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Vibration of a surface of a two-dimensional (2D) elastic layer generated by a point load
moving uniformly along a beam, which is located inside the layer is investigated
theoretically. It is supposed that the layer possesses a small viscosity, is "xed along the
bottom, and has a traction-free surface. The beam is described by the Euler}Bernoulli model
and located parallel both to the surface and the bottom of the layer. The surface vibration is
analysed under three types of the load, namely constant, harmonically varying and
a stationary random load. For the deterministic loads, the vector displacement of an
observation point on the layer surface is analyzed along with the amplitude spectrum of
vibration in this point. For the random load main attention is paid to the variance of
vibration at the observation point. Qualitative features of obtained results are discussed via
kinematic analyses of the wave propagation in the structure.
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1. INTRODUCTION

It is well known that vibrations produced by a moving train can propagate in the ground
and be perceptible at signi"cant distances [1]. As recently reported in references [2}5], the
level of these vibrations increases if trains run at high speeds close to the minimal phase
velocity of the track-ground structure, which is normally about the Rayleigh wave velocity
[6, 7]. In a soft (peat) ground, this velocity is of the order of 200 km/h or even smaller and
can be simply exceeded by currently operating high-speed trains. Therefore, the research on
vibrations caused by trains is of indubitable practical importance.

In this paper, vibrations of a ground surface due to a moving train in a tunnel are
theoretically considered. At train speed about 200 km/h these vibrations can be quite
powerful (about 10 mm), though they are excited relatively deep in the ground. Due to this
fact, before letting a train move in a tunnel with a high speed one has to estimate the level of
the surface ground vibration.

The new academic element of our study in comparison to works presented in references
[2}7] is that the vibrations are now excited by a load moving inside the ground and the
energy is transferred to an observation point on the surface by only the bulk waves. This is
in contrast to the case of the load motion over the surface, when the vibrations are primarily
transmitted by the Rayleigh waves.

To estimate the level of the ground vibrations a relatively simple two-dimensional model
is considered, which consists of an elastic layer, possessing a small viscosity, and a beam
locating inside the layer. It is assumed that the layer is in"nitely long in the horizontal
direction, is "xed along the bottom and its surface is traction-free. The beam is considered
in"nitely long, described by the Euler}Bernoulli model and located parallel to both the
surface and the bottom of the layer.
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Motion of the structure is caused by a point load P(t), which moves uniformly along the
beam. Three types of the load P (t) are investigated in the paper, namely constant,
a harmonically varying and a stationary random load. The constant load represents the
pressure on the rails a train produces due to the gravity force. By means of the harmonically
varying load distinguished frequencies of the loading spectrum are taken into account.
These frequencies may be related, for example, to the whole-wagon vibrations, to
non-roundness of the train wheels or to the sleeper-passing frequency. The assumption
about the randomness of the load is the most general one. It allows considering a wide
spectrum of the loading force, one faces in reality.

All three types of considered loading processes, after a substantially long time, lead to the
stationary vibrations in the reference system moving with the load. Due to this fact, it is
adequate to apply the integral Fourier transforms for the mathematical analysis of the
problem. By employing these transforms in Section 3, general expressions are obtained for
the vector displacement of an observation point on the layer surface and for the amplitude
spectrum of this displacement.

In section 4 an analysis is performed of the dispersion of waves in the structure, which
serves as a basis for the further study. Sections 5}7 are concerned with the structural
response to constant, harmonic and random loads, respectively. For the deterministic loads
considered in sections 5 and 6, the displacements and the amplitude spectrum of vibrations
in the observation point are analyzed. A physical interpretation of the results obtained is
given by employing the kinematic analysis of the wave propagation in the structure. For the
random load studied in section 7, main attention is paid to the variance of vibrations in the
observation point. In all sections, the e!ect of the load velocity on the structural response is
carefully discussed.

2. MODEL AND GOVERNING EQUATIONS

The model under consideration is composed of a two-dimensional layer, a beam and
a uniformly moving load as depicted in Figure 1. The layer has a thickness (h#H) in the
z direction. The beam is aligned in the x direction and located at distance h from the layer
surface. The vertical point load P (t) acts upon the beam at the point x"<t.

Taking into account a small viscosity in the layer, one may write the equation of its
motion as [8]
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where u (x, z, t)"Mu(x, z, t), w (x, z, t)N is the vector displacement, o is the mass density of the
layer, jK "j#j* L/Lt and kL "k#k* L/Lt are operators used instead of LameH constants
j and k to describe the visco-elastic behaviour of the layer.

The equation of the beam vertical motion reads
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where p
zz

(x, z) is the vertical stress,=(x, t) is the beam vertical displacement, o
B
and EI are

the mass per unit length and the bending sti!ness of the beam, d(2) is the Dirac delta
function, and a is a characteristic length associated with the length of the structure in the
y direction.



Figure 1. Model.
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It is assumed that the beam does not move horizontally and the beam and the layer
displacements are equal at the interfaces z"h$0. This leads to the following interface
conditions:

u(x, h#0, t)"u (x, h!0, t)"0, w (x, h#0, t)"w (x, h!0, t)"= (x, t). (3)

Adding the boundary conditions at z"0 and h#H given as

p
zz

(x, 0, t)"p
zz

(x, 0, t)"0, u(x, h#H, t)"w (x, h#H, t)"0 (4)

complete the problem statement.

3. SOLUTION OF THE PROBLEM IN GENERAL FORM

It is customary to describe the layer motion in terms of the LameH potentials taken in the
form

/"/ (x, z, t), H"(0,!t (x, z, t), 0).

The displacement and the stress components in this case are
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and equation (1) splits into following two equations:
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where c
L
"J(j#2k)/o and c

T
"Jk/o are velocities of the compressional and the shear

waves in the layer.
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To "nd the steady state response of the system, integral Fourier transforms with respect
to time and co-ordinate x are applied. Denoting the Fourier images by double tildes and
de"ning these transforms as
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1
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one obtains:
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f for the beam motion (from equation (2)),
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f for the interface conditions (from equation (3)),
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f for the boundary conditions (from equation (4)),
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where, in accordance with expressions (5) and (6)
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The general solutions of equations (9) and (10) can be written as
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f for z3[h#0, h#H],
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Substitution of equations (17) and (18) into equations (14)}(16) allows one to express the
Fourier displacements uII , wI I and the Fourier stresses pII zz, pII xz via the unknown constants A

j
,

j"1,2 , 8. The relationships obtained by this substitution are given in Appendix A by
equation (A1). Substituting equation (A1) into the equation of the beam motion (11), the
interface conditions (12) and the boundary conditions (13), one obtains a linear system of
eight algebraic equations with respect to A

j
. This system may be written in the following

form (a repeated subscript implies a summation):
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where expressions for a
ij

and F
i
are given in Appendix A by equation (A2).

According to the Kramer's rule, the solution of system of algebraic equations (19) can be
expressed as
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where *"det([a
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]) is the determinant of the eigenmatrix [a

ij
] and *

j
is the determinant of

a modi"ed matrix [aJ
ij
], where column j of the eigenmatrix is replaced by the source vector F.

Analytic expressions for * and *
j

have been calculated using Maple V Release 5
(Waterloo Maple Inc.).

As mentioned in the introduction, the main objective of this paper is the analysis of the
layer surface vibration. To "nd expressions for the surface displacements one has to
substitute equation (20) into the "rst and second equations of (A1) and let n"0. This yields
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Applying the inverse Fourier transforms to equation (21), one obtains the following
general expressions for the steady state response of the layer surface to the moving load P (t):

Mu(x, 0, t), w (x, 0, t)N"
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4n2 P
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P
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(22)

where the curly brackets here and further denote a vector consisting of two components.
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In the following sections three types of variation of the load amplitude will be considered,
namely the constant load P(t)"P

0
, the harmonically varying load P(t)"P

0
cos (Xt) and

a random stationary load P(t). All three types of loading, after a substantially long time,
lead to the steady state vibrations of the structure in the reference system moving with the
load. In the steady state regime, all points of the layer surface experience exactly the same
motion, with a certain time-shift. Therefore, to realize the steady state response to the
surface it is su$cient to study vibrations of any point on the surface. We will use the point
x"0, where the displacements, according to equation (22), are given as

Mu (0, 0, t), w (0, 0, t)N"
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Consequently, the amplitude spectra of vibrations in this point read
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where, to accomplish the integration over time, the following integral representation of the
delta function has been used [9]:

d (u)"
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~=

exp (iut) dt. (25)

4. DISPERSION RELATION

Before starting the analysis of the system response to the di!erent types of loading, it is
worth discussing the dispersion relation for waves in the considered structure. This relation,
having the form f"K(k), M f, k)3R, couples the wave number k and the frequency f"u/2n
of waves, which can propagate along the x-axis without attenuation. Mathematically, the
relation f"F (k) is the real solution of the equation

lim
Mj*, k*N"0

*(k, 2nf )"0. (26)

In Figure 2 the dispersion relation is plotted as a solid line for the following set of the system
parameters:

E
layer

"3]107 N/m2, l"0)3, o"1700 kg/m3, h"12 m, H"15 m,

o
B
/a"3]104 kg/m2, EI/a"109 Nm,

(27)

representing a realistic, though arbitrary soft ground, and some characteristics of the train
tunnel.

Along with the dispersion curve, Figure 2 contains three straight lines starting at the
origin and a set of dashed curves. The straight lines show the phase velocities
<
ph
"u/k"2nf /k equal to the Rayleigh wave velocity c

R
, the shear wave velocity c

T
and

the compression wave velocity c
L

in the layer. The dashed curves represent waves, which
may propagate in the x direction with a slight attenuation and may be mathematically
found as minima of the function D* (k, 2nf ) D for real k and f. It will be shown that these
slightly attenuated waves play an important role in the dynamic structural response.



Figure 2. Dispersion curves.
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One can see from Figure 2 that the bold curve lies below the straight line <
ph
"c

T
, which

means that the phase velocity of any wave propagating with a constant amplitude is smaller
than the velocity of the shear wave in the layer. This implies that the bulk waves in the layer
are not involved in this wave motion. Therefore, the propagating waves are either the &&beam
waves'' localized near the beam or the surface waves localized near the layer surface. The
dispersion curve (the bold line) clearly shows that the long waves (small k) appear to be the
&&beam waves'' and the shorter waves are the Rayleigh surface waves.

The slightly attenuated waves, whose dispersion curves are depicted by the dashed lines,
have phase velocities larger than the shear wave velocity c

T
. Thus, these waves represent the

wave motion of the layer. The reason for them to be attenuated is the beam, which, being
much sti!er than the layer material, quickly transfers the energy of the layer motion into the
energy of its own vibration. One can say that the beam serves as an equivalent damper for
the wave motion of the layer. This equivalent damping, however, can be not so extreme and,
therefore, the slightly attenuated wave motion of the layer can play an important role in the
structural response.

One of the most important issues for the following analysis, re#ected by Figure 2, is that
the minimal phase velocity <min

ph
of waves propagating in the structure is noticeably smaller

than the Rayleigh wave velocity c
R

(one can calculate that <min
ph

"68 m/s and c
R
"77 m/s).

This result is important since <min
ph

is the critical velocity of the constant load, moving along
the beam. It is critical in the following two senses. First, if the load moves with the velocity
<"<min

ph
, the ampli"cation of the steady state response takes place [10}12]. Secondly, the

relation between the load velocity < and <min
ph

determines whether or not waves are excited
in the structure. If <(<min

ph
, the "eld generated by the load in the stationary regime is

localized around the loading point and there are no waves propagating away from the load.
On the contrary, if the load velocity exceeds <min

ph
, the load radiates waves, providing an

oscillatory response of the structure at quite distanced points.
Thus, the minimal phase velocity <min

ph
is the basic parameter to be known for analysis of

the structural response to the moving load. It is of interest to know how <min
ph

is e!ected
by the depth of the tunnel. To show this, the dependence of <min

ph
upon the distance

h between the layer surface and the beam (H is kept constant) is plotted in Figure 3.
One can see from the "gure that the larger the distance h, the larger the minimal phase

velocity. This implies that the deeper the tunnel, the larger the critical velocity of a train



Figure 3. Minimal phase velocity versus distance between the beam and the layer surface.
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moving in this tunnels. Therefore, to increase the critical velocity of a high-speed train it is
favourable to let the train move in a deep tunnel.

5. RESPONSE TO THE CONSTANT LOAD

The vertical force, a moving train acts upon the rail with, is a rather complicated function
of time. The spectrum of this function is starting from zero frequency and lasts up to
hundreds of Hz. This spectrum re#ects the train vibration as a rigid body, the vibration due
to non-roundness of the wheels, the sleeper passing frequency, etc. However, a signi"cant
part of the loading energy is concentrated around the zero frequency. This is due to the
gravity force, providing constant pressure on the rails. To analyze the structural response to
this pressure, in this section the motion of the constant load P(t)"P

0
is considered. In this

case, by employing the representation (25), one may obtain the following expression for
PI (u!k<):

PI (u!k<)"P
`=

~=

P
0
exp(it(u!k<)) dt"2nP

0
d(u!k<). (28)

Consequently, expressions (23) and (24) for the displacements and the spectra at the point
Mx"0, z"0N take the form

Mu (0, 0, t), w (0, 0, t)N"
P

0
2n P

`=

~=

MuI I 0 (k, k<), wII 0 (k,k<)N exp(!ik<t) dk, (29)

Mu
f

( f ), w
f

( f )N"
P
0
< GuII 0 A!

2nf

<
,!2nfB, wII 0 A!

2nf

<
,!2nfBH. (30)

As one can see, the displacements in this case are expressed in the form of the single Fourier
integral, which can be easily treated numerically, and the spectra are found as algebraic
expressions.
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In Figure 3 the modulus of the amplitude spectra is shown calculated by the formula

Du
f
D"J(Re(u

f
))2#(Im(u

f
))2, Dw

f
D"J(Re(w

f
))2#(Im(w

f
))2. The set of parameters (27)

has been used for calculations and, additionally,

P
0
/a"104 N/m, j*"k*"3]104 kg/ms. (31)

The load magnitude P
0

in equation (32) is chosen to describe the axle loading given by
a train. Figure 4(a) is plotted for the sub-critical velocity <"30 m/s, while Figure 4(b)
shows the spectra in the super-critical motion <"75 m/s (remember that according to
Figure 3, the critical velocity in the considered case in about <

cr
"<min

ph
"68 m/s). The

curve starting from the origin is related to the spectrum of the horizontal displacement u
f

and the other curve to the spectrum of w
f
.

One can see from Figure 4 that in both the sub-critical and the super-critical cases,
a signi"cant part of the spectrum is located in the lower frequency band. However, in the
super-critical case, the spectrum is approximately twice as wide and has a noticeable part
located above 4 Hz. The other speci"c feature of the super-critical case is that the spectrum
has two maxima (if there was no viscosity in the layer, these maxima would become in"nite).
These maxima arise due to the radiation of waves by the moving load. The frequencies of
the waves can be easily found graphically in the manner shown in Figure 5. This "gure
includes the dispersion curves of the structure and the straight line u"k<8f"k</2n,
which is called the &&kinematic invariant'' [3, 13]. Mathematically, the relation u"k<
provides the non-triviality of the Delta function in equation (28). Physically, this relation
implies that the phase velocity <

ph
"u/k of all waves radiated by the constant load must be

equal to the velocity< of the load, see references [12, 13]. The crossing points of the kinematic
invariant and the dispersion curves give the following frequencies of the radiated waves:

f
1
+1)23 Hz, f

2
+4)68 Hz. (32)

These frequencies are obviously in agreement with Figure 4(b).
One can see from Figure 5 that for the load velocities higher than the shear wave velocity

c
T
, the kinematic invariant may not have crossing points with the dispersion branch

describing the non-attenuating waves (the solid bold curve). However, there is always
a number of crossing points with the dashed lines, which represent the slightly attenuated
Figure 4. The amplitude spectra.



Figure 5. Graphical determination of the frequencies of waves radiated at <"75 m/s

Figure 6. The surface displacement for <"30 m/s.
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waves in the structure. As analysis shows, these crossing points provide certain
ampli"cation in the response spectra.

Let us analyze the displacements u (0, 0, t) and w (0, 0, t) of the layer surface. To this end
one has to evaluate the single integral in equation (29). It can be simply done numerically,
since the integral kernel has no singularities and quickly vanishes as Dk DPR. Results of the
numerical evaluation of equation (29) are presented in Figures 6 and 7, where the
displacements versus time are plotted. Figure 6 re#ects the sub-critical case<"30 m/s and
Figure 7 is related to the super-critical load moving with <"75 m/s. Every "gure shows
two lines: the solid line is plotted for h"12 m and the dashed line for h"7 m. The other
parameters of the system are "xed by the sets (27) and (31).

Analysing the "gures, the following conclusions can be drawn:

1. In the sub-critical case depicted in Figure 6, the observation point (x"0, z"0)
experiences a short, about 4 s, impulse-like de#ection. The impulse is almost perfectly



Figure 7. The surface displacements for <"75 m/s.

Figure 8. The maximum displacements versus load velocity.
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symmetric vertically and antisymmetric horizontally with respect to the time instant
t"0 when the load passes the observation point. Concerning the e!ect of the distance
h between the beam and the layer surface, one can see that the length of the impulse is
almost not a!ected by h, while the impulse amplitude is a!ected slightly.

2. In the super-critical case depicted in Figure 7, the observation point vibrates much longer
and the vibration pattern becomes wave-like. This happens due to the fact that the load
radiates waves into the layer. One can see from Figure 7 that the wave pattern for t(0 has
a higher frequency and smaller amplitude than that for t'0. The di!erence in frequencies
is because of the Doppler e!ect, implying that an observed wave possesses a higher
frequency when the load moves towards the observation point (t(0) and, on the other
hand, the wave frequency becomes smaller when the distance between the load and the
observation point grows (t'0). The di!erence in the amplitudes directly follows from the
di!erence in the frequencies. This is since the Voigt solid is used to model the layer.

To show the e!ect of the load velocity on the surface response, in Figure 8 the modulus of
the maximum displacements of the observation point versus the velocity is plotted.
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Figure 8 shows that the maximum displacement of the observation point depends on the
load velocity in the resonance manner. The highest ampli"cation takes place when the load
velocity is equal to the minimal phase velocity of waves in the structure. This velocity,
according to Figures 2 and 3 is about 68 m/s for the chosen h"12 m.

6. RESPONSE TO A HARMONICALLY VARYING LOAD

As mentioned in the beginning of the previous section, the loading spectrum produced by
a moving train is rather wide. To study the e!ect of the train vibrations on the structural
response, a harmonic variation of the load magnitude is considered in this section. The load
reads P(t)"P

0
cos(Xt) and by employing the integral representation of the delta function,

equation (25) may be transformed as

PI (u!k<)"P
`=

~=

P
0
cos (Xt) exp(it (u!k<)) dt"n P

0
(d (u!k<#X)#d(u!k<!X)).

(33)

Substituting expression (33) into equation (23) and equation (24), one obtains

Mu(0, 0, t), w (0, 0, t)N"
P
0

4n P
`=

~=

[MuII 0(k, k<!X), wII 0 (k,k<!X)N exp(!i(k<!X)t)

#MuII 0 (k, k<#X), wII 0 (k, k<#X)N exp(!i(k<#X) t)] dk (34)

Mu
f

( f ), w
f

( f )N"
P

0
2< CGuII 0 A

X!2n f

<
,!2nfB, wII 0A

X!2n f

<
,!2nfBH

#GuII 0A
!2n f!X

<
,!2nfB, wII 0 A

!2n f!X
<

,!2nfBHD. (35)

Within the scope of this paper, the most pronounced di!erence between the structural
response to constant and to the harmonic load is that the latter may radiate waves by
moving with much smaller velocities or even being "xed at a point. This is due to the
following relationship, the angular frequency u of radiated wave and the load frequency
X must satisfy:

u"k<$X. (36)

This relationship follows, for example, from equation (33) by letting the arguments of the
delta functions be equal zero. The kinematic invariant, determined by equation (36) is
shown in Figure 9 for <"30 m/s and f)"X/2n"2 Hz by the bold straight line (the plus
sign in equation (36) is used). The chosen frequency is approximately equal to the
eigenfrequency of the vertical wagon vibration. In the same "gure, the dispersion curves of
the structure are plotted by employing the parameter sets (27) and (31). The dispersion
curves are plotted both for positive and negative wave numbers. This is necessary since, in
contrast to the constant load, the harmonically varying load can radiate waves with
a negative phase velocity.



Figure 9. Graphical determination of the frequencies of waves radiated by the harmonic load ( f)"2 Hz,
<"30 m/s).

Figure 10. Amplitude spectra of the surface displacements for f)"2 Hz, <"30 m/s.
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Figure 9 obviously shows that the harmonic load, moving with the velocity <"30 m/s
(about 45% of the minimal phase velocity<min

ph
) radiates four waves. Two of these waves are

the interface waves ( f
1
and f

4
) and the other two are the body waves. Information about the

amplitudes of the radiated waves can be obtained by analyzing the spectra of the surface
vibrations depicted in Figure 10.

One can see from Figure 10 that both the interface waves and the body waves give some
ampli"cation in the response spectrum. Since we take into account the viscosity in the layer,
all maxima of the spectra are limited. The resonance peaks related to the interface waves are
limited by the viscosity in the layer and would become in"nite in its absence. The peaks
caused by the body waves are bounded due to the viscosity and the energy extraction along
the beam. Therefore, if the purely elastic layer would be considered, these peaks remained
"nite. Figure 10 shows that the largest ampli"cation takes place at the lowest frequency f
1
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of the interface waves. The other frequencies behave di!erently in the spectrum u
f

of the
horizontal vibration and in the spectrum w

f
of the vertical vibration. In the vertical

direction the body waves ( f
2

and f
3
) provide almost no ampli"cation, while in the

horizontal direction the response of the frequencies f
2
, f

3
and f

4
is approximately the same.

This di!erence is dictated by the boundary conditions (3) at the beam interface. According
to these conditions, the beam vibrates only vertically and, consequently, it extracts much
less energy from the horizontal layer vibration than from the vertical one. Therefore, the
extraction of energy by the beam vibrations (the equivalent radiation damping) is very small
in the horizontal direction and the resonance peaks caused by the body waves are
signi"cantly only in the spectrum u

f
.

By increasing the load frequency the spectrum of the surface vibrations becomes wider
and more complicated, but the resonance peaks are less pronounced. One can see this from
Figure 11, where the spectra Du

f
D and Dw

f
D are depicted for the same load velocity

<"30 m/s, but for double the higher frequency f)"4 Hz.
The expansion of the spectrum towards the frequency is simply understood from Fig-

ure 9. Indeed, to "nd the frequencies of waves radiated by the load for the frequency
f)"4 Hz, the kinematic invariant (the bold straight line) is translated towards the higher
frequencies in order to cross the frequency axis at the point f"4 Hz. Obviously, in this case
there will be more crossing points of the kinematic invariant and the dispersion curves.
These new crossing points will appear at higher frequencies, providing the widening of the
spectrum. The limitation of the resonance peaks is directly related to the shifting of the
spectrum towards the higher frequencies, which are harder damped.

The surface displacements u (0, 0, t) and w(0, 0, t) for f)"2 Hz,<"30 m/s are depicted in
Figure 12, showing that the observation point on the surface experiences a vibratory
motion, which lasts quite a long time.

The pattern of the horizontal vibration is more complicated than that of the vertical
vibration. This is in perfect agreement with Figure 10, which shows that the spectrum of the
horizontal vibration contains four resonance frequencies, while the spectrum of the vertical
vibration possesses only two. One can see from Figure 12 that the vibrations at t(0 have
higher frequencies and smaller amplitudes than at t'0. This is because of the Doppler
e!ect as discussed in the previous section for the case of super-critically moving constant
load.
Figure 11. Amplitude spectra of the surface displacements for f)"4 Hz, <"30 m/s.



Figure 12. The surface displacements for f)"2 Hz, <"30 m/s.
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Analysis shows that at higher load frequencies the displacement pattern becomes more
complicated since the spectrum of vibrations contains more resonance frequencies, see
Figure 11. The amplitude of the vibrations becomes smaller due to the spectrum shifting
towards the higher frequencies.

7. RESPONSE TO A RANDOM STATIONARY LOAD

In general, the loading force acting on rails is a complicated function of time. Wide
variety of such functions may be considered by assuming a random character to the load.
This assumption allows to take into account the wideness of the loading spectrum and to
consider variation of the loading from train to train and from track to track. In this section,
we suppose that the load is given by a stationary random function of time with zero
mathematical expectation. For the following analysis this function is represented in the
form

P (t)"
N
+
n/1

F
n
(X

n
) exp (i (X

n
t#u

n
)), (37)

where X
n

and F (X
n
) are deterministic parameters and u

n
is a random variable uniformly

distributing over the range [0, 2n].
Substituting equation (37) into the expression for PI (u), one obtains

PI (u!k<)"P
`=

~=

P (t) exp(it(u!k<)) dt

"P
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~=

N
+
n/1

F
n
(X

n
) exp (i (X

n
t#u

n
)) exp(it (u!k<)) dt

"2n
N
+ F

n
(X

n
) exp (iu

n
) d (u!k<#X

n
). (38)
n/1
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Accordingly, equation (23) describing the displacements [u (0, 0, t), w (0, 0, t)N, which are
now random functions of time, is

Mu(0, 0, t), w(0, 0, t)N

"

1

2n P
`=

~=
P
`=

~=

N
+
n/1

F
n
(X

n
) exp(iu

n
)d(u!k<#X

n
) MuII 0 (k, u), wII 0 (k, u)N exp(!iut) dkdu

"

1

2n P
`=

~=

N
+
n/1

F
n
(X

n
) exp(iu

n
) MuII 0 (k, k<!X

n
), wII 0 (k, k<!X

n
)N exp(!i(k<!X

n
) t )dk

(39)

Evidently, for the considered load with zero mathematical expectation SP(t)T"0, the
mathematical expectations of u(0, 0, t) and w (0, 0, t) are trivial. Therefore, the
auto-covariance functions of the response are analyzed in this paper. According to reference
[14], these functions are de"ned as

R
uu

(t, t#q)"Pu

u (0, 0, t) u* (0, 0, t#q) f (u) du,

R
ww

(t, t#q)"Pu

w (0, 0, t)w* (0, 0, t#q) f (u) du, (40)

where u is a vector with components u
k
, f(u)"1/(2n)N is the probability density, the

integration over each u
k
takes place from zero to 2n and the asterisk denotes the complex

conjugation.
By substituting equation (39) into equation (40) one may obtain the following expression

for R
uu

(t, t#q) (expression for R
ww

(t, t#q) may be obtained analogously):

R
uu
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1

4n2 P
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P
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N
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)F*

n
(X

n
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]uII *0 (k
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1
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n
) exp(i(k

1
<!X

n
) q) dkdk

1
. (41)

Details of obtaining equation (41) are given in Appendix B. Equation (41) shows that in
contrast to the stationary loading process P(t), the response u (0, 0, t) is non-stationary (the
covariance function depends both on time and on the time shift q). This is due to the load
motion with respect to the observation point.

In this paper, the attention is focused on the study of the variance of the displacements
u(0, 0, t) and w (0, 0 t). According to equation (41), the variance p2

uu
(t) of u(0, 0, t) reads
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uu
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) D2 KP
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uII 0 (k, k<!X
n
) exp(!ik<t) dk K

2
, (42)

where the vertical lines D2D denote the modulus of a complex function. Further reduction
of equation (42) can be ful"lled by introducing the spectral density S (X) of the load P(t)
PP
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given as

lim
*uP0

S
PP

(X
n
)*u"DF

n
(X

n
) D2, (*u"u

n`1
!u

n
). (43)

Substitution of representation (43) into equation (42) yields the following expression for the
variance p2

uu
(t):
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The variance of the function w (0, 0, t) can be obtained in the exactly same manner to give
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(t)"R
ww
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1

4n2 P
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S
PP
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2

dX. (45)

It is important to underline that the integrands in expressions (44) and (45) have nothing to
do with the instantaneous spectral densities S

uu,ww
(u, t) de"ned by the Wiener}Khinchin

relations
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As follows from these relations, the variance of the displacements u (0, 0, t) and w (0, 0, t)
reads
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and one could intend to relate the integrands in equations (44) and (45) to S
uu,ww

(u, t). This
would be, however, a wrong intention since correct expressions for S

uu,ww
(u, t) are given as
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These expressions may be simply obtained by applying the Fourier transform over the time
shift q to equation (41) and using equation (43).

Although expressions

Z
u
(X, t)"

1

4n2 KP
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~=

uII 0 (k, k<!X)exp(!i<kt)dk K
2
,

Z
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(X, t)"
1

4n2 KP
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~=

wII 0 (k, k<!X)exp(!i<kt)dk K
2

(46)

in equations (44) and (45) have no clear physical signi"cance, their behavior is worth
discussing. Indeed, these expressions contain information about the layer and do not
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depend on the random properties of the load. In this sense, expressions (46) are of the same
issue as the transfer function [14] of a linear deterministic system, which, undoubtedly,
should be separately studied.

To draw conclusions concerning time, frequency and velocity dependence of the
functions Z

u
(X, t) and Z

w
(X, t) it is su$cient to plot one. It is done in Figure 13 where the

function ZI
w
(X, t)"k2Z

w
(X, t) is depicted versus the frequency f"X/(2n) for three di!erent

time moments: t"!1 s (dashed line), t"0 (solid line), t"#1 s (dash-dotted line). Figure
13(a) shows the dependence for the sub-critical velocity <"30 m/s and Figure 13(b) is
related to the super-critical velocity <"75 m/s.

Analyzing Figure 13 one can conclude the following:

1. The non-stationarity of the process w (0, 0, t), which is determined by variation of
Z

w
(X, t) in time, is visible for both velocities. However, for the super-critical velocity

<"75 m/s this variation is more signi"cant.
2. Function Z

w
(X, t) has the largest local maximum at f"0)74 Hz for<"30 m/s and at

f"0)35 Hz for<"75 m/s. This maximum can be understood with the help of Figure
14, which is an analogue to Figure 9. In Figure 14, the dispersion curves are plotted
together with two straight lines (kinematic invariants). Line (1) is related to
f"0)74 Hz; <"30 m/s and line (2) to f"0)35 Hz; <"75 m/s. Figure 14 obviously
shows that both straight lines are tangential to one of the dispersion curves at the
points marked by circles. This implies that the corresponding harmonic load excites in
the structure a wave with the group velocity close to the velocity of the load and,
therefore, the wave energy remains in the vicinity of the loading point and grows in
time. As shown in references [3, 12, 13] this situation leads to the wave resonance in
the structure and, accordingly, to the maximum in the dependence Z

w
(X).

Concerning the largest maximum, one can further notice that the magnitude of Z
w

(X, t) in the maximum is signi"cantly larger for in the sub-critical motion than in the
super-critical. Once again this can be understood by using Figure 14, which shows that
the straight line related to <"30 m/s is tangential to the dispersion branch of the
waves propagating with a constant amplitude and the line <"75 m/s touches
a branch of slightly attenuated waves. Evidently, in the "rst case the wave resonance is
more pronounced and, consequently, the peak of Z (X) is larger.
Figure 13. Function k2Z
w

(X, t) versus frequency f in the logarithmic (base 10) scale.

w



Figure 14. Dispersion curves and kinematic invariant lines. Line (1) * f"0)74 Hz and <"30 m/s: Line (2)
* f"0)35 Hz and <"75 m/s.

VIBRATION DUE TO MOVING TRAIN IN A TUNNEL 61
3. Function Z
w
(X, t) is non-monotonic with respect to the frequency. However, the

general tendency (for f'1 Hz) is that the function decreases with frequency. This
decrease is quite steep, which implies that high frequencies in the loading spectrum
make a minor contribution into the variance of the function w(0, 0, t).

Let us "nally discuss the variances p2
uu,ww

(t). To "nd them numerically one has to know
the spectral density of the load S

PP
(X). In practice, this function is quite complicated, but in

the lower frequency band (below 10 Hz) it may be described by the spectral density of the
white noise given as [14].

S
PP

(X)"
s

2n
,

where s is the intensity of the process. In Figure 15 the dependencies p
uu,ww

(t) are depicted
for s"5.3]107 N2/s. Figures 15(a) and 15(b) are related to<"30 and 75 m/s respectively.
The solid lines in the "gures re#ect the variance of the vertical displacement, while the
dashed line of the horizontal.

Figure 15(a) shows that for the sub-critical velocity the variance is a non-oscillatory
function of time. Since the load is moving, this function is visibly asymmetric with respect to
t"0. However, the scale of this asymmetry in the sub-critical motion is incomparably
smaller than that in the super-critical case, which is depicted in Figures 15(b). In the latter
case, the variance at t'0 is much larger than at t(0. This is again due to the Doppler
e!ect, providing that the observation point vibrates with lower frequencies and larger
amplitudes at t'0, when the load moves outwards this point (see Figure 7 and Figure 23
and associated explanations belonging to them). One can further see from Figure 15 that the
variance in the super-critical motion is smaller that that in the sub-critical motion. This is
because the super-critically moving load radiates waves with higher frequencies, which are
stronger a!ected by the damping in the layer.

For practical requirements, it is important to known how the variance is related to the
displacement provided by the gravity force. To visualize this relation, functions
u
0
(t)$p

uu
(t) and w

0
(t)$p

ww
(t), are plotted in Figures 16 and 17 (u

0
(t) and w

0
(t) are the

horizontal and the vertical displacements of the observation point under the constant load,



Figure 15. Variance of the displacements u(0, 0, t) (dashed lines) and w (0, 0, t) (solid lines) versus time.

Figure 16. Domains of possible deviation of the displacements for <"30 m/s.
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which has been considered in section 5). The functions u
0
(t)$p

uu
(t) and w

0
(t)$p

ww
(t) are

depicted by the solid lines and the functions u
0
(t) and w

0
(t) by the dashed lines. The shaded

area indicates possible deviation of the displacements under the load P
0
#P (t), where

P
0
/a"10 kN/m and P (t) is the white noise with zero mean value and the intensity

s"5.3]107 N2/s.
Figures 16 and 17 clearly show that the deviation domains in the sub-critical case are

much wider than that in the super-critical case. In the latter case, these domains are almost
invisible. This implies that for the chosen parameters the statistical analysis is worth
accomplishing only for the sub-critically moving load. The response in the super-critical
motion can be accurately found by considering just the constant load.

8. CONCLUSIONS

The vibration response of a ground surface to a load moving in a tunnel has been
investigated. The ground and the tunnel have been modelled by a two-dimensional elastic



Figure 17. Domains of possible variation of the displacements for <"75 m/s.
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layer and an Euler}Bernoulli beam, respectively. The load has been considered point-like,
vertical and moving uniformly along the beam.

First, the wave propagation in the structure has been studied. It has been shown that the
only waves having the phase velocity smaller than the shear wave velocity c

T
in the layer

may propagate along the structure with no attenuation. The amplitude of waves always
decays if their phase velocity exceeds c

T
. It has been demonstrated that the minimal phase

velocity in the structure is smaller than the Rayleigh wave velocity in the layer and increases
with the tunnel depth.

Based on the information about the wave dispersion in the structure, the response of the
layer surface to three di!erent types of the load has been analyzed. Namely, constant,
a harmonically varying and a random stationary load have been considered. In the case of
deterministic loads, the displacement and the amplitude spectra of an observation point on
the surface have been studied. Considering the random load, main attention has been paid
to the variance of vibrations in the observation point.

In the case of the constant load it has been shown that the structural response crucially
depends on the ratio of the load velocity < and the minimal phase velocity <min

ph
of waves in

the structure. In the sub-critical motion<(<min
ph

, the displacement of the observation point
is pulse-like and the spectrum is concentrated around zero frequency having no peaks. On
the contrary, in the super-critical motion (<'<min

ph
) the displacement pattern becomes

wave-like and the spectrum possesses maxima caused by waves radiated by the load. The
frequencies of these waves have been discussed by employing the kinematic analysis of the
wave radiation in the structure. It has been shown that when the load velocity becomes
close to <min

ph
, the amplitude of the structural response grows signi"cantly.

In the case of the harmonically varying load, the surface response becomes wave-like at
a substantially smaller load velocity than in the case of the constant load. Moreover, if the
load frequency exceeds the cut-o! frequency of the structure, waves are always excited,
indi!erently to whether the load moves or remains in a "xed position. Since for the chosen
parameters, the cut-o! frequency is very low (about 1 Hz), the only wave-like structural
response has been analyzed. It has been shown that the spectrum of vibrations becomes
more complicated and expands towards higher frequencies when the loading frequency
grows.

Main attention in the case of the random load has been paid to the variance of vibration
in the observation point. It has been shown that despite the stationary character of the load,
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vibrations of the observation point are always non-stationary and, accordingly, the
variance depends on time. This is due to the relative motion of the load with respect to the
observation point. The level of the non-stationarity is strongly a!ected by the load velocity.
The higher the load velocity, the higher the level of the non-stationarity. The standard
deviation from the response to constant load has been evaluated showing signi"cant
dependence on the ratio </<min

ph
. In the sub-critical motion this deviation is perceptible,

while in the super-critical motion it appears to be very small. This implies that the response
in the super-critical motion is much more deterministic than that in the sub-critical motion.

Concluding, one has to note that the two-dimensional model for a train moving in
a tunnel is quite far from reality. Results obtained by studying this model can be treated
only as an upper estimate of possible level of the ground vibration. To obtain more realistic
results, one has to consider a three-dimensional model. For example, the ground can be
modelled as a 3D elastic layer and the tunnel as a cylindrical shell.
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APPENDIX A

The Fourier displacements uI I , wII and the Fourier stresses pII zz, pII xz are expressed via the
constants A

j
, j"1,2, 8 as
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when n"0 for z3[0, h!0] and n"4 for z3[h#0, h#H].

Expressions for a
ij

and F
i
in equation (19) read
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a
4j
"[0, 0, 0, 0, ikg

1
, ik/g

1
, R

T
g
2
,!R

T
/g

2
],

a
5j
"[c, c,!2ikR

T
, 2ikR

T
, 0, 0, 0, 0],

a
6j
"[2ikR

L
, !2ikR

L
, c, c, 0, 0, 0, 0],

a
7j
"[0, 0, 0, 0, ikg

3
, ik/g

3
, R

T
g
4
,!R

T
/g

4
],

a
8j
"[0, 0, 0, 0, R

L
g
3
,!R

L
/g

3
,!ikg

4
, !ik/g

4
],

F"[1/(a (k!iuk*)), 0, 0, 0, 0, 0, 0, 0],

where the following notations are introduced:

g
1,2

"exp(hR
L,T

), g
3,4

"exp((h#H ) R
L,T

), c"2k2!u2/(c2
T
!iuk*/o),

D"(EI k4!o
B
u2)/(a (k!iuk*)).

APPENDIX B

Let us evaluate the expression for R
uu

(t, t#q). Substituting equation (38) into equation (39) one
obtains

R
uu

(t, t#q)"
1

8n3Pu P
`=

~=
P
`=

~=

N
+
n/1

N
+
j/1

F
n
(X

n
) F*

j
(X

k
) exp (i (u

n
!u

j
)) uI I 0 (k, k<!X

n
)

]exp(!i(k<!X
n
) t)uII *0 (k

1
, k

1
<!X

j
) exp(i(k

1
<!X

j
) (t#q)) dkdk

1
du (B1)

Integration of equation (B1) with respect to u yields

R
uu

(t, t#q)"
1

4n3P
`=

~=
P
`=

~=

N
+
n/1

N
+
j/1

F
n
(X

n
) F*

j
(X

k
) uII 0 (k, k<!X

n
) exp (!i (k<!X

n
) t)

]uII *0 (k
1
, k

1
<!X

j
) exp(i(k

1
<!X

j
) (t#q)) dkdk

1
, (B2)
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where d
jn
"G

1, when n"j,

0, when nOj

is the Kroneker's delta, which allows to reduce equation (41) to

R
uu

(t, t#q)"
1

4n3P
`=

~=
P
`=

~=

N
+
n/1

F
n
(X

n
) F*

n
(X

k
) uII 0 (k, k<!X

n
) exp(!i (k<!X

n
) t)

]uII *0 (k
1
, k

1
<!X

n
) exp(i(k

1
<!X

n
) (t#q)) dkdk

1

"

1

4n2 P
`=

~=
P
`=

~=

N
+
n/1

F
n
(X

n
) F*

n
(X

k
) uII 0 (k, k<!X

n
)exp(!i<t (k!k

1
))

]uII *0 (k
1
, k

1
<!X

n
) exp(i(k

1
<!X

n
)q) dkdk

1
.
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