression for the natural frequency. This
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paper complements that of Harris [18], who derived a solution for the circular plates that
are free at the boundary, while the present note deals with clamped plates.

The adjective &&unusual'' utilized in the title was borrowed from the note by Convey [19],
who derived the closed-form expression for the unsymmetrical bending of a particular
circular plate resting on a Winkler foundation. He mentioned: &&What is remarkable about
this solution is that it is in a closed-form which is far simpler than the constant thickness
disk solution which involves Kelvin functions.''We consider a vibration case and likewise
derive closed-form solution. Yet, it appears that the present solution is superior to that by
Lenox and Convey [13] for here we derive not only the closed-form expression for the
displacement, but the natural frequency too. The unusual aspect characteristic of reference
[19] is preserved in our study: while for the exact solution for homogeneous circular plates
one has the Bessel functions involved, in the inhomogeneous case the elementary functions
su$ce.

2. BASIC EQUATIONS

The di!erential equation that governs the free non-axisymmetric vibrations of the
circular plate with variable thickness reads [20]

D (r)r3DD=#

dD

dr A2r3
d3=

dr3
#r2 (2#l)

d2=

dr2
!r

d=

dr B
#

d2D

dr2 Ar3
d2=

dr2
#lr2

d=

dr B!ohu2r3="0, (1)

while D is the Laplace operator in polar co-ordinates,

D"

d2

dr2
#

1

r

d

dr
, (2)

D is the bending sti!ness, assumed to vary along the radial co-ordinate r,

D"D (r)"
Eh3

12(1!l2)
, (3)

h is the thickness, l the Poisson ratio, o the material density, r the radial co-ordinate, u the
circumferential co-ordinate, and= the mode shape. The Poisson ratio l is assumed to be
constant. Note that the governing equation reported by Kovalenko [20] is multiplied here
by the term r3, for further convenience. We are looking for the case when the inertial term

d (r)"oh (4)

varies along r; likewise the sti!ness is a function of r. We are interested in "nding the
closed-form solution for the natural frequency u.

We pose the problem as an inverse vibration study. Note "rst that for the uniform circular
plate that is under uniform load q

0
the displacement can be put in the form [21]

w"

q
0

64D
(R2!r2)2, (5)
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where R is the outer radius of the plate. We are interested in determining such a variation of
D(r) in equation (1) that the function

= (r)"(R2!r2)2 (6)

serves as an exact mode shape. We con"ne our interest to circular plates that are clamped
along the boundary r"R.

3. METHOD OF SOLUTION

We assume that the inertial term is represented as a polynomial,

d (r)"
m
+
i/0

a
i
ri. (7)

Since=(r) is the fourth order polynomial expression in terms of r, in view of equation (7)
the last term in equation (1) is the polynomial expression of order m#7. Since the operator
DD in equation (1) involves the four-fold di!erentiation with respect to r, in order for the
highest degree of the "rst term's polynomial expression in Dr3DD= to be of order m#7, it
is necessary and su$cient for the sti!ness to be represented as a polynomial of degree m#4.
Thus, the sought sti!ness can be put in the form

D(r)"
m`4
+
i/0

b
i
ri. (8)

Further steps involve the substitution of equations (6)}(8) into the governing di!erential
equation (1) and demanding the so-obtained polynomial expression to vanish. This implies
that all the coe$cients in front of powers ri must be zero, leading, in turn, to the set of
algebraic equations in terms of b

i
and u2. We consider various variations for the inertial

term d(r) in equation (4).

4. CONSTANT INERTIAL TERM (m"0)

In this case, the sti!ness is sought as a fourth order polynomial,

D (r)"b
0
#b

1
r#b

2
r2#b

3
r3#b

4
r4. (9)

We get instead of the di!erential equation (1), the equation

7
+
i/0

c
i
ri"0, (10)

where

c
0
"0, c

1
"0, c

2
"!4(1#l)R2b

1
, c

3
"64b

0
!16(1#l)R2b

2
!a

0
u2R4,

c
4
"12(11#l)b

1
!36(1#l)R2b

3
, c

5
"32(7#l)b

2
!64(1#l)R2b

4
#2a

0
u2R2,

c
6
"(340#60l)b

3
, c

7
"96(5#l)b

4
!a

0
u2. (11)



Figure 1. Variation of the sti!ness of the clamped circular plate with constant inertial term, when the Poisson
ratio takes the values 0, 1
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Since the left-hand side of the di!erential equation (10) must vanish for any r within
[0; R], we demand that all the coe$cients c

i
to be zero. This leads to a homogeneous set of

six linear algebraic equations for six unknowns. It turns out that the determinant of the
matrix of the set derived from equation (11) is identically zero. Therefore, a non-trivial
solution is obtainable. From the requirement c

7
"0, the natural frequency squared is

obtained as

u2"96(5#l)b
4
/a

0
. (12)

Upon substitution of equation (12) into equation (11), the remaining equations yield the
coe$cients in the sti!ness:

b
0
"

13#l
2

R4b
4
, b

1
"0, b

2
"!4R2b

4
, b

3
"0. (13)

Hence, the sti!ness reads

D(r)"A
13#l

2
R4!4R2r2#r4B b

4
. (14)

Figure 1 depicts the sti!ness for various values of the Poisson ratio l.
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5. LINEARLY VARYING INERTIAL TERM (m"1)

Instead of the set (11) we get here seven linear algebraic equations with seven unknowns:

!4(1#l)R2b
1
"0, 64b

0
!16(1#l)R2b

2
!a

0
u2R4"0,

12(11#l)b
1
!36(1#l)R2b

3
!a

1
u2R4"0,

32(7#l)b
2
!64(1#l)R2b

4
#2a

0
u2R2"0,

(340#60l)b
3
!100(1#l)R2b

5
#2a

1
u2R2"0,

96(5#l)b
6
!a

0
u2"0, (644#140l)b

5
!a

1
u2"0. (15)

In order to have a non-trivial solution the determinant of the set (15),

(1#l) (7#l)(13765#5643l#728l2#30l3)a
1
"0 (16)

must vanish, leading to a
1
"0. Yet this result signi"es that the linear inertial coe$cient is

a constant. Thus, the problem solved in the previous section is reobtained.

6. PARABOLICALLY VARYING INERTIAL TERM (m"2)

For m"2, i.e., the plate whose material density varies parabolically,

d(r)"a
0
#a

1
r#a

2
r2, (17)

the bending sti!ness has to be sought as the sixth order polynomial:

D(r)"b
0
#b

1
r#b

2
r2#b

3
r3#b

4
r4#b

5
r5#b

6
r6. (18)

Substitution of equation (6) in conjunction with equations (17) and (18) into the governing
di!erential equation (1) yields

9
+
i/0

d
i
ri"0, (19)

where

d
0
"0, d

1
"0, d

2
"!4R2(1#l)b

1
, d

3
"64b

0
!16R2(1#l)b

2
!a

0
u2R4,

d
4
"12(11#l)b

1
!36R2(1#l)b

3
!a

1
u2R4,

d
5
"32(7#l)b

2
!64R2(1#l)b

4
#u2(2a

0
R2!a

2
R4 ),

d
6
"20(17#3l)b

3
!100R2(1#l)b

5
#2a

1
u2R2,

d
7
"96(5#l)b

4
!144R2(1#l)b

6
!u2 (a

0
!2a

2
R2 ),

d
8
"(644#140l)b

5
!a

1
u2, d

9
"64(13#3l)b

6
!a2u2. (20)
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As in the case of the constant inertial term, we demand that all d
i
"0. Thus, we get a set of

eight equations with eight unknowns (seven coe$cients b
i

and u2). The resulting
determinantal equation is

(1#l)(7#l)a
1
(178945#114654l#26393l2#2574l3#90l4)"0. (21)

In order for the homogeneous system to possess a non-trivial solution we must demand the
coe$cient a

1
to vanish. We substitute a

1
"0 into the set (20). For the natural frequency we

arrive at the expression, obtainable from the requirement d
9
"0,

u2"64(13#3l)b
6
/a

2
. (22)

Then, the coe$cients in the sti!ness are obtained as

b
0
"

R4b
6

12

(295#353l#61l2#3l3 )R2a
2
#(4732#2132l#292l2#12l3 )a

0
(35#12l#l2)a

2

,

b
1
"0, b

2
"

R2b
6

3

(295#58l#3l2)R2a
2
!(728#272l#24l2 )a

0
(35#12l#l2 )a

2

,

b
3
"0, b

4
"!

b
6
6

(95#15l)R2a
2
!(52#12l)a

0
(5#l)a

2

, b
5
"0, (23)

were b
6

is an arbitrary constant. In order the natural frequency squared to be a positive
quantity we demand that the ratio b

6
/a

2
be positive. We have two sub-cases: (1) both b

6
and

a
2

are positive and (2) both are negative. In the former case (1) the necessary condition
b
0
*0 for positivity of the sti!ness D(r) is identically satis"ed. In the latter case the above

inequality reduces to

(295#353l#61l2#3l3)R2a
2
#(4732#2132l#292l2#12l3 )a

0
*0, (24)

leading to the inequality

a
0

Da
2
DR2

)

295#353l#61l2#3l3
4732#2132l#292l2#12l3

. (25)

One can immediately see that

a
0

Da
2
DR2

(1. (26)

Hence, the associated variation of the inertial coe$cient

d (r)"a
0
#a

2
r2 (27)

takes a negative value at r"R. Thus, the possibility that both a
2

and b
6

be negative should
be discarded as physically unrealizable. We conclude, therefore, that in equation (22) both
a
2

and b
6

must constitute positive quantities.
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7. CUBIC INERTIAL TERM (m"3)

For m"3, the following set of nine linear algebraic equations with nine unknowns is
obtained:

!4R2(1#l)b
1
"0, 64b

0
!16R2(1#l)b

2
!a

0
u2R4"0,

12(11#l)b
1
!36R2(1#l)b

3
!a

1
u2R4"0,

32(7#l)b
2
!64R2(1#l)b

4
#u2 (2a

0
R2!a

2
R4)"0,

20(17#3l)b
3
!100R2(1#l)b

5
#u2 (2a

1
R2!a

3
R4 )"0,

96(5#l)b
4
!144R2(1#l)b

6
!u2(a

0
!2a

2
R2 )"0,

(644#140l)b
5
!196(1#l)R2b

7
!u2 (a

1
!2a

3
R2 )"0,

(832#192l)b
6
!a

2
u2"0, (1044#252l)b

7
!a

3
u2"0. (28)

The determinantal equation stemming from its reads

(1#l)(7#l)M"0, (29)

where

M"(490685R2#791887l#367095l2#71999l3#6316l4#210l5)R2a
3

#(5189405#4577581l#1567975l2#259397l3#20628l4#630l5)a
1
. (30)

The solution of equation (29) is

a
1
"!

(7549#8931l#1452l2#70l3)a
3

79837#36033l#4916l2#210l3
. (31)

Upon substitution of equation (28) into all equations of set (25), the natural frequency
squared equals

u2"
36(29#7l)b

a
3

(32)

and we get the following solution for the coe$cients in the sti!ness:

b
0
"3[(8555#12302l#4240l2#514l3#21l4 )R2a

2
#(137228#94952l

#23392l2#2392l3#84l4)a
0
]R4b

7
/64a

3
(455#261l#49l2#3l3),

b
1
"0,
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b
2
"3[(8555#3747l#493l2#21l3)R2a

2
!(21112#12984l#2600l2

#168l3)a
0
]R2b

7
/16a

3
(455#261l#49l2#3l3),

b
3
"

(7549#1382l#70l2 )R4b
7

2753#578l#30l2
, (33)

b
4
"

2b
7
[(1508!712l#84l2)a

0
!(2755#1100l#105l2)R2a

2
]

32a
3
(65#28l#3l2)

,

b
5
"!

2R2(4255#832l#42l2 )b
7

2753#578l#30l2
, b

6
"

9(29#7l)a
2
b
7

16a
3
(13#3l)

,

where b
7

is an arbitrary constant. For the particular case l"1
3
, the sti!ness equals

D(r)"C
2773

2464

R6a
7

a
3

#

235

16

R4a
0

a
3

#A
8319

2464

R4a
2

a
3

!

141

112

R2a
0

a
3
B r2#

72157

26541
R4r3

#A!
3525

896

R2a
2

a
2

#

141

64

a
0

a
3
B r4!

9074

2949
R2r5#

141

112

a
2

a
3

r6#r7D b
7
. (34)

8. GENERAL INERTIAL TERM (m*4)

Consider now the general expression of the inertial term given in equation (7), and the
sti!ness in equation (8), for m*4. Substitution of equation (6)} (8) into the terms of the
di!erential equation yields

r3D(r)DD="!64r3
m`4
+
i/0

b
i
ri, (35)

dD

dr A2r3
d3=

dr3
#r2 (2#l)

d2=

dr2
!r

d=

dr B"4[(17#3l)r2!R2 (1#l)]r2
m`4
+
i/1

ib
i
ri~1,

(36)

d2D

dr2 Ar3
d2=

dr2
#lr2

d=

dr B"4[(3#l)r2!R2(1#l)]r3
m`4
+
i/2

i(i!1)b
i
ri~2, (37)

and

ohu2r3="u2r3(R2!r2)2
m
+
i/0

a
i
ri. (38)

Demanding the sum of equations (41)} (44) to be zero, we obtain the equation

m`7
+
i/0

g
i
ri"0, (39)
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where the coe$cients g, are

g
0
"0, g

1
"0, g

2
"!4(1#l)b

1
, (40, 41)

g
3
"64b

0
!16R2(1#l)b

2
!a

0
R4u2, (42)

g
4
"12(11#l)b

1
!36R2(1#l)b

3
!a

1
R4u2 (43)

g
5
"32(7#l)b

2
!64R2(1#l)b

4
!u2(a

2
R4!2a

0
R2 ), (44)

g
6
"20(17#3l)b

3
!100R2(1#l)b

5
!u2(a

3
R4!2a

1
R2), (45)

F

for 7)i)m#3,

g
i
"[64#4(i!1)(17#3l)#4(i!2)(i!1)(3#l)]b

i~1
!4(i#1)2R2(1#l)b

i`1

!u2(a
i~1

R4!2a
i~3

R2#a
i~5

), (46)

F

g
m`4

"[64#4(m#1)(17#3l)#4m(m#1)(3#l)]b
m`1

!4(m#3)2R2b
m`3

!u2(!2a
m~1

R2#a
m~3

), (47)

g
m`5

"[64#4(m#2)(17#3l)#4(m#1)(m#2)(3#l)]b
m`2

!4(m#4)2R2b
m`4

!u2(!2a
m
R2#a

m~2
), (48)

g
m`6

"[64#4(m#3)(17#3l)#4(m#2)(m#3)(3#l)]b
m`3

!u2a
m~1

, (49)

g
m`7

"[64#4(m#4)(17#3l)#4(m#2)(m#3)(3#l)]b
m`4

!u2a
m
, (50)

We demand all coe$cients g
i
to be zero; thus, we get a set of m#6 homogeneous linear

algebraic equations for m#6 unknowns. In order to "nd a non-trivial solution the
determinant of set (40)}(50) must vanish. We expand the determinant along the last column
of the matrix of the set, getting a linear algebraic expression with the coe$cients a

i
as

coe$cients. The determinantal equation yields a condition for which the non-trivial
solution is obtainable. In this case the general expression of the natural frequency squared is
obtained from the equation g

m`7
"0, resulting in

u2"[64#4(m#4)(17#3l)#4(m#3)(m#4)(3#l)]b
m`4

/a
m
. (51)

Note that the formulae pertaining the cases m"0, 2 and 3 are formally obtainable from
equation (51) by appropriate substitution.
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9. ALTERNATIVE MODE SHAPES

Let us pose now the following question. In previous sections we postulated the expression
given in Equation (6), which is proportional to the de#ection of uniform circular plates
under distributed loading. Equation (6) represents a fourth order polynomial. A natural
question arises: can an inhomogeneous circular plate possess a simpler expression?
A simplest polynomial expression, that satis"es the boundary conditions is

t (r)"(R!r)2 (52)

which represents a second order polynomial. The third order polynomial

t (r)"(R!r)3, (53)

as well as the fourth order polynomial,

t (r)"(R!r)4, (54)

also satisfy the boundary conditions. Note that equation (54) is also a fourth order
polynomial, as in equation (6) although they are di!erent. Expressions (52)}(54) are the
candidate functions for both the Rayleigh}Ritz or Bubnov}Galerkin methods. Thus, in
essence, we ask if the co-ordinate functions utilizable for approximate evaluation of natural
frequencies of either homogeneous or inhomogeneous plates, can serve as exact buckling
modes. We consider the candidate mode shape given in equation (52).

9.1. PARABOLIC MODE SHAPE

Substitution of equation (52) into di!erential equation (1) in conjunction with equation
(9) for constant inertia term (m"0) yields the equation

7
+
i/0

e
i
ri"0, (55)

where

e
0
"!2b

0
R, e

1
"0, e

2
"2(1#l)b

1
#2R(1!2l)b

2
,

e
3
"8(1#l)b

2
#4R(1!3l)b

3
!a

0
R2u2,

e
4
"18(1#l)b

3
!6R(1!4l)b

4
#2a

0
R2u2,

e
5
"32(1#l)b

4
!a

0
u2, e

6
"0, e

7
"0. (56)

In order for equation (55) to be valid for every r, we require e
i
"0, for i taking values 0, 2, 3,

4, 5, for the remaining requirements are identically satis"ed. We get "ve equations for six
unknowns. Taking b

4
to be an arbitrary constant we get the expression for the natural

frequency squared,

u2"32(1#l)b
4
/a

0
, (57)
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with attendant sti!ness coe$cients

b
0
"0, b

1
"

R3 (!107#155l#106l2#24l3)b
4

18(1#3l#3l2#l3 )
,

b
2
"

R2 (107#59l#12l2)b
4

18(1#2l#l2)
, b

3
"!

5R (7#4l)b
4

9(1#l)
. (58)

The necessary condition for non-negativity of the sti!ness is b
1
*0. The roots of the

equation b
1
"0 are

l
1
"1

2
, l

2
"(!59#iJ1655)/24, l

3
"(!59!iJ1655)/24. (59)

The last two roots, as complex numbers, have no physical signi"cance. Only the "rst root,
corresponding to incompressible material, is acceptable. The associated expression for the
sti!ness is

D(r)"A
31R2

9
r2!

10R

3
r3B b

4
. (60)

Figure 2 depicts the variation of the sti!ness. The candidate mode shapes given in equation
(53) and (54) should be investigated separately. It is conjectured that an polynomial
function, that satis"es the boundary conditions, may arbitrary correspond to a physically
realizable material density and/or sti!ness distribution. For example, for the Poisson's ratio
that di!ers from 1

2
, the plate does not possess the parabolic shape given in equation (52).
Figure 2. Variation of the sti!ness of the clamped incompressible (l"0)5) circular plate with alternative
parabolic mode shape.
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10. CONCLUSION

Exact, closed-form solutions have been obtained here, apparently for the "rst time in the
literature, for the inhomogeneous circular plates clamped along their boundary.
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