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A method is presented for constructing, with the minimum number of physical
measurements, the full cross-spectral matrix of acoustic pressures associated with a number
of measurement positions. It is necessary to evaluate the elements of the matrix in question
when using inverse methods for the reconstruction of acoustic source strength spectra. The
method presented uses the concept of &&reference microphones''. The relation between the
rank of the cross-spectral matrix of acoustic pressures and the number of uncorrelated
acoustic sources is discussed and used to determine the required number of reference
microphones. A method is proposed for selecting this number in the inverse problem in
which information regarding acoustic sources is unknown. The results of computer
simulations are presented which explore the main features of the technique under various
conditions. Experimental results are also presented which validate the technique.

( 2000 Academic Press
1. INTRODUCTION

In order to reconstruct the cross-spectral matrix of acoustic source strengths by inverse
techniques, it is necessary to "rst measure the cross-spectral matrix of acoustic pressures in
the radiated sound "eld [1, 2]. This matrix can be constructed by measuring directly all
auto-spectra at the "eld points considered and the cross-spectra between all pairs of "eld
points. However, this often leads to a tedious and expensive task, especially when the
number of "eld points is large. For example, when we wish to measure acoustic pressure
auto- and cross-spectra at 100 "eld points by using dual channel acquisition equipment,
then the dimension of the matrix of acoustic pressure auto- and cross-spectra becomes
100]100 and thus we need 5050 measurements ("100]101/2, since this matrix is an
Hermitian matrix). In this case, it is natural to attempt to develop an alternative technique
which constructs the full auto- and cross-spectral matrix of acoustic pressures with
a minimum number of measurements. This paper proposes such a technique using a small
number of reference microphones.

Hald [3], in developing the application of near"eld acoustic holography (NAH), adopted
the concept of the reference microphone, with a view to obtaining the full cross-spectral
matrix with a minimum number of measurements of acoustic pressure cross-spectra on the
&&hologram plane''. We also employ the concept of the reference microphone to construct the
full cross-spectral matrix of acoustic pressures with a minimum number of measurements
on the &&measurement plane''. Although our work adopts the concept of the reference
microphone as used as Hald, there are important di!erences. First of all, here we divide
&&conceptually'' the entire number of measurement microphones (or number of measurement
0022-460X/00/250897#24 $35.00/0 ( 2000 Academic Press
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positions) into reference microphones (or reference positions) and moving microphones
(or moving positions) on the measurement plane. However, Hald made use of reference
microphones that were independent of the measurement array and which were located
between acoustic sources and scanning microphones on the hologram plane. In our work,
the full cross-spectral matrix of acoustic pressures on the measurement plane comprises
contributions from both the reference and moving positions (or microphones). On the
contrary, in Hald's work, the full cross-spectral matrix of acoustic pressures consists of only
the auto- and cross-spectral matrix of acoustic pressures measured on the hologram plane,
not including those sensed by reference microphones. Furthermore, our mathematical
development di!ers from that presented by Hald. For example, Hald constructed the
cross-spectral matrix of acoustic pressures on the hologram plane using a number of
reference microphones based on the number of uncorrelated sources. In what follows,
however, we construct this matrix using reference microphones based on the number of
uncorrelated sources and the contaminating noise.

In this paper, the theoretical development of this technique is presented by employing the
concept of the rank of matrix. The heart of this technique is the proof of the rank equality
between the matrix of acoustic pressure cross-spectra measured at the entire number of "eld
points and a certain sub-matrix of acoustic pressure cross-spectra. To verify the rank
equality, it is "rst necessary to understand the relation between the rank of the acoustic
pressure cross-spectral matrix and the number of uncorrelated acoustic sources, and this is
therefore described. Also, some methods for the estimation of the ranks of these matrices are
discussed. They are eigenvalue decomposition, singular value decomposition, principal
component analysis and virtual coherence. It is crucial, in securing the rank equality
referred to above, to select properly the number of reference microphones. Accordingly,
a method is proposed for selecting this number in an inverse problem in which information
regarding acoustic sources is unknown. In order to clarify the main features of the theory
developed, the results of computer simulations are presented for the problems in which
acoustic sources are either mutually uncorrelated or correlated and in which the e!ect of
output noise is also included. Finally, this technique is validated from experiments which
use the acoustic pressures radiated from two volume velocity sources and a simply
supported plate mounted in a "nite ba%e.

2. THEORETICAL DEVELOPMENT

2.1. USE OF REFERENCE MICROPHONES

When we assume that there is no measurement noise, the m-dimensional complex vector
p of acoustic pressures is related to the n-dimensional complex vector q of acoustic source
strengths by using the m]n complex matrix H of transfer functions such that

p"Hq. (1)

As described in references [1, 2], when seeking to reconstruct the strengths of a number of
stationary random sources of sound from the measured pressure #uctuations we use the
expression

S
qq
"H` S

pp
H`H , (2)

where it is assumed that m*n and H`"[HHH]~1 HH is the pseudoinverse of H. The
superscript H denotes Hermitian transpose. Note that the matrices of source strength
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cross-spectra and acoustic pressure cross-spectra are, respectively, de"ned by

S
qq
"E [q qH], S

pp
"E [ ppH], (3, 4)

where the expectation operator E[ ] implies that the elements of the vectors p and q are
given by the Fourier transforms of time histories of "nite duration ¹ which are
subsequently averaged in the limit ¹PR. It is clear from equation (2) therefore that
a measurement of the cross-spectral matrix S

pp
is required in order to reconstruct S

qq
.

References [1, 2] describe methods for undertaking this inversion procedure, particularly in
circumstances where H is ill-conditioned.

In order to proceed, as can be seen from Figure 1, we conceptually partition the complex
vector p consisting of acoustic pressures sensed at the entire number of measurement
positions into a complex vector p

R
which contains acoustic pressures measured at

u reference positions and a complex vector p
M

which consists of acoustic pressures
measured at l moving positions.

It is now assumed that the transfer function matrices H
R

and H
M

relate the acoustic
source strengths q to the acoustic pressures p

R
and p

M
at the reference and moving positions

respectively. Thus, we write

p"C
p
R

p
M
D"C

p
1
(u)

p
2
(u)
F

p
u
(u)

p
u`1

(u)
p
u`2

(u)
F

p
u`v

(u)
D"C

H
R

H
M
D q"Hq , (5)

where the entire number of measurement positions m"u#v which is the sum of the
number u of reference positions and the number l of moving positions. With the vector
Figure 1. The partition of the entire number of measurement positions (or microphones) into the reference and
moving positions (or microphones).
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p partitioned as in equation (5), the acoustic pressure cross-spectral matrix S
pp

is given by

S
pp
"C

S
RR

SH
RM

S
RM

S
MM
D, (6)

where S
RR

"E [p
R

pH
R
], S

RM
"E [p

R
pH
M

] and S
MM

"E [p
M

pH
M

].
To construct all the components of S

pp
given by equation (6), we undertake the following

procedure: we "rst measure the reference position cross-spectral matrix S
RR

and the
reference-moving position cross-spectral matrix S

RM
, then calculate the moving position

auto- and cross-spectral matrix S
MM

from the measured S
RR

and S
RM

. Hence, the
measurement of only S

RR
and S

RM
is required in constructing the full matrix of S

pp
. In the

next section, we describe how to calculate the matrix S
MM

.

2.2. THE MOVING POSITION CROSS-SPECTRAL MATRIX S
MM

Let the "rst u columns of S
pp

be represented by the m]u (or (u#v)]u) matrix S
1

and the remaining columns m]v (or (u#v)]v) matrix, S
2

respectively. Thus,

S
1
"C

S
RR

SH
RM
D, S

2
"C

S
RM

S
MM
D. (7, 8)

Therefore, the matrix S
pp

can be expressed as

S
pp
"[S

1
S
2
]. (9)

To calculate the moving position auto- and cross-spectral matrix S
MM

from the measured
matrices S

RR
and S

RM
, we have to assume the rank equality of S

1
and S

pp
, i.e.,

rank (S
pp

)"rank (S
1
). (10)

If this is the case, since the matrix S
2

does not contribute to the rank of the matrix S
pp

, the
columns of S

2
in equation (9) can be expressed by linear combinations of the columns of S

1
.

Accordingly (see reference [4]), there exists a u]v matrix T enabling S
2

to be written as

S
2
"S

1
T. (11)

Using equations (7) and (8), equation (11) can also be expressed as

S
RM

"S
RR

T, S
MM

"SH
RM

T. (12, 13)

Arranging equation (12) with respect to T and substituting this into equation (13), we can
"nd the moving position auto- and cross-spectral matrix S

MM
. Thus,

S
MM

"SH
RM

S~1
RR

S
RM

. (14)

Note that equation (14) is valid only when S
RR

is of full rank, otherwise the generalized
inverse has to be employed instead of the direct inverse.

This procedure results in a great reduction in the number of measurements required to
construct S

pp
. Thus, while the number of required direct measurements is (u#v)

(u#v#1)/2 (since the S
pp

is (u#v)](u#v) and Hermitian), the technique proposed here
needs only u (u#1)/2 (since S

RR
is u]u and Hermitian) plus uv (since S

RM
is u]v). When
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u"5 and v"95, for example, the number of required direct measurements is 5050, but this
technique reduces that to 490. These numbers are computed for dual channel acquisition,
and therefore when multi-channel equipment is used, the number of required measurements
will be reduced still further. A simple example of the application of this method is described
in reference [5]. It should however, be emphasized that, in using equation (14), it is
a pre-requisite to meet the requirement of the rank equality of the matrices S

1
and S

pp
.

3. ESTIMATION OF THE RANK OF THE CROSS-SPECTRAL MATRIX OF
ACOUSTIC PRESSURES

3.1. INTRODUCTION

In order to determine the rank of the cross-spectral matrix S
pp

, there are a number of
tools available. First, note that S

pp
is a positive semi-de"nite Hermitian matrix whose rank

is equal to the number of non-zero eigenvalues (including repetitions). Thus, one can express
the eigenvalue decomposition (EVD) of the matrix by

S
pp
"QKQH. (15)

where Q is a unitary matrix containing all the eigenvectors of S
pp

and K is the diagonal
matrix of eigenvalues of S

pp
. Also note that in this case K"R which is the diagonal matrix

of singular values of S
pp

deduced from the singular-value decomposition (SVD) of S
pp

. Note
that S

pp
is said to be unitarily similar to K and thus the rank of S

pp
is equal to the rank of K.

This expression can also be interpreted in terms of principal component analysis (PCA)
[6, 7] or, in the context of this work, in terms of principle spectral analysis (PSA). Thus, one
assumes that the measured vector of pressures results from a number of uncorrelated
&&virtual'' acoustic pressures (or &&principal components'') where

p"Qv (16)

and v is the vector of Fourier spectra of the virtual acoustic pressures. Thus, one can write

S
pp
"QS

vv
QH, (17)

where S
vv

is the diagonal matrix of auto-spectra of the virtual acoustic pressures which
comprise the principle spectral components. It is evident that K"R"S

vv
. Also note that

the matrix of cross-spectra between the real and virtual acoustic pressures is given by

S
vp
"E [vpH]"S

vv
QH (18)

and the &&virtual coherence'' [8] between the real and virtual acoustic pressures is derived
from the elements of this matrix and is given by

c2v
i
p
j
(u)"

DSv
i
p
j
(u) D2

Sv
i
v
i
(u) Sp

j
p
j
(u)

, (19)

where Sv
i
v
i
(u) corresponds to the iith component of the singular value matrix R or the

eigenvalue matrix K of S
pp

. Thus, c2v
i
p
j
(u) indicates the degree to which Sp

j
p
j
(u) results from

the virtual acoustic pressure v
i
(u). Note that c2v

i
p
j
(u) takes values between 0 and 1, and the

summation of the contributions of all virtual signals to the jth physical signal is 1. That is,
+V

i/1
c2v

i
p
j
(u)"1. Note also that if the sum of parts (say, K) of < virtual coherences with
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respect to a physical signal approaches unity, it indicates that there are K dominant
uncorrelated signals.

3.2. RELATION BETWEEN THE RANK OF ACOUSTIC PRESSURE CROSS- SPECTRAL MATRIX

AND THE NUMBER OF UNCORRELATED ACOUSTIC SOURCES

It has been seen from these considerations that the rank of the pressure cross-spectral
matrix indicates the number of uncorrelated signals. As described above, in a system with
n acoustic source strengths q which may be mutually uncorrelated or correlated and
m acoustic pressures p, the relationship between the cross-spectral matrices of q and p is
expressed as S

pp
"HS

qq
HH. In this equation, the rank of S

qq
indicates the number of

uncorrelated acoustic source strengths and the rank of S
pp

is then determined by the rank
of the matrix H. If H is of full rank, then the rank of S

pp
is equal to that of S

qq
. Note that

pre-multiplication or post-multiplication of any matrix by any non-singular (i.e., full rank)
matrix does not alter its rank [9]. Thus, if m microphones are geometrically arranged for
H to be of full rank, the rank of S

pp
will correspond to the number of uncorrelated acoustic

source strengths. Finally, note the similarity in the relationships S
pp
"HS

qq
HH and

S
pp
"QKQH. Thus, the rank of S

pp
is equal to the rank of K, without any constraint,

because of the fact that Q is a unitary matrix and so is of full rank. Based on
similar reasoning the rank of S

pp
corresponds to the rank of S

qq
if and only if H is of full

rank.

3.3. RANK EQUALITY AND THE CHOICE OF THE NUMBER OF REFERENCE MICROPHONES

This section is devoted to a discussion of which submatrix of S
RR

and SH
RM

determines the
rank of S

1
. Also, a method is proposed for the selection of the optimal number of reference

positions (or microphones) which ensures the rank equality between the matrices S
pp

and
S
1
. Let us "rst consider the de"nition of S

1
given by equation (7). The dimension of S

1
is

m]u with u(m (recall that m and u represent the entire number of microphones and the
number of reference microphones, respectively), and thus rank (S

1
))u. In addition, S

1
consists of two submatrices, S

RR
(u]u) and SH

RM
(v]u) (equation (7)). Therefore, when u(v,

rank (S
RR

))u, rank (SH
RM

))u, when u'v, rank (S
RR

))u, rank (SH
RM

))v, and when
u"v, rank (S

RR
))u, ranks (SH

RM
))u. (Recall that if a matrix A is of m]n,

rank (A))min (m, n)).
Now, we wish to check which of two submatrices, S

RR
and S

RM
, determines the rank of S

1
.

Note that the rank of SH
RM

corresponds to that of S
RM

because an elementary operation such
as conjugate transpose does not alter the rank of a matrix. Firstly, it should be pointed out
that the case of u'v is unusual. In such a case, the number of reference microphones is
larger than that of the moving microphones and is of little practical relevance, although we
have considered this case here for the sake of completeness. Denoting the number of
uncorrelated sources as w, we can consider "ve possible combinations of u, v and w:
w'u'v, u'v'w, u'w'v, w"u'v, u'v"w. For these, ranks of the matrices
of S

RR
, S

RM
, S

1
, and S

pp
are given by cases 1}5 of Table 1. In computing these ranks, we have

to recall two things. One is that rank of the cross-spectral matrix is the same as the number
of the uncorrelated sources. The other is that in such a case as u'v, rank (S

RR
))u and

rank (S
RM

))v. Secondly, for the case of u(v (this is the usual case), rank (S
RR

))u and
rank (S

RM
))u. In this case, there are also "ve possible combinations of u, v and w:

u(v(w, w(u(v, u(w(v, w"u(v, and u(v"w. The ranks of the matrices of



TABLE 1

Rank of S
RR

, S
RM

, and S
pp

, and S
1
, where u, v and w are the number of reference microphones,

moving microphones, and uncorrelated acoustic sources respectively

No. of microphones Ranks of matrices

Case no. u v S
RR

S
RM

S
pp

S
1

u'v 1 w'u w'v u v w u
2 w(u w(v w w w w
3 w(u w'v w v w w
4 w"u w'v w v w w
5 w(u w"v w w w w

u(v 6 w'u w'v u u w u
7 w(u w(v w w w w
8 w'u w(v u u w u
9 w"u w(v w u w w

10 w'u w"v u u w u
u"v 11 w"u w"u w w w w

12 w'u w'u u u w u
13 w(u w(u w w w w
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S
RR

, S
RM

, S
1
, and S

pp
are given by cases 6}10 of Table 1. Finally, for the case of u"v, we can

consider three possible combinations of u, v and w: u"v"w, u"v(w, and u"v'w.
The ranks of the matrices S

RR
, S

RM
, S

1
, and S

pp
are given by cases 11}13 of Table 1.

According to Table 1, it is evident that rank (S
1
) is always the same as rank (S

RR
).

An example of the determination of the ranks of S
RR

, S
RM

, S
1

and S
pp

with di!erent
number of reference and moving microphones (i.e., u and v) is shown in Table 2. These
results have been obtained from numerical simulations using the model of Figure 2. In this
model, it is assumed that there are four mutually uncorrelated acoustic point monopoles
radiating sound in a free "eld. For the cases 2, 3, 5, 7}9, we use this model with 16
microphones. For the cases 1, 4, 6, 10, "ve microphones (numbered 1}5) are used. Also, we
use this model with eight microphones (numbered 1}8), six microphones (numbered 1}6),
and 10 microphones (numbered 1}10) for the cases 11, 12, 13 respectively. In this model, the
four sources are made &&mutually uncorrelated'' (i.e., w"4) by assigning four di!erent
normally distributed random signals having variances p2

1
"1, p2

2
"4, p2

3
"9, and p2

4
"16

as four acoustic source strengths. It is also assumed in this model that there is no output
noise. As an example, consider the case of u"5 and v"11 (case 7). In this case the ranks of
S
RR

and S
RM

will be less than or equal to 5. However, since the number of uncorrelated
acoustic source strengths is 4, the ranks of these two matrices cannot exceed 4. Also, since
the rank of the cross-spectral matrix equals the number of uncorrelated sources, the ranks of
these two matrices both become 4. The other cases can be explained similarly.

Therefore, it is clear that the rank of S
1
is determined by the rank of S

RR
. Thus, in order to

prove the rank equality of S
1

and S
pp

, it is necessary to choose the number of reference
microphones appropriately. As a consequence, since the rank of S

pp
is equal to the number

of uncorrelated sources, w, the number u of reference microphones must be equal to or more
than w. This can be checked from cases 2}5, 7, 9, 11, and 13 of Tables 1 and 2. In other
words, since the rank of S

pp
equals the number of signi"cant singular values, we have to

choose the number of reference microphones to be equal to or greater than the number of
the signi"cant singular values of S

pp
.



TABLE 2

Rank of S
RR

, S
RM

, S
pp

, and S
1
, obtained using the models of Figure 2, where the number of

uncorrelated source strengths is 4 (i. e., w"4)

No. of microphones Ranks of matrices

Case no. u v S
RR

S
RM

S
pp

S
1

u'v 1 3 2 3 2 4 3
2 11 5 4 4 4 4
3 13 3 4 3 4 4
4 4 1 4 1 4 4
5 12 4 4 4 4 4

u(v 6 2 3 2 2 4 2
7 5 11 4 4 4 4
8 3 13 3 3 4 3
9 4 12 4 4 4 4

10 1 4 1 1 4 1
u"v 11 4 4 4 4 4 4

12 3 3 3 3 4 3
13 5 5 4 4 4 4

Figure 2. A simulation model for computing the ranks of S
RR

, S
RM

, S
1

and S
pp

.
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It should now be noted that the application of this conclusion regarding the number of
required reference microphones is not di$cult in a &&forward problem'' in which we have
prior knowledge of the number of uncorrelated acoustic sources. However, it is in general
problematic in an &&inverse problem'' because the number of uncorrelated sources is
unknown. Accordingly, in order to properly select the number of reference microphones in
an inverse problem, we propose the following approach. At "rst, select P reference
microphones and then calculate the rank of S

RR
obtained from measurements. For

convenience denote this rank as K
P
. After that, decrease the number of reference
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mircophones by 1, i.e., P-1 and calculate again the rank of S
RR

and denote this rank as
K

P~1
. Then check the correspondence of K

P
and K

P~1
as follows:

(1) If K
P

and K
P~1

are equal, repeat a further decrease in the number of reference
microphones and calculation of rank of S

RR
until K

P~i
and K

P~i~1
become di!erent.

If this occurs, then K
P~i

is the number of signi"cant singular values of S
pp

and thus is
the required number of reference microphones which provides the rank equality of S

1
and S

pp
.

(2) If K
P

and K
P~1

di!er, increase P by 1, and calculate again the rank of S
RR

, which is
denoted by K

P`1
. Check whether K

P
and K

P`1
are the same. If so, K

P
is the number

of signi"cant singular values of S
pp

and is thus equal to the required number of
reference microphones. If this is not so, repeat a further increase in the number of
reference microphones and calculation of rank of S

RR
until K

P`i
and K

P`i`1
become

equal. If this is the case, then K
P`i

is the number of signi"cant singular values of S
pp

and therefore the optimal number of reference microphones which we wish to "nd.

A simple example of this procedure is described in detail in reference [5].

4. SIMULATION RESULTS I: NO MEASUREMENT NOISE

4.1. UNCORRELATED ACOUSTIC SOURCE STRENGTHS

To clarify some features of the theory developed above, we conduct a set of computer
simulations. The "rst simulation is carried out using the model illustrated in Figure 2.
Recall that in this model four acoustic sources are made &&mutually uncorrelated'' by
assinging four di!erent normally distributed random signals having variances, p2

1
"1,

p2
2
"4, p2

3
"9 and p2

4
"16 as the four acoustic source strengths. It is also assumed in this

model that there is no measurement noise. Before we calculate the matrix S
MM

from
the measured matrices S

RR
and S

RM
, we "rst have to check the rank equality of S

1
and S

pp
.

The rank of S
1

is determined by the rank of S
RR

and the number of necessary reference
microphones has to be at least equal to the number of uncorrelated acoustic sources or
the number of signi"cant singular values of S

pp
(which is 4 in this case). Comparison of the

ranks of S
pp

and S
1

plotted in the upper part of Figure 3 supports this statement.
The e!ect of the number of reference microphones on the accuracy of the calculation of

S
MM

is now investigated. As a measure of accuracy of calculation, we use the normalized
di!erence R

1
between the directly measured and calculated S

MM
de"ned as

R
1
"

E (S
MM

)
mea

!(S
MM

)
cal

E
e

E (S
MM

)
mea

E
e

, (20)

where subscripts mea and cal denote &&measured'' and &&calculated'' and E E
e

denotes the
euclidean norm of the matrix. The results of the lower part of Figure 3 reveal that the
accurate calculation of S

MM
can be achieved only when the rank equality between S

pp
and

S
1

is satis"ed. That is, when using three reference microphones, the normalized di!erence
R

1
is over 10~3, whilst for the cases of using four or "ve reference microphones it is below

10~11. On the other hand, the fact that the rank of S
pp

is 4 also indicates that there are four
principal auto-spectra of virtual acoustic pressures. The results of Figure 4 emphasize this
point. The rank of S

pp
can also be identi"ed from the virtual coherence (VC). The results of

Figure 5 illustrate the VC for the "rst, second, third and fourth virtual acoustic pressure
with respect to the "rst physical acoustic pressure. Their sum is unity and this signi"es that



Figure 3. E!ect of the number of reference microphones ((a) 3, (b) 4, (c) 5) on variations of rank of S
pp

(solid),
rank of S

1
(circle) and the normalized di!erence R

1
. There are four uncorrelated acoustic sources.

Figure 4. Principal auto-spectra (or singular values) of S
pp

for the model (Figure 2) comprising four
uncorrelated sources under the assumption of no output noise.
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there are no other virtual acoustic pressures. It is therefore concluded that the rank of this
model is 4.

From the results of Figure 3, we select four microphones as reference microphones (or
reference positions) for the model of Figure 2. In this case, the dimensions of the matrices
S
RR

, S
MM

and S
pp

are 4]4, 12]12 and 16]16 respectively. Based on the rank equality of
S
pp

and S
1
, we can now estimate S

MM
using equation (14). The results of Figure 6 illustrate

that the acoustic pressure auto- and cross-spectra estimated at the "fth and eighth positions,
which correspond, respectively, to the "rst and fourth moving positions, are in a good
agreement with those calculated directly. The normalized di!erence R

1
reveals that there is

a successful prediction for all moving positions. Also, Figure 6 shows the normalized



Figure 5. Virtual coherences of the "rst (black thick), the second (grey thick), the third (black thin), and the
fourth (grey thin) virtual acoustic pressure with respect to the physical acoustic pressure sensed at the microphone
1 for the model in Figure 2 comprising four uncorrelated sources and the assumption of no output noise.

Figure 6. A comparison of the directly calculated (solid) and estimated (dotted) S
MM

: (a) autospectra at the "rst
moving position, (b) autospectra at the fourth moving position, (c) and (d) magnitude and phase of cross-spectra
between the "rst and fourth moving positions, (e) normalized di!erence R

1
, (f) normalized di!erence matrix R

2
at

kr
ss
"1)65 ("600 Hz, r

ss
"0)15 m). These results are for the model of Figure 2 comprising four uncorrelated

sources and the assumption of no output noise.
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di!erence matrix R
2

de"ned by

R
2
"

D (S
MM

)
mea

!(S
MM

)
cal

D
D (S

MM
)
mea

D
, (21)

where D D denotes the absolute value. The value presented in Figure 6 are for kr
ss
"1)65

("600 Hz, r
ss
"0)15 m). According to the above results, it is evident that the technique

using reference microphones to construct S
pp

is reliable in accuracy.
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4.2. CORRELATED ACOUSTIC SOURCE STRENGTHS

Now consider the case of a model having correlated sources. As an example, we use
a simply supported plate mounted in an in"nite ba%e as shown in Figure 7. The plate is
excited at a point by a normally distributed random force. As a result, the surface velocities
of the plate generate the acoustic "eld. The plate is discretized into 16 contiguous small
rectangular elements each of which is regarded as a point monopole source. It is also
assumed that there is no output noise.

Since a single force excites this plate, it is anticipated that there may exist only one
uncorrelated acoustic source among 16 discretized acoustic sources. So we use only one
microphone (numbered 1 in Figure 7) as the reference microphone. Thus, the rank of S

1
is

equal to that of S
pp

and they are of rank 1. This means that there will be one principal
auto-spectra of S

pp
and this is ensured from Figure 8. Thus, there exists only 1 virtual

acoustic pressure. Figure 9 illustrates the virtual coherence of the virtual acoustic pressure
with respect to the physical acoustic pressure sensed at the microphone numbered by 1 in
Figure 7. Geometry of a simply supported plate mounted in an in"nite ba%e used for the computer simulation.

Figure 8. Principal auto-spectra (or singular values) of S
pp

for the simply supported plate model (Figure 7)
under the assumption of no output noise.



Figure 9. Virtual coherence of the virtual acoustic pressure with respect to the physical acoustic pressure sensed
at the microphone 1 for the simply supported plate model (Figure 7) under the assumption of no output noise.

Figure 10. A comparison of the directly calculated (solid) and estimated (dotted) S
MM

: (a) auto-spectra at the
"rst moving position, (b) autospectra at the fourth moving position, (c) and (d) magnitude and phase of
cross-spectra between the "rst and fourth moving positions, (e) normalized di!erence R

1
, (f ) normalized di!erence

matrix R
2

at kr
ss
"1)37 ("786 Hz, r

ss
"0)095 m) which is the (2,3) resonant frequency. These results are for the

simply supported plate model of Figure 7 under the assumption of no output noise.
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Figure 7. Only one virtual acoustic pressure has unity as the value of virtual coherence.
Note that the virtual coherence with respect to the physical acoustic pressures sensed at
the other microphones showed the same results, although they are not presented here. With
the achievement of rank equality, the estimated magnitudes and phases of the components
of S

MM
exhibit excellent agreement with the directly calculated values, as plotted in

Figure 10. Note also that auto- and cross-spectra of Figure 10 were obtained from the
acoustic pressures normalized by unit force and so the shape is smooth despite the
excitation by a normally distributed random force.
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5. SIMULATION RESULTS II: WITH OUTPUT NOISE

5.1. SENSOR NOISE MODEL

We now investigate the performance of the technique using reference mircophones for
a more realistic model where output noise contaminates the acoustic pressures. In
measuring the cross-spectral matrices, we make an assumption that the noise will be equally
distributed over all the components of S

pp
. Accordingly, the matrix S

pp
and its submatrices

S
RR

, S
RM

, S
MM

, S
1
, and S

2
will be denoted by SpL pL , SRK RK , SRK MK , SMK MK , S1) , and S2) respectively

where ' signi"es data contaminated by the output noise. From these measured matrices
SRK RK and SRK MK , the moving position auto- and cross-spectral matrix SMK MK is obtained by
following the procedure used in reaching equation (14). Thus, when the matrix SRK RK is of full
rank

SMK MK "SHRK MK S~1RK RK SRK MK (22)

or when the matrix SRK RK is rank-de"cient S~1RK RK , is replaced by the psuedo-inverse matrix.

5.2. UNCORRELATED ACOUSTIC SOURCE STRENGTHS

In order to observe the e!ect of output noise the model shown in Figure 2 is again used.
Output noise (15%) is added into all components of acoustic pressure auto- and
cross-spectra S

pp
. Like the previous case which was not concerned with the e!ect of noise,

we select four reference microphones as a "rst trial. (Recall that in the absence of output
noise, the use of four reference microphones provided a good estimation of S

MM
, as

illustrated in Figure 6.) In this case, the rank of SpL pL is 5 (note that previously the rank of S
pp

was 4) whilst the rank of S1) still is kept unchanged at 4 because four reference microphones
are used. The number of signi"cant singular values (Figure 11) of the matrix SpL pL increases to
5 from the value of 4 associated with the matrix S

pp
(Figure 4). The failure to verify the

assumption of rank equality between S1) and SpL pL by using only four reference microphones
makes the estimated magnitudes and phases of the components of SMK MK deviate from the
directly calculated values, as illustrated in Figure 12. Also, the measure of deviation of all
components of SMK M with frequency can be observed from the normalized di!erence R

1
. The
Figure 11. Principal auto-spectra (or singular values) of SpL pL for the model of Figure 2.



Figure 12. A comparison of the directly calculated (solid) and estimated (dotted) SMK MK : (a) auto-spectra at the
"rst moving position, (b) auto-spectra at the fourth moving position, (c) and (d) magnitude and phase of
cross-spectra between the "rst and fourth moving positions, (e) normalized di!erence R

1
, (f) normalized di!erence

matrix R
2

at kr
ss
"1)65 ("600 Hz, r

ss
"0)15 m) for the model of Figure 2 with output noise. Four reference

microphones are used.
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quality of R
1

(i.e., 10~2}1) plotted in Figure 12 is much larger than that of R
1

(i.e.,
10~14&10~11) shown in Figure 6 in which the rank equality between S1) and SpL pL was
veri"ed. Figure 12 also shows the normalized di!erence R

2
(&10~1) is much larger than

that (&10~12) of Figure 6.
Since these unsatisfactory results come from the discrepancy between the ranks of S

1
and

SpL pL , we have to alter the number of reference microphones and now "ve reference
microphones are selected instead of 4. As pointed out earlier, since rank of S1< is the same as
that of SRK RK , the use of "ve reference microphones yields a submatrix S1) of rank 5. Therefore,
ranks of S1) and SpL pL become equal. Subsequently, the estimated magnitudes and phases of
components of SMK MK are now in very good agreement with those directly calculated values
(Figure 13).

5.3. CORRELATED ACOUSTIC SOURCE STRENGTHS

Finally, we consider the simply supported plate model depicted in Figure 7 which has
correlated sources. For this model, measurement noise (15%) is also added. When the
number of reference microphones is chosen to be 1 as before, a discrepancy appears in the
ranks of S1) and SpL pL . That is, the addition of output noise forces the rank of SpL pL to increase to 2.
The reason for this can easily be understood from viewing the singular values of SpK pK shown
in Figure 14. Hence, the estimation of the magnitudes and phases are inaccurate, as
illustrated in Figure 15. Thus, in order to make the ranks of S1) and SpL pL equal, two reference
microphones are used. As a result, rank equality is achieved and a satisfactory estimation of
SMK MK is made as illustrated in Figure 16. It is therefore apparent from the above results that
the proper choice of the number of reference microphones is at the heart of this technique. If
this is achieved, the construction of full auto- and cross-spectral matrix of acoustic pressures
can be made faster whilst maintaining accuracy.



Figure 13. A comparison of the directly calculated (solid) and estimated (dotted) SMK MK : (a) auto-spectra at the
"rst moving position, (b) auto-spectra at the fourth moving position, (c) and (d) magnitude and phase of
cross-spectra between the "rst and fourth moving positions, (e) normalized di!erence R

1
, (f) normalized di!erence

matrix R
2

at kr
ss
"1)65 ("600 Hz, r

ss
"0)15 m). These results are for the model of Figure 2 with output noise

when "ve reference microphones are used.

Figure 14. Principal autospectra (or singular values) of SpL pL for the model Figure 7.
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6. EXPERIMENTAL VERIFICATION

6.1. PRACTICAL RANK ESTIMATION

We now verify the reference microphones technique through experiments and describe
some practical considerations. We use two experimental systems which were explained in
detail in references [5, 10]. One is the system used for the reconstruction of the strengths
of two volume velocity sources (Figure 17) and the other for the reconstruction of



Figure 15. A comparison of the directly calculated (solid) and estimated (dotted) SMK MK : (a) auto-spectra at the
"rst moving position, (b) auto-spectra at the fourth moving position, (c) and (d) magnitude and phase of
cross-spectra between the "rst and fourth moving positions, (e) normalized di!erence R

1
, (f) normalized di!erence

matrix R
2

at kr
ss
"1)37 ("786 Hz, r

ss
"0)095 m) which is the (2,3) resonant frequency for the simply supported

plate model of Figure 7 with output noise. One reference microphone is used.

Figure 16. A comparison of the directly calculated (solid) and estimated (dotted) SMK MK : (a) auto-spectra at the
"rst moving position, (b) auto-spectra at the fourth moving position, (c) and (d) magnitude and phase of
cross-spectra between the "rst and fourth moving positions, (e) normalized di!erence R

1
, (f) normalized di!erence

matrix R
2

at kr
ss
"1)37 ("786 Hz, r

ss
"0)095 m) which is the (2,3) resonant frequency. These results are for the

simply supported plate model of Figure 7 with output noise. Two reference microphones are used.
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Figure 17. Experimental arrangement for the reconstruction of strengths of two volume velocity sources.
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the volume velocities of a randomly vibrating simply supported plate mounted in a "nite
ba%e (Figure 18).

Before conducting the experimental veri"cation, we here consider carefully the estimate
of the rank of matrix SpL pL which consists of experimental data. As pointed out earlier,
a reliable rank estimator of a matrix is the SVD. That is, the rank of a matrix is the
number of singular values larger than a threshold level. Accordingly, since this
threshold level plays a role of distinguishing the signi"cant singular values from the
negligible singular values, the determination of this level is important in rank estimation. In
general, in the rank calculation using the data in connection with the numerical simulations,
the threshold level is chosen based on the machine epsilon of the computer used (see
reference [11]).

However, as far as measured data are concerned, such a threshold level is not suitable,
because, for example, the quantization error related to the analogue-to-digital converter
used in the data acquisition process is, in general, larger than this machine epsilon (see
reference [12], for example). Thus, it is reasonable to choose the threshold level, considering
this kind of uncontrollable error from the practical point of view. Another parameter that
makes di$cult the determination of the rank of matrix SRK RK from the SVD is the signal
processing technique usually used to obtain the acoustic pressure auto- and cross-spectra.
As is well known, when auto- and cross-spectra are estimated by the segment averaging
method, a large number of data segments are necessary to reduce the random error and
a long data segment is required to reduce the bias error. Thus, we cannot help but identify
incorrectly the signi"cant singular values from the cross-spectral matrix SRK RK having random
error and bias error. Kompella et al. [12] studied the e!ect of the number of data segments
and segment length on the singular values, in connection with the determination of the
number of incoherent sources contributing to the response to a system. They reached
similar conclusions regarding the number of data segments and the segment length. In
addition, attention has to be paid to acquiring acoustic pressures with good signal-to-noise
ratio. Otherwise, as described earlier, it becomes problematic to identify correctly the



Figure 18. Experimental arrangement for the reconstruction of volume velocities of a randomly vibrating plate
mounted in a "nite ba%e.
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number of signi"cant singular values due purely to uncorrelated acoustic sources since
background noise also modi"es the magnitudes of the singular values of SRK RK .

However, our purpose is the identi"cation of the required number of reference
microphones necessary to secure the rank equality between the matrices S1) and SpL pL by
inspecting the signi"cant singular values of the matrix SRK RK . Thus, even if there exist spurious
signi"cant singular values which result from imperfect measurement, we have to choose the
reference microphones to be equal to or greater than the number of (true and spurious)
signi"cant singular values. This is borne out by the computer simulations presented
previously.

6.2. EXPERIMENTS

With these considerations in mind, we describe the "rst experimental system shown in
Figure 17. Six microphones are placed to sense the acoustic pressures radiated by two
volume velocity sources which are driven by one random noise generator. Since we use only



Figure 19. Six principal auto-spectra (or singular values) of SpL pL for the model (Figure 17) consisting of the two
volume velocity sources driven by one random noise generator and six microphones.

Figure 20. Virtual coherences of the "rst to sixth virtual acoustic pressure with respect to the physical acoustic
pressure sensed at the microphone 1 in Figure 17 consisting of the two volume velocity sources driven by one
random noise generator and six microphones.
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one random noise generator, it is expected that this model has one signi"cant singular value
(or one signi"cant principal autospectrum of virtual acoustic pressure). This is ensured from
the singular value distributions of SpL pL shown in Figure 19. Also observing the virtual
coherence (Figure 20) of the virtual acoustic pressure with respect to the physical pressure
measured at a microphone (Figure 17) reveals that there exists only one uncorrelated
acoustic source. That is the "rst of six virtual coherences is very close to unity. Accordingly,
we use one reference microphone (so that ranks of SRK RK and S1) are one) and estimate the
moving microphone auto- and cross-spectra SMK MK . As can be seen from Figure 21, the
estimated magnitudes and phases of the components of SMK MK show good agreement with
the directly measured values.



Figure 21. A comparison of the directly measured (solid) and estimated (dotted) SMK MK : (a) auto-spectra at the "rst
moving position, (b) auto-spectra at the second moving position, (c) and (d) magnitude and phase of cross-spectra
between the "rst and second moving positions, (e) normalized di!erence R

1
, (f) normalized di!erence matrix R

2
at

ka"0)1 ("400 Hz, a"0)014 m) for the model of Figure 17 consisting of the two volume velocity sources driven
by one random noise generator and six microphones. One reference microphone is used.

Figure 22. Principal auto-spectra (or singular values) of SpL pL for the model (Fig. 18) consisting of the simply
supported plate excited by one electromagnetic driver and four microphones.
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Now consider the experimental model of the randomly vibrating simply supported plate
mounted in a "nite ba%e shown in Figure 18. (See reference [10] for details.) We use four
microphones to measure the acoustic pressures radiated by the plate excited by one
electromagnetic driver. Thus, one would assume that this system has one uncorrelated
acoustic source and thus the rank of matrix SpL pL will be one. However, whereas the number of
uncorrelated acoustic sources is obviously one, judging the rank of this matrix from this
singular value distribution (Figure 22) is not straightforward. Among the four singular
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values of SpL pL , whilst the third and fourth singular values are relatively small, the second
singular value seems to be signi"cant at some frequencies, for example, at about 310}350
and 420}480 Hz. Although the "rst singular value is associated with one uncorrelated
acoustic source, the second singular value is not. The latter spurious singular value is
possibly due to &&measurement noise'' caused by acoustic re#ections. This can be readily
understood by viewing the geometrical placement of the microphones shown in Figure 18
which are 0)166 m away from the plate. The fact that there are two signi"cant singular
values (true and spurious) at those frequencies is also observed from the virtual coherences
shown in Figure 23. The sum of the "rst and second virtual coherences with respect to the
acoustic pressure sensed at microphone 1 (Figure 18) results in nearly unity at those
frequencies (the virtual coherences with respect to other acoustic pressure showed the
similar results). This indicates that the rank of SpL pL is two at those frequencies. At the other
frequencies, the value of the "rst virtual coherence approaches unity, suggesting that the
rank of SpL pL is unity.

The e!ect of the use of one reference microphone on the estimation of SMK MK is now
investigated. The results of Figure 24 reveal that the estimated values of acoustic
pressure autospectra at the "rst and second moving microphones and magnitudes and
phases of acoustic pressure cross-spectra between the "rst and second moving microphones
follow well the directly measured values at most frequencies. However, a discrepancy
is observed at frequencies about 310}350 and 420}480 Hz, because at those frequencies
we cannot meet the requirement of the rank equality between two matrices SpL pL and S1)

with only one reference microphone. That is to say, as could be seen from the singular-
value distributions (Figure 22) and the virtual coherences (Figure 23), the rank of SpL pL

is two at those frequencies. When the number of reference microphones is increased to two,
the estimated auto- and cross-spectra become closer to the directly measured values
at those frequencies by the virtue of the rank equality. This point can also be observed
clearly by comparing the normalized di!erences R

1
and R

2
of Figure 25 with those

of Figure 24.
Figure 23. Virtual coherences of the "rst (black thick), the second (grey thick), the third (black thin), and the
fourth virtual acoustic pressure (grey thin circle) with respect to the physical acoustic pressure sensed at the
microphone 1 in Figure 18 consisting of the simply supported plate excited by one electromagnetic driver and four
microphones.



Figure 24. A comparison of the directly measured (solid) and estimated (dotted) SMK MK : (a) auto-spectra at the "rst
moving position, (b) auto-spectra at the second moving position, (c) and (d) magnitude and phase of cross-spectra
between the "rst and second moving positions, (e) normalized di!erence R

1
, (f) normalized di!erence matrix R

2
at

ka"0)1 ("458 Hz, a"0)014 m) for the model of Figure 18 consisting of the simply supported plate excited by
one electromagnetic driver. One reference microphone is used.

Figure 25. A comparison of the directly measured (solid) and estimated (dotted) SMK MK : (a) auto-spectra at the "rst
moving position, (b) auto-spectra at the second moving position, (c) and (d) magnitude and phase of cross-spectra
between the "rst and second moving positions, (e) normalized di!erence R

1
, (f) normalized di!erence matrix R

2
at

ka"0)1 ("458 Hz, a"0)014 m) for the model of Figure 18 consisting of the simply supported plate excited by
one electromagnetic driver. Two reference microphones are used.
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7. CONCLUSIONS

For a rapid construction of the full matrix of acoustic pressure cross-spectra, we have
suggested a technique using the concept of reference microphones. This has been seen as
a useful tool, because this technique enables the construction of this matrix with good
precision, saving measurement e!ort. The use of u reference microphones and v moving
microphones reduces the total number of measurements to (u (u#1)/2)#uv from
(u#v) (u#v#1)/2 (which is the number required for direct measurement, when dual
channel experimental equipment is employed). This method has constructed satisfactorily
the full matrix regardless of the nature of acoustic sources (correlated or uncorrelated) and
also when acoustic pressure data are corrupted by noise. The prerequisite of using this
technique is to validate the assumption of the rank equality between the full matrix S

pp
(or SpL pL )

and its submatrix S
1

(or S1) ). To do this, it is necessary to select properly the number of
reference microphones. This is determined by knowing how many signi"cant singular values
of the matrix S

pp
(or SpL pL ) are present. That is to say, the number of reference microphones

should be at least equal to the number of signi"cant singular values of the matrix S
pp

(or SpL pL ).
However, since we do not have information regarding the acoustic sources in the inverse
problem, we have proposed a method of choosing the number of reference microphones.
Regarding the choice of reference microphones, attention should be drawn to the case in
which the output noise corrupts acoustic pressures. Since the output noise increases the
number of signi"cant singular values of the matrix SpL pL , compared with that of S

pp
, in this

case the number of reference microphones has to be chosen by examining carefully the
singular value distribution of the matrix SRK RK of reference position auto- and cross-spectra.
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