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1. INTRODUCTION

In a recent note, Yamamoto [1] has considered the well-known approximate Rayleigh-

based formula
| E [ 1
= (L —_— T = 1
w HRr plz > MR 1/3 + y ( )

due to Timoshenko [2], giving the fundamental frequency of the longitudinal vibrations of
uniform bars fixed at one end and carrying a tip mass on the other, (where E is the Young’s
modulus of elasticity, p the mass density, [ the length, A the cross-sectional area of the bar
and y = M/p Al is the ratio of the tip mass to the bar mass) and has shown that this formula
loses its accuracy for small values of y.

This problem is actually a counterpart of the problem encountered in the Rayleigh-based
formulas for the fundamental bending frequencies of beams carrying a point mass and is
known to be ultimately related to the ill performance of the underlying mode shape
estimate, as discussed by Low [3] and Turhan [4]. The problem is that, the strategy of
approximating the fundamental mode shape by statically deformed shape due to the effect
of the point mass weight, which is well suited in the cases where the initial effect on the point
mass is dominant, loses its suitability with increasing inertial contribution of the elastic
body itself.

A better strategy was shown [3, 4] to be that of using the statically deformed shape due to the
combined effect of the elasticum and point mass weights. The purpose of the present note is to
present alternative formulas based on that alternative strategy, for the fundamental longitudinal
frequencies of bars with two different boundary conditions, carrying an arbitrarily located
point mass. The performance of the presented formulas is tested by comparing them with
the numerical solutions of the corresponding exact frequency equations.

2. ANALYSIS

It can be shown that the natural frequencies of the longitudinal vibrations of a bar
carrying a point mass (Figure 1) can be calculated as

o=p | @)
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Figure 1. Bar-point mass system.

where p is a root of the frequency equation

cos(u) — yusin(op)cos(up) =0 A3)

for a bar fixed at A and free at B [5], or

sin(g) — yusin(op)sin(up) = 0 )

for a bar fixed at both A and B [6], where o = g/l is the non-dimensional location of the
point mass and f =1 — a.
On the other hand, an approximation of u can be calculated via Rayleigh method as

o 1
f U2 (E)de +J U (E)de

0

Hr = o 1 > (5)
j U%(é)duj U2()de +7U2,()

0

where & = x/I, U,(¢) and U, (&) represent the estimated shape functions related to the
considered mode at the left and right of the point mass, respectively, and primes denote
derivatives with respect to &.

Adopting the above-mentioned strategy, i.c., using the statically deformed shape of the
bar under the combined effect of its own weight and that of the point mass (acting both in

the longitudinal direction) one has, for fixed-free bars

U1(€)=<1—§>5+V5, Uz(é>=<1—§>é+wx ©
and
_/5 1+ 302 — o+ ) 0
MR 2 ¥ 521307 + 3y + Da— (5) + 42 + 22

Similar calculations give

Ui =01—=9c+2ps, Ux(O) =1 =&+ 2ya(l = &) (t)]



Fixed—free bar (Entries: (1) u, (2) ug (3) % Error of ug)

TaBLE 1

P\ o=01 o=02 =03 o =04 o=05 o =06 o =07 o=08 o =09 a=1
1) 1-570758 1-570646 1570473 1570254 1-570011 1-569769 1-569551 1-569377 1-569266 1-569227
0-001 2) 1-581143 1-581025 1-580826 1580582 1580324 1-580077 1-579863 1-579699 1-579595 1-579559
3) 0636 0-636 0-700 0-700 0-636 0636 0636 0-701 0-701 0-701
1570411 1569294 1567557 156538 1-562982 1-560597 1-558455 1-556754 1-55565 1-555245
0-01 1-581183 1579998 1-578009 1-575583 1-57303 1-570603 1-568504 1-568887 1-565859 1-565485
0-700 0-637 06317 0-702 0639 0-640 0-706 0642 0-642 0-643
1566886 1-555529 1538313 1-517676 1496129 1-475736 1-457977 1-443839 1-433979 1-42887
01 1-582091 1569419 1-549412 1-526579 1503909 1-483282 1-465838 1-452258 1-442956 1-438203
0-957 0-835 0715 0-592 0-534 0474 0-548 0-554 0-627 0-629
1-549859 1-489807 1410567 1332557 1264592 120821 1-162492 1126081 1-097811 1-076874
05 1-589857 1511424 1419538 1336729 1-267449 1211036 1-165765 1-129992 1-102434 1-082207
2-580 1-409 0-637 0-300 0-158 0-248 0-344 0-355 0-364 0-464
1-525167 1-401486 1268854 1-160689 1-076874 1011664 0960259 0919301 0-886506 0-860334
1 1-588482 1419734 1273449 1-162324 1077998 1012876 0961739 0921122 0-888711 0-862949
4131 1-356 0-315 0-086 0-092 0-098 0-208 0217 0-225 0-348
1-463476 1232353 1:060184 0943538 0-860334 0797992 0-749527 0710819 0-679296 0-653271
2 1527114 1239456 1-061338 0-943933 0-860663 0-798387 0-750022 0-711434 0-680043 0-654162
4-374 0-568 0-094 0 0-116 0 0 0 0-147 0-153
0-943328 0-675584 0-554591 0482221 0432841 0-396448 0-368232 0-345554 0-326832 0-311053
10 0-944257 0-675621 0-554599 0-482228 0432851 0-396462 0-368249 0-345575 0-326857 0-311082
0-106 0 0 0 0 0 0 0 0 0
0-314724 0-222635 0-181845 0-157536 0-140952 0-128714 0-119205 0-111543 0-105199 0-099834
100 0-314724 0-222635 0-181845 0-157536 0-140952 0-128714 0-119205 0111543 0-105199 0-099834
0 0 0 0 0 0 0 0 0 0
0-099953 0-07068 0-057712 0-049982 0-044706 0-040813 0037786 0-035347 0-033327 0-031618
1000 0-099953 0-07068 0-057712 0-049982 0-044706 0-040813 0037786 0035347 0-033327 0-031618
0 0 0 0 0 0 0 0 0 0
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and

Hr = 1+ 10p5[1 +45(1 + By + 4]’

where 6 = aff for fixed-fixed bars.

The results of equation (7) are compared with those of equation (3) for different values of
yand o in Table 1, and the results of equation (9) are compared with those of equation (4) in
Table 2. An inspection of these tables shows that the accuracy of equations (7) and (9) are
satisfactory for all practical purposes throughout the considered range of the parameters
y and a.

Returning now to the question raised by Yamamoto, substitute o = 1 in equation (7) to
obtain

392 +3y+1
— /s 10
Hr / 245372 + 4y + 2] (10)

TaBLE 2
Fixed-fixed bar (Entries as Table 1)

y\ot o=01 o=02 o=03 o =04 o=05
1) 3-141292 3-140507 3139537 3138753 3-138454
0-001  2) 3-16205 3161164 3-160153 3-159396 3-159119
3) 0668 0-636 0-636 0-637 0-669
3138573 3-13068 3121045 3113383 3-11049
0-01 3:159993 3:151076 3-141062 3133662 3-13097
0-669 0-638 0-640 0-674 0-675
3-109592 3-027786 2-939675 2-878843 2:85774
0-1 3137788 3-04484 2:955414 2-896564 2-876407
0-900 0-561 0-510 0-625 0-629
2-936987 2-552472 2-311557 2-190564 2:153748
0-5 2-965988 2-561082 2-322565 2-201505 2:164413
0-987 0-352 0-475 0-502 0-464
2-644381 2-109853 1-866243 1-753938 1720667
1 2-652306 2-117735 1-87328 1-759651 1-725898
0-302 0-379 0-375 0-342 0-290
2-13055 1624054 1-423005 1-332974 1306542
2 2-135123 1-628525 1-425866 1-335003 1-308324
0-187 0-307 0-210 0-150 0-076
1-036 0-777441 0-678717 0-634923 0-622106
10 1036626 0-777662 0-678827 0-634993 0-622165
0-096 0-128 0 0 0
0-332776 0-249583 0-217855 0-203785 0-199667
100 0-332779 0-249584 0-217855 0-203785 0-199667
0 0 0 0 0
0-105392 0-079044 0-068995 0-064539 0-063235
1000 0-105392 0-079044 0-068995 0-064539 0-063235

0 0 0 0 0
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Figure 2. Comparison of equations (1) and (10). ({r/texac: ——3 KR/ Hexact: === === )

as a counterpart of equation (1). The performance of equations (1) and (10) are compared in
Figure 2 where fig/loxa: aNd Ug/ exae: Values are plotted versus y. An inspection of this
figure shows that the performance of equation (10) is remarkably superior to that of
equation (1) and that this equation can reliably be used for small values of y as well, with
a maximum of 0-65% of error occurring at y = 0.

3. FINAL REMARKS

Equations (7) and (9), in conjunction with equation (2) can reliably be used to predict the
fundamental frequencies of the longitudinal vibrations of bars carrying an arbitrarily
located point mass.

Due to the mathematical equivalence of the two problems, the same equations can be
used to predict the fundamental frequencies of the torsional vibrations of bars carrying an
arbitrarily located disc as well. To this end it suffices to consider

w=uﬁ (11)
pl

instead of equation (2) and take y as the ratio of the mass moment of inertia of the attached
disc to that of the bar.

Finally, due to the analogy between (fixed—free bar)-(tip mass) and spring-mass systems,
ug of equation (10) can be used instead of g of equation (1) to predict the frequency of
spring-mass systems with the mass of the spring approximately taken into consideration. In
this case, the frequency formula should be of course written as

w=pg_|—, (12)

where k, is the stiffness coefficient and m is the mass of the spring.
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