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The dynamic properties of the rubber element of a vibration isolator are a!ected by its
compression ratio, and thus the dynamic characteristics of a vibration isolator depend upon
the static load. A vibration isolator may be modelled in terms of its phase velocity.
Therefore, to predict the e!ect of the static load, a knowledge of the relationship between the
phase velocity of the rubber element and its compression ratio is required. This study
proposes such a relationship, and applies it to experimental data from the literature.
The proposed relationship is experimentally investigated and improved in a companion
publication. ( 2000 Academic Press
1. INTRODUCTION

The dynamic properties of a rubber are a!ected by its static compression. Thus, to assist in
the development of vibration isolators, it is necessary to have a dynamic model of the
vibration isolator that includes the e!ect of static compression. A model is required that
predicts the dependence of the dynamic characteristics of a vibration isolator on its
compression ratio. The compression ratio of a vibration isolator is de"ned as the static
compressed height of the rubber element under load, divided by its uncompressed height.
Thus, the compression ratio of an unloaded vibration isolator is unity. Snowdon [1]
developed a model of a vibration isolator in terms of its four-pole parameters, which
required the phase velocity of the rubber element. It is therefore necessary to know the
dependence of the phase velocity on the compression ratio.

The vibration isolator is considered to comprise a resilient element of homogeneous
rubber that is securely bonded to two end plates. The undeformed rubber element is
assumed to have a regular right prismatic shape. Because rubber may be considered as
incompressible, a practical vibration isolator under static compression produces
deformation of the rubber element, which may be described as barrelling. Under
deformation, the rubber element is assumed to have a regular right barrel shape with
parallel ends. The end plates are used for attaching the vibration isolator to the upper and
lower structures, and are assumed to have no structural modes in or near the frequency of
interest. A rubber that is commonly used in vibration isolators is natural rubber vulcanisate
with carbon black "ller, and this study is concerned with this type of rubber.

Pure longitudinal waves cannot exist in a rod, because its lateral surfaces are free of
constraints, thus permitting longitudinal stress to produce lateral strains via the Poisson
ratio e!ect [2]. However, the quasi-longitudinal waves that exist will be referred to as
longitudinal waves, in keeping with many other authors. It is assumed that plain
cross-sections of the rod stay plain.
0022-460X/00/260021#22 $35.00/0 ( 2000 Academic Press
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The barrelling behaviour is modelled by following a number of steps. Initially, the
compressed rubber element is treated as a uniform rod that is a regular right prism, and the
familiar longitudinal wave equation is used to model its behaviour. Longitudinal wave
equations for rods have been derived [3]. The terms &&bar'' and &&beam'' are also used by
other authors for the word &&rod''. The longitudinal wave equation for the compressed
rubber element is derived, initially by treating it as a short rod with radial motion e!ects,
and then by including the e!ect of the deformation on the apparent rubber properties. The
short compressed rubber rod is then considered to have a barrel shape, and "nally an
equation is proposed for its phase velocity. This analysis is focused towards a cylindrical
rod, which is a fundamental shape in modelling.

Complex numbers are represented with the superscript *, and real numbers are not

superscripted. Imaginary components are represented using j"J!1. In the
contemporary literature, the commonly used symbols for the compression ratio and
wavelength are both lambda, j. Other authors have used the capital lambda symbol K for
the wavelength. This study denotes the compression ratio and wavelength by the symbols
j and K respectively.

2. LONG RUBBER ROD

A long rod is de"ned to be a rod that has small lateral dimensions compared to the
longitudinal wavelength. In this case, the radial motions caused by the longitudinal
vibrations may be treated as negligible. It is assumed that the only stresses that occur
are longitudinal in nature and are uniformly distributed across the cross-sections.
Quantitatively, the lateral dimensions should be less than one-tenth of the wavelength [2].

Consider a long rubber rod that is homogeneous, of uniform cross-section and right
prismatic shape. It has height h and cross-sectional area A, and is composed of a rubber
having a dynamic complex normal modulus E*

0
, loss angle d

0
and density o. Then the

complex normal modulus for the long rod may be expressed as

E*
0
"E

0
e+d0 . (1)

From the wave equation the phase velocity for the undeformed rubber rod c*
0

is

c*
0
"S

E*
0

o
(2)

and from equation (1) this may be expressed as

c*
0
"c

0
e +d0@2. (3)

The magnitude of the phase velocity for the undeformed rubber rod is c
0
"Dc*

0
D . The

internal dampening of the rod is taken into account by using complex numbers for E*
0

and c*
0
.

3. SHORT RUBBER ROD

A short rod is de"ned to be a rod which has lateral dimensions comparable to the
longitudinal wavelength. This applies if the lateral dimensions are greater than one-tenth of
the wavelength at the frequency of interest. Consider a short rubber rod that is
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homogeneous, of uniform cross-section and right prismatic shape. Let the wavelength
phase, velocity magnitude and frequency of the longitudinal wave in the short rubber rod be
K

F
, c

F
and f respectively. Then

u"2nf (4)

and

c
F
"fK

F
. (5)

De"ne the phase velocity reduction factor, H*, as the ratio of the phase velocity of the
short rubber rod c*

F
to that of the long rod, given by

H*"
c*
F

c*
0

. (6)

Let the moment of inertia of a solid rod, of radius r and mass m, about its longitudinal
axis be I. Then the radius of gyration r

G
of the rod is de"ned by

I"r2
G
m (7)

which yields

r
G
"

r

J2
. (8)

For a short rod the radial motion that exists through the Poisson contraction cannot be
ignored. For rubber, the loss angles for the complex elastic normal and shear moduli are
assumed to be equal, and consequently the Poisson ratio l is a real number [4]. Love [5]
developed a theory that considers this radial inertia by assuming that the radial
displacement is proportional to the radius. This yields the phase velocity reduction factor as

H*"C1!A
ulr

G
c*
0
B
2

D
1@2

. (9)

This approach for a short rod is also known as Rayleigh's correction for lateral inertia
[3, 6]. Equation (9) may be re-arranged to give [5]

H*"C1#A
ulr

G
c*
F
B
2

D
~1@2

. (10)

The magnitude of the phase velocity reduction factor is H"DH* D. From equations (3) and
(9) the phase velocity reduction factor may be expressed as

H*"He +t@2 , (11)

where

t"tan~1C
(ulr

G
)2 sin d

0
c2
0
!(ulr

G
)2 cos d

0
D . (12)

3.1. ACCURACY OF PHASE VELOCITY REDUCTION FACTOR

Consider a short circular rod of radius r, length h and composed of a rubber having
negligible loss factor. Therefore, d

0
:0 which in equation (12) gives t:0. With the
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assumption that l"0)5, equations (4), (5), (8) and (10) imply

H"C1#
n2

2 A
r

K
F
B
2

D
~1@2

. (13)

The accuracy of the magnitude of the phase velocity reduction factor calculated
from equation (13) may be compared with the exact solution determined by the
Pochhammer}Chree theory [7, 8] for an in"nitely long rod with various diameter-to-
wavelength ratios. The exact theory has a dispersive solution with an in"nite number of
branches. In the current analysis, low frequencies are of concern and the mode of most
interest is the "rst (symmetrical) one, referred to as the M

1,1
mode by Redwood [9]. The

exact "rst mode values of the ratio of phase velocities, for a Poisson ratio of 0)5, agree
closely with the ratios given by Davey and Payne [10] for rubber cylinders having
diameter-to-wavelength ratios from 0)2 to 2. This "rst mode ratio is termed as phase
velocity reduction factor for the exact Pochhammer}Chree solution.

The exact solution was evaluated using the following expression derived from the analysis
by Bancroft [11] of the exact Pochhammer}Chree solution and simpli"ed using l"0)5,

jnX (3H2!2)2 J
0
( jnX)

4J
1
( jnX)

#

3H2

2
!nX J3H2!1

J
0
(nXJ3H2!1)

J
1
(nXJ3H2!1)

"0, (14)

where X"2r/K
F
is the diameter-to-wavelength ratio, J

0
is a Bessel function of the "rst kind

of order 0, and J
1

is a Bessel function of the "rst kind of order 1.
The error of the phase velocity reduction factor for rubber using the Love theory,

referenced to the exact solution, is shown in Figure 1. It does not exceed 4% for diameter-
to-wavelength ratios from 0 to 1)20, and does not exceed 10% for diameter-to-wavelength
ratios from 0 to 1)41. This analysis shows that Snowdon [4, p. 184] needs a minor correction
to the statement that &&the phase velocity predicted by the Love theory is never more than
approximately 22% greater than that given by the exact theory'' for diameter-to-
wavelength ratios up to 2. These values in fact apply for a Poisson ratio of 0)29 applicable to
steel [3], and not for rubber.
Figure 1. Magnitude error of phase velocity reduction factor for rubber, based on the Love theory.
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4. EFFECT OF COMPRESSION RATIO ON RUBBER PROPERTIES

The rubber in a vibration isolator causes it to have non-linear behaviour. In common
practice, the vibration isolator supports a machine and is subjected to a dynamic force
superposed on a static load. Under normal operation, the input dynamic vibration
amplitudes are generally much smaller than the compressed height of the rubber. The
vibration isolator thus operates dynamically about a static point on its force displacement
curve. For small dynamic strains of not greater than 1]10~3, the complex normal modulus
may be treated as constant [12, 13]. Under these conditions, the dynamic characteristics of
a vibration isolator may be considered to be linear with respect to displacement, but still
frequency dependent.

Consider the dynamic properties of a vibration isolator under a large static strain, i.e.,
larger than 10%. Since the shape factor depends only upon the geometry of the isolator and
not the material properties, Payne [14] argued that it should have the same value for the
real and imaginary components of the complex moduli. Payne [14}18] investigated the
shape factors and functions for "lled and un"lled rubber specimens under di!erent static
strains, and the major "ndings are presented by Payne [19]. He found that for a small
sinusoidal strain superposed on a compression ratio j, the dynamic elastic normal modulus
E@
D

of an un"lled rubber is related to its dynamic undeformed elastic shear modulus G@
0

by

E@
D
"(1#bS2)A

2#j3

j3 BG@
0
, (15)

where S is the shape factor of the undeformed rubber, and b is a constant.
This study uses the shape factor as de"ned by previous researchers [20, 21], i.e., the ratio

of the loaded area at one end to the total force-free area of the undeformed rubber element.
In the case of a cylindrical element of undeformed radius r

0
and undeformed height h

0
, the

shape factor is given by

S"
r
0

2h
0

. (16)

The parameter b is a numerical constant for a given rubber, and its values have been
tabulated for di!erent hardness values of rubbers [22].

Thus, from equation (15) the elastic normal modulus depends upon three terms, the last
one being the undeformed elastic normal modulus which varies with factors such as the
frequency and temperature. The "rst two terms depend only on the geometry, since for
a given rubber b is constant. Thus, the relationship between the compressed and
undeformed moduli is dependent only on the geometry, for the same conditions.

Payne [14, 17}19] extended the analysis leading equation (15) to include the loss normal
modulus, and proposed that complex instead of elastic moduli be used. Clearly, this
argument implies that the loss factor must be constant, and generates the equation

E*
D
"(1#bS2)A

2#j3

j3 B G*
0
. (17)

Rubbers used for vibration isolators closely approximate incompressible elastic materials
for which l"0)5 [22] and thus

E*
0
"3G*

0
(18)
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which implies that equations (15) and (17) may respectively be expressed as

E @
D
"(1#bS2)A

2#j3

3j3 B E@
0

(19)

and

E*
D
"(1#bS2)A

2#j3

3j3 B E*
0
. (20)

Note that the factor of 1/3 that appears in equations (19) and (20) originates in equation
(18), which is an approximation that becomes less accurate as the hardness of the rubber
increases. This is because the proportion of added non-rubber constituents increases and
also because of thixotropic and other e!ects, and for hard rubbers the approximation may
be taken as E*+4G* giving a factor of 1/4 instead of 1/3.

However, the factor of 1/3 is needed to ensure that equations (19) and (20) are valid for the
undeformed case. If the rubber element is undeformed, then j"1 which upon substitution
into equations (19) and (20) yields

E @
D
"(1#bS2)E @

0
(21)

and

E*
D
"(1#bS2)E*

0
. (22)

Equations (21) and (22) are intuitively correct for the undeformed case, which implies that
the factor of 1/3 should remain unchanged. Consequently, it is expected that the accuracy of
equations (19) and (20) will diminish as the hardness of the rubber increases.

4.1. PREVIOUS RESEARCH

Previous researchers have investigated the e!ects of static extension [23}26] and
compression [14, 18, 19, 27}36] on the loss factors of rubbers. Their "ndings indicate that in
general, the loss factor is a function of the compression ratio, the elastic normal modulus is
given by equation (21), and equation (22) is valid if the loss factor is constant over the range
of static strains of concern. Equation (22) is also approximately true for rubbers that have
low loss factors, such as un"lled rubbers, since the loss normal modulus is small compared
to the elastic normal modulus. The cited experimental work has been conducted at
frequencies up to approximately 400 Hz [28] and room temperatures of approximately
18}233C.

The vibration isolators of primary concern are those that have elements of natural rubber
vulcanisates "lled with carbon black. Of the cited researchers, those that investigated these
rubbers were Kosten [27], Vashchuk and Rosin [30], and Sullivan and Demery [25, 26].
Kosten [27] reported on the absolute value of the complex normal modulus, and Sullivan
and Demery [25, 26] investigated the extensional case. In terms of the e!ect of the
compression ratio, the results of Vashchuk and Rosin [30], and Klyukin [31] were unclear.

In summary, it may be said that the "ndings of previous researchers are not conclusive as
regards the validity of equation (22). To be able to predict the e!ect of the compression ratio
on the dynamic properties of vibrations isolators, it is assumed that equation (22) is
approximately valid for natural rubber vulcanisates "lled with carbon black under common
vibration isolator conditions. This assumption will be treated as a starting point.
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5. LONG COMPRESSED RUBBER ROD

Consider a long compressed rubber rod with compression ratio j, and that is
homogeneous, of uniform cross-section and right prismatic shape. Assume that it has phase
velocity c*

L
and apparent complex normal modulus E*

L
. From the wave equation

c*
L
"S

E*
L

o
. (23)

Replacing E*
R

by E*
L

in equation (20) and combining equations (2), (20) and (23) yields

c*
L
"C

(1#bS2) (2#j3)

3j3 D
1@2

c*
0
. (24)

6. SHORT COMPRESSED RUBBER ROD

Now include the lateral motion e!ects of a short rubber rod, discussed in section 3.
Consider a short compressed rubber rod with compression ratio j, and that is
homogeneous, of uniform cross-section and right prismatic shape. Assume that it has phase
velocity c*

R
and apparent complex normal modulus E*

R
. From the wave equation

c*
R
"S

E*
R

o
. (25)

Replacing c*
L

by c*
R
, and c*

0
by c*

F
in equation (24) gives

c*
R
"C

(1#bS2) (2#j3)

3j3 D
1@2

c*
F
. (26)

Combining equations (6), (9) and (26) yields

c*
R
"C

(1#bS2) (2#j3)

3j3 D
1@2

C1!A
ulr

G
c*
0
B
2

D
1@2

c*
0
. (27)

De"ne the phase velocity correction factor X*
R

such that equation (27) may be expressed
in the form

c*
R
"X*

R
c*
0
, (28)

where

X*
R
"C

(1#bS2) (2#j3)

3j3 D
1@2

C1!A
ulr

G
c*
0
B
2

D
1@2

. (29)

The magnitude of the phase velocity correction factor is X
R
"DX*

R
D . Then from equations

(2), (25) and (28)

E*
R
"(X*

R
)2E*

0
. (30)

Alternatively, equations (9), (10) and (29) give

X*
R
"C

(1#bS2) (2#j3)

3j3 D
1@2

C1#A
ulr

G
c*
R
B
2

D
~1@2

. (31)



28 J. D. DICKENS
7. SHORT COMPRESSED RUBBER ROD WITH BARREL SHAPE

Equations (27)}(30) derived in sections 2}6, when applied to a vibration isolator, imply
that the rubber element of the vibration isolator is of uniform shape and cross-sectional
area, i.e., that it is not under static compression. To be able to apply these equations to
a vibration isolator under static compression, the value for the complex normal modulus
used in equation (20) needs to be corrected.

Assume that the deformation e!ects of the hydrostatic pressure within the rubber element
caused by the static compression are approximately taken into account by the shape factor
term (1#bS2) in equation (20) [37, Appendix 1]. This term is included in the present
discussion in equation (29). This is also known as the end e!ect and arises from the end
plates being securely bonded to the ends of the rubber element. Of concern is the dynamic
small stress strain behaviour, which is superposed on the static stress and strain. For strain
amplitudes not greater than 1]10~3, linear behaviour is assumed (see section 4).

Consider the deformed shape of the compressed rubber element of a vibration isolator
that experiences sinusoidal vibration at the circular frequency u. The longitudinal distance
x along the rod is measured from one end (see Figure 2). Compressive stresses and strains
are de"ned to be positive, so that a compressive stress produces a positive stress and strain.
Let the longitudinal vibration of the rod result in a longitudinal displacement u*"u*(x).

The analysis in sections 2}6 has assumed that the cross-sectional area remains constant,
but in reality it is a function of the axial distance x, i.e., A"A(x). To take this into account,
Snowdon [4] developed a wave equation which when applied to the present situation gives

L2u*

Lx2
#

1

A

LA

Lx

Lu*

Lx
#A

u
c*
R
B
2
u*"0. (32)

By using the velocity c*
R

in equation (32) the corrections for radial inertia, compression and
shape factor have been included. Knowledge of the function A"A(x) means that equation
(32) may be employed to predict the longitudinal behaviour.
Figure 2. Deformed barrel shape of compressed cylindrical rubber element.
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Assume that lateral plane sections of the rubber remain plane during the deformation of
the vibration isolator. This implies that longitudinal sections of the rubber form parabolic
shapes [37, Appendix 1]. Consider the external longitudinal surface shape of a compressed
cylindrical rubber element of a vibration isolator (Figure 2). The rubber element has end
radii of r

0
, a central radius of r

1
and a height of h. Let a point on the surface have

co-ordinates (r, x), where r is the radius at a longitudinal distance x from the bottom end
plate. Then the locus of points satis"es a parabolic equation of the form

Ax!
h

2B
2
"2p(r

1
!r) , (33)

where 2p is the latus rectum.
Substituting the boundary points of (r

0
, 0) and (r

0
, h) into equation (33) yields the latus

rectum and equation (33) becomes

r"r
1
!A

2x

h
!1B

2
(r
1
!r

0
) . (34)

From equation (34) the volume K of the rubber element is given by

K"P
x/h

x/0

nCr1!A
2x

h
!1B

2
(r
1
!r

0
)D

2
dx , (35)

which simpli"es to

K"

nh

15
(3r2

0
#4r

0
r
1
#8r2

1
) . (36)

The undeformed height of the rubber element is h
0
, the undeformed cross-sectional area

is A
0

and the compression ratio is j. Let the undeformed volume be K
0
. Then

A
0
"nr2

0
(37)

and

K
0
"h

0
A

0
. (38)

The compressed height is

h"jh
0
. (39)

Assuming that the rubber is incompressible implies that K"K
0
, which from equations

(36)}(39) yields

8m2#4m#3A
j!5

j B"0, (40)

where

m"
r
1

r
0

. (41)
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Solving the quadratic equation (40) and selecting the positive root gives

m"
1

4 AS5A
6!j

j B!1B . (42)

The compression ratio may be expressed in terms of the static strain e
S

as

j"1!e
S
, (43)

which when substituted into equation (42) gives

m"
1

4A5A1#
e
S
5 B

1@2
(1!e

S
)~1@2!1B . (44)

The strain terms in equation (44) may be expanded using in"nite binomial series. For
small strains the expansions may be approximated by ignoring terms containing strains of
order 2 and above, which yields the approximation

m"(1#3
4

e
S
) . (45)

Gent and Lindley [37, Appendix 1] considered the compression behaviour of a circular
rubber element for small strains, and derived an equation that agrees with equation (45).

Substituting equations (42) and (41) into equation (34) gives

r"
r
0
4 CS5A

6!j
j B!A

2x

h
!1B

2

AS5 A
6!j

j B!5B!1D . (46)

The cross-sectional area A is given by

A"nr2 . (47)

Substituting equation (46) into equation (47) yields

A"

nr2
0

8

i
g
g
j
g
g
k

5CA
3#2j

j B!S5 A
6!j

j BD A
2x

h
!1B

4
!6CA

5

jB!S5A
6!j

j BDA
2x

h
!1B

2

#CA
15!2j

j B!S5A
6!j

j BD

e
g
g
f
g
g
h

)

(48)

Therefore from equation (48),

LA

Lx
"

nr2
0

h A
2x

h
!1BG5CA

3#2j
j B!S5A

6!j
j BDA

2x

h
!1B

2
!3CA

5

jB!S5 A
6!j

j BDH .

(49)

Substituting equations (48) and (49) into equation (32) yields the partial di!erential equation

L2u*

Lx2
#

Lu*

Lx
f
1
#k*2u*"0, (50)
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where f
1

is a function of j and x/h , de"ned as

f
1
"

1

A

LA

Lx
(51)

with A and LA/Lx given by equations (48) and (49), and

k*"
2n
K*

R

. (52)

The wave number is k"Dk* D and the wavelength is K
R
"DK*

R
D .

Equation (50) does not have a closed-form solution, and so numerical solutions are
determined in section 7.1.1 and an approximate algebraic solution is proposed in section
7.2.

7.1.1. Numerical solution

Numerical solutions of equation (50) for compression ratios of 0)9, 0)85, 0)8, 0)75 and 0)7
were determined using Matlab [38], and the procedure used for each solution is as follows.
The quantities k* and K*

R
are assumed to be real.

Equation (50) was solved using increments of Dx"0)0001h from x"0 to h, with
boundary conditions of u*"0 at x"0 and h. At time t, the solution has the form

u*";
0
; sin(kx)e +ut (53)

where

k"
2n
K

R

, (54)

;
0

is a constant and the variable ; is a function of x/h , with ;"1 at x/h"0 and 1.
; represents the geometrical e!ect of deforming the cylindrical rubber element on the
amplitude of the wave. The equation of the undeformed rubber element is given by equation
(53) with ;"1. De"ne the spatial variable u

1
to be a function of x/h by

u
1
"; sinCkhA

x

hBD . (55)

To discern the amplitude envelope of u
1
, the height of the rubber element was set at 200

cycles of the wave with K
R
"0)005h. This yielded u

1
, using equations (54) and (55), as

u
1
"; sinC400nA

x

hBD . (56)

; was then determined by applying the Hilbert transform to u
1
, and a polynomial of order

4 was "tted to the data points of ;.
From the work of Love [5], Abramson et al. [3] and Skudrzyk [6], the phase velocity

reduction factor of Love is given by considering the kinetic energy of the vibrating rod, as
follows up to equation (60). All quantities are considered to be real. The kinetic energy of the
rod excluding the lateral motion ¹

1
is given by

¹
1
"K

oA

2 P
h

0
A
Lu*

Lt B
2
dx K (57)
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and the kinetic energy of the rod due only to the lateral motion ¹
2

is given by

¹
2
"K

oA

4 P
h

0
A
lrL2u*

LxLt B
2
dx K . (58)

Therefore, the increase in the total kinetic energy due to the lateral motion is

a"1#
¹

2
¹

1

. (59)

The potential energy is una!ected by the lateral motion. The increase in kinetic energy may
be accounted for by increasing the density of the rod by the factor a, which in equation (25)
implies a phase velocity reduction factor H

K
of

H
K
"

1

Ja
. (60)

Equations (53) and (57)}(60) with the speci"ed boundary conditions of the second
paragraph of this section yield

H
K
" 1#

v2P
h

0

r2A
L;
;Lx

sin(kx)#k cos(kx))2dx

2 P
h

0

;2 sin2(kx) dx

~1@2

. (61)

For constant ; and r, equation (61) with equations (8) and (54) reduces to the same form
expressed by equation (10), as expected. To enable a meaningful comparison to be made
later in section 7.2.5, de"ne the diameter-to-wavelength ratio X

R
as

X
R
"

2r
0

K
R
Jj

. (62)

For the purposes of computation, the values of h
0
"1 and r

0
"0)1 were selected.

Therefore h"j from equation (39), and for a given diameter-to-wavelength ratio, equation
(62) gives K

R
. It is assumed that l"0)5. Thus, the numerical values of H

K
were determined

from the values of r, k and the polynomial "t of ; using equations (46), (54) and (61).
The curves of H

K
against X

R
are plotted in Figure 3, for the compression ratios

considered. The other curves shown in the "gure are derived in section 7.2.5.

7.2. PROPOSED CORRECTION FOR BARREL SHAPE

An approximate closed-form solution is proposed and compared with the numerical
solutions of section 7.1.1. This solution approximates the compressed barrel of the rubber
element with a regular right cylinder of equal height and volume, termed the e!ective
cylinder. It is assumed that the rubber volume remains unchanged during deformation, and
that the end e!ects are taken into account by the shape factor term (1#bS2), as stated in
section 7. The proposed solution also accounts for the strain in determining the complex
normal modulus referenced to the compressed state. In sections 7.2.1}7.2.5, the
cross-sectional areas and the radii of gyration for the e!ective cylinder and barrel are
determined and compared.



Figure 3. Magnitude of phase velocity reduction factor for compressed rubber element based on the Love
theory and proposed e!ective rubber cylinder. Values for compression ratios of 0)95, 0)9, 0)85, 0)8, 0)75 and 0)7 are
shown, but are indistinguishable from each other on this scale.
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7.2.1. Cross-sectional area of e+ective cylinder

Consider the notion of an e!ective cross-sectional area of the barrelled rubber element of
the vibration isolator. Clearly, for a large compression ratio j, the cross-sectional area
varies for a symmetrical vibration isolator from a "xed value at the bonded ends to
a maximum value midway between the ends. The e!ective cross-sectional area has a value
that lies between the areas of the bonded ends and the area at the centre. De"ne the e!ective
cross-sectional area to be the cross-sectional area of the e!ective cylinder. Correspondingly,
the true stress will vary as a function of the height. Consequently, the e!ective stress is
de"ned to be the stress that corresponds to the e!ective cross-sectional area.

The undeformed element has height h
0

and cross-sectional area A
0
, and the e!ective

cylinder has height h and cross-sectional area A
C
. The barrelled and e!ective cylindrical

elements have complex normal moduli of E*
D

and E*
C

respectively. The modulus E*
C

is an
apparent complex normal modulus de"ned for the purpose of applying the wave equation.
For a given compression ratio, the area A

C
is equal to the uniform cross-sectional area of the

compressed rubber with unbonded ends at the same compression ratio. Assuming that the
volume of the rubber remains constant,

A
C
"

A
0

j
. (63)

7.2.2. Radius of gyration of e+ective cylinder

Consider a rubber element of regular right cylindrical shape and e!ective cross-sectional
area A

C
. This is the e!ective rubber cylinder, and its radius r

C
is given by equations (47) and

(63) as

r
C
"

r
0

Jj
. (64)
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Therefore, from equations (8) and (64), the radius of gyration r
G

is given by

r
G
"a

C
r
0

(65)

where

a
C
"

1

J2j
. (66)

7.2.3. Cross-sectional area of barrel

Consider the cylindrical elemental volume at height x of the barrel (see Figure 2). It has
height dx, cross-sectional area A, radius r and longitudinal displacement du* when an
exciting force F* is applied to the end of the compressed element. Therefore

u*"
F*

E*
D
P

x/h

x/0

dx

A
. (67)

It is desired to "nd the cross-sectional area A
E

of an equivalent cylinder, that gives the same
longitudinal displacement of the compressed element at the same compression ratio. For
a regular right cylinder, equation (67) gives

u*"
F*h

E*
D
A

E

. (68)

Solving for A
E

from equations (67) and (68) gives

A
E
"hAP

x/h

x/0

dx

A B
~1

. (69)

From equations (47) and (69),

A
E
"nhAP

x/h

x/0

dx

r2 B
~1

. (70)

Let the integration term in equation (70) be I, which from equation (34) is given by

I"P
x/h

x/0

dx

[r
1
!(2x/h!1)2(r

1
!r

0
)]2

. (71)

Let the variable s be de"ned by

s"
2x

h
!1 (72)

and the parameter a by

a"S
r
1

r
1
!r

0

(73)

for r
1
Or

0
.
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Then equation (71) may be written in the more convenient form of

I"
h

2(r
1
!r

0
)2 P

s/1

s/~1

ds

(a2!s2)2
. (74)

Performing the de"nite integration of equation (74) gives

I"
h

2r2
0
m C1#

ln[2m!1#2Jm (m!1)]

2Jm(m!1) D (75)

where m is de"ned by equation (41) and given by equation (42).
Substituting equation (75) into equation (70) with equation (37) yields an equivalent

cylinder factor E as

A
E
"EA

0
, (76)

where

E"

4mJm(m!1)

2Jm(m!1)#ln[2m!1#2Jm(m!1)]
. (77)

7.2.4. Radius of gyration of barrel

From equation (7), the radius of gyration r
G

of the rubber barrel is given by

r2
G
"

1

2h P
x/h

x/0

r2dx . (78)

Substituting equation (46) into equation (78) gives

r2
G
"

r2
0

32hP
x/h

x/0
CS5A

6!j
j B!A

2x

h
!1B

2

AS5A
6!j

j B!5B!1D
2
dx . (79)

Simplifying equation (79) produces

r
G
"a

G
r
0
, (80)

where

a
G
"

1

J2j
. (81)

7.2.5. Comparison of e+ective cylinder and barrel

The two factors, 1/j and E, for the cross-sectional area of an equivalent regular cylinder
are compared in Table 1 over the range of compression ratios from 0)95 to 0)7. Note that
equation (77) is not valid for a compression ratio of unity. The table also shows the
percentage error of the 1/j factor relative to E.

Vibration isolators are commonly used over the range of compression ratios from 0)95 to
0)80, and over this range the percentage di!erence between the two factors, 1/j and E, is less
than 1% (see Table 1). It is considered that the error introduced by using the factor 1/j is
acceptable. Therefore, the algebraically simpler factor 1/j will be used instead of E in section
7.2.6.



TABLE 1

Factors for cross-sectional area

j 1

j
m E Di!erence

(%)

0)95 1)053 1)039 1)052 0)05
0)90 1)111 1)081 1)109 0)21
0)85 1)177 1)126 1)171 0)49
0)80 1)250 1)175 1)239 0)91
0)75 1)333 1)229 1)131 1)48
0)70 1)429 1)288 1)398 2)22
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The two factors, a
C

and a
G

for the radius of gyration of an equivalent regular cylinder are

identical, equations (66) and (81). Therefore, the factor 1/J2j will be used in section 7.2.6.

The two factors 1/j and 1/J2j respectively a!ect the apparent complex normal modulus
and radius of gyration of the rod. Equation (61) does not take into account changes in the
complex normal modulus, and so to compare its predictions to that of the e!ective cylinder,
only the modi"ed radius of gyration is included to give the reduced phase velocity
correction factor of the e!ective cylinder H

B
. All quantities are treated as real. Equations (4),

(5), (10), (64) and (80) yield

H
B
"[1#1

2
(nlX

F
)2]~1@2 (82)

where the diameter-to-wavelength ratio X
F

is de"ned by

X
F
"

2r
0

K
F
Jj

. (83)

For equal wavelengths K
F
"K

R
, equations (62) and (83) imply that X

F
"X

R
. Thus the

curves of H
B

against X
F

are also plotted in Figure 2, for the compression ratios of 0)9, 0)85,
0)8, 0)75 and 0)7. The H

B
and H

K
curves of Figure 3 show close agreement, and for

diameter-to-wavelength ratios from 0 to 3 agree within 1% of each other, referenced to the
H

K
values.

This gives high con"dence in the proposed e!ective rubber cylinder as a model for the
barrel shape of the deformed rubber element.

7.2.6. Proposed correction factor

Consider the e!ective rubber cylinder with the correction factors derived in the previous

sections 7.2.1}7.2.5, namely 1/j for the cross-sectional area and 1/J2j for the radius of
gyration. Let the stress of the e!ective rubber cylinder be p*

C
, and the compressed stress

calculated with the area of the bonded ends be p* . Therefore from equation (63),

p*
C
"jp* . (84)

The compressed strain e* relative to the undeformed area and height was used in sections
2}6. However, in equation (32) the compressed condition is treated as the reference state.
Let the compressed strain with respect to the compressed height be e*

C
for the e!ective
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rubber cylinder. Therefore

e*
C
"

e*
j

. (85)

The e!ective cylinder has a complex normal modulus E*
C
, which corresponds to p*

C
ad e*

C
,

and the complex normal modulus corresponding to p* and e* is E*
R
. From equations (84)

and (85), E*
C

is given by

E*
C
"j2E*

R
. (86)

Let X*
C

be the phase velocity correction factor and c*
C

the phase velocity of the e!ective
rubber cylinder of modulus E*

C
. Then

E*
C
"(X*

C
)2E*

0
. (87)

and

c*
C
"X*

C
c*
0
. (88)

Applying the correction of equation (86) to equation (30) gives

E*
C
"(jX*

R
)2E*

0
(89)

Comparing equations (87) and (89) yields

X*
C
"jX*

R
(90)

and from equations (11) and (28), X*
C

may be written as

X*
C
"X

C
e +t@2 . (91)

The magnitude of the phase velocity of the e!ective rubber cylinder is c
c
"Dc*

c
D, and

equations (3) and (88) give

c*
C
"c

C
e +(d0`t)@2 . (92)

From equations (29), (88) and (90)

c*
C
"G

(1#bS2)(2#j3)[(c*
0
)2!(ulr

G
)2]

3j H
1@2

. (93)

Applying equation (65) with a Poisson ratio of 0)5 simpli"es equation (93) to

c*
C
"

M(1#bS2)(2#j3)[8j(c*
0
)2!(ur

0
)2]N1@2

2J6j
. (94)

Alternatively, from equations (31) and (90)

X*
C
"C

(1#bS2)(2#j3)

3j D
1@2

C1#A
ulr

G
c*
C
B
2

D
~1@2

, (95)

where r
G

is given by equation (65).
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Let the wavelength and frequency of the longitudinal wave in the e!ective rubber cylinder
be K

C
and f respectively. Then

c
C
"fK

C
. (96)

Combining equations (4), (92), (95) and (96) gives the magnitude X
C

of the phase velocity
correction factor as

X
C
"CA

2nlr
G

K
C
B
4
#2A

2nlr
G

K
C
B
2
cos(d

0
#t)#1D

~1@4

C
(1#bS2)(2#j3)

3j D
1@2

, (97)

where t is given by equation (12) and r
G

is given by equation (65).
Using a Poisson ratio of 0)5 in equation (97) and substituting equation (65) gives

X
C
"S

2

3
K

C
[(nr

0
)4#4j(nr

0
K

C
)2 cos(d

0
#t)#4j2K4

C
]~1@4(1#bS2)1@2(2#j3)1@2 ,

(98)

where

t"tan~1C
(ur

0
)2 sin d

0
8jc2

0
!(ur

0
)2 cos d

0
D . (99)

Equations (65), (93) and (94) embody correction factors for the static compressive e!ects
on the phase velocity of longitudinal-wave propagation in a short rubber rod compressed to
a barrel shape. The individual factors have been proposed by previous researchers, but
a literature search showed that they have not been combined and applied to rubber rods
under static compression using the notion of an e!ective rubber cylinder to account for the
barrelling. These equations are proposed by this study.

From section 3.1 an upper limit needs to be set on the diameter-to-wavelength ratio.
Assume that the error analysis of section 3.1 may be applied by using the e!ective rubber
cylinder to account for the barrelling. Let the maximum tolerable error in the phase velocity
reduction factor be 10%. Then the maximum diameter-to-wavelength ratio is 1)41, where
the diameter is that of the e!ective rubber cylinder.

7.2.7. Comparison of proposed correction factor and experimental data

This section compares experimental data from previous research with predictions based
on this study. For this comparison it is necessary to use equation (98), which is in terms of
the wavelength K

C
of the longitudinal wave in the e!ective rubber cylinder.

Morris et al. [28] investigated the dynamic properties of rubber using a modi"ed bar
transmission method developed from the strip transmission, or longitudinal wave
resonance method described by Nolle [39]. They measured the longitudinal wave velocity
of a cylindrical rubber specimen under static compression, by determining its longitudinal
resonant frequency. The specimen was made of an un"lled natural rubber vulcanisate of
undeformed dimensions 19)05 mm diameter]70)5 mm height, and loss factor 0)15.

Initially, the e!ect of bearing friction on the resonant frequency was investigated and
found to be nil, and the subsequent tests were conducted using silicone grease at the ends of

the specimens. This end e!ect is accounted for by the term J1#bS2 in equation (98). At
a compression strain of 0)018 the measured elastic normal modulus was 2)06 MPa and the
loss factor was 0)15. Using this value of 2)06 MPa for the static normal modulus, the
interpolated value for b is 1)50 [22]. From equation (16) the value of S is 0)0676, using
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r
0
"9)525]10~3 and h

0
"7)055]10~2 m. Therefore, the value of J1#bS2 is 1)003,

which represent 0)3% di!erence between the extreme cases of unbonded and bonded ends.
Therefore, the measured result of negligible di!erence is expected. Thus, equation (98) still
remains applicable with S"0 to take into account the rubber ends being lubricated and
not bonded.

The experimental results obtained [28] are given in Table 2, which at di!erent values of
the compression ratio j and wavelength K

C
, lists the measured values of the longitudinal

resonant frequency f
M

. The measured wavelength is set equal to K
C
. For the test set-up used,

the wavelength was equal to twice the length of the compressed rubber specimen [28],
which gave K

C
. The loss factor was approximately constant ranging from 0)15 to 0)16, and

so there should be very little phase error introduced by using equation (98). Loss factors of
0)15 and 0)16 correspond to loss angles 8)5 and 9)13. The radius of gyration was calculated
from equation (65) using r

0
"9)525]10~3 m.

Assume that the undeformed long rod velocity is 46)2 m/s, which is the measured long rod
velocity at 1)8% compressive strain. This measurement was conducted at the minimum
experimental deformation of the sample. Table 2 also lists the predicted values of the
resonant frequency f

C
, calculated as follows.

An iterative solution using the Jacobian method with the numeric computation Matlab
software [38] was employed. For a given frequency f

C
, equation (99) calculates the value of

t using d
0
"8)533, c

0
"46)2 m/s and u"2n f

C
. From equation (98) the magnitude X

C
of

the phase velocity correction factor was calculated from the known parametric values and
by putting S"0. Then from equation (88) the magnitude c

C
of the phase velocity was

determined as

c
C
"X

C
c
0
. (100)

Therefore, the resonant frequency of the e!ective rubber cylinder f
C

was calculated from

f
C
"

c
C

K
C

. (101)

This value of f
C

was compared with the starting value and iterated to give the solved
value. The percentage error between the measured and predicted longitudinal resonant
frequencies, i.e., f

M
and f

C
respectively, is listed in the last column.

The maximum value of the diameter-to-wavelength ratio is 0)01905/0)1168"0)163.
From section 3.1, the error in the calculated short rod velocity does not exceed 4% for
diameter-to-wavelength ratios from 0 to 1)20 for a rod of constant cross-sectional area and
negligible loss factor. Since the maximum value of the diameter-to-wavelength ratio is much
TABLE 2

Determination of longitudinal resonant frequencies

j K
C

f
M

X
C

c
C

f
C

Error
(m) (Hz) (m/s) (Hz) (%)

0)982 0)1385 327 0)9886 45)67 329)8 0)8
0)936 0)1321 346 0)9888 45)68 345)8 0)0
0)900 0)1270 359 0)9904 45)76 360)3 0)4
0)864 0)1219 385 0)9932 45)89 376)4 2)2
0)828 0)1168 405 0)9974 46)08 394)5 2)6



40 J. D. DICKENS
smaller than 1)20, it is reasonable to assume that equation (98) is not restricted by this
parameter.

The precision of reproducibility of the resonant frequency f
M

is given as 8 in 330 Hz [28],
i.e., 2)4%. As can be seen from Table 2, the predicted resonant frequency f

C
is within this

error band except for the maximum compression case, which has a marginally higher error.
In addition, there must have been measurement errors that were not speci"ed. Therefore, for
this case the predicted resonant frequency based on equation (98) agrees satisfactorily with
the experimental values.

The ends were lubricated during the test to improve the contact with the transducers, and
not to speci"cally reduce the friction. It may be assumed that the specimen compressed to
a shape somewhere between the e!ective cylinder and the barrel with "xed ends. The
analysis of this section gives con"dence in the application of the proposed equations (93)
and (94).

8. CONCLUSIONS

Longitudinal wave equations for a short rod were developed by Love [5], and were
applied by Snowdon [4] to the rubber element of a vibration isolator. Gent and Lindley
[37] showed that the compressed rubber element assumes a parabolic shape.

Based on the work of Snowdon [4], and Gent and Lindley [37], wave equations have
been derived for the barrel shape of the deformed rubber element of a vibration isolator
under static compression. The wave equations include a partial di!erential equation, and do
not have a closed-form solution. Consequently, an approximate algebraic solution was
proposed in terms of the e!ective rubber cylinder and the compression ratio. The
predictions of the e!ective rubber cylinder agreed well with numerical solutions of the wave
equations for the deformed rubber element.

Payne [14] proposed the relationship between the complex normal modulus of the
rubber element of a vibration isolator under static compression, and its compression ratio.
The work of Payne was combined with the proposed model of an e!ective rubber cylinder,
to account for the e!ect of static compression on the apparent complex normal modulus of
a compressed rubber. Of interest were natural rubber vulcanisates "lled with carbon black.
This gave equations (93) and (94), and the latter was expressed as the magnitude equation
(98). Predictions using the proposed equation (98) agreed with experimental data of Morris
et al. [28].

Equations (93) and (94) embody correction factors for the static compressive e!ects on the
phase velocity of longitudinal wave propagation in a short rubber rod compressed to
a barrel shape. The individual factors have been proposed by previous researchers, but
a literature search showed that they have not been combined and applied to rubber rods
under static compression using the notion of an e!ective rubber cylinder to account for the
barrelling.

The author has undertaken experimental work [40] and consequently proposed
modi"cations to equations (93) and (94) that improve their accuracy. This work is
reported in a companion paper [41].
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