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This paper analytically examines the multi-dimensional mounting schemes of an
automotive engine}gearbox system when excited by oscillating torques. In particular, the
issue of torque roll axis decoupling is analyzed in signi"cant detail since it is poorly
understood. New dynamic decoupling axioms are presented an d compared with the
conventional elastic axis mounting and focalization methods. A linear time-invariant system
assumption is made in addition to a proportionally damped system. Only rigid-body modes
of the powertrain are considered and the chassis elements are assumed to be rigid. Several
simpli"ed physical systems are considered and new closed-form solutions for symmetric and
asymmetric engine-mounting systems are developed. These clearly explain the design
concepts for the 4-point mounting scheme. Our analytical solutions match with the existing
design formulations that are only applicable to symmetric geometries. Spectra for all six
rigid-body motions are predicted using the alternate decoupling methods and the closed-
form solutions are veri"ed. Also, our method is validated by comparing modal solutions
with prior experimental and analytical studies. Parametric design studies are carried out to
illustrate the methodology. Chief contributions of this research include the development of
new or re"ned analytical models and closed-form solutions along with improved design
strategies for the torque roll axis decoupling. ( 2000 Academic Press
1. INTRODUCTION

There is considerable interest in controlling the automotive powertrain vibration problems
through proper design of the rubber and hydraulic mounting systems [1}15]. The pulsating
torque generated by the multi-cylinder engines is one of the major sources of vibration. This
becomes even more critical in future vehicles which will employ high power density
powertrains with lighter and more compact body frames. Mathematical models of the
engine-mounting systems are therefore needed to fully understand the dynamic design
issues, given increasingly stringent packaging and geometric constraints. This article
analytically examines the three-dimensional mounting schemes that may dynamically
decouple the torque roll axis (TRA).

The TRA is de"ned as an axis around which rotation occurs when a torque is exerted on
a free rigid body about an arbitrary direction, say x in Figure 1(a). Since the system of
Figure 1(a) is unconstrained, the TRA is determined by the inertial properties of the
powertrain and the direction of the torque. It should be noted that the direction of the TRA
may not be unique when it is purely de"ned by using the Euler's equations of motion for
a free rigid body. Now assume that the system is constrained and the rotational
displacements of the rigid body undergoing oscillations are small. Therefore, all second
order terms in the Euler's equations of motion will be negligible and this will result in the
unique TRA direction. In many practical cases, the TRA does not coincide with any of the
0022-460X/00/260085#30 $35.00/0 ( 2000 Academic Press



Figure 1. Schematic view of the torque roll axis (TRA) mode and decoupling concepts: (a) TRA for a free rigid
body, (b) coupled powertrain mount system, (c) TRA mode-decoupled system.
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principal inertial axes or the crankshaft axis [4}6]; in fact typical deviations may be
up to 253. When the powertrain is supported by multiple mounts, there exists six
physical modes such as vertical bounce (w

z
), longitudinal force-aft (w

x
), horizontal side

motion (w
y
), roll (h

x
), pitch (h

y
), and yaw (h

z
) modes as shown in Figure 1(b). Now suppose

that a torque ¹
x
is applied about the x-axis, as de"ned by the reference co-ordinate system

of Figure 1(b).
Two types of forced vibration responses may be produced. One is the pure rotational

response about only the x-axis; designate it as the roll mode that is &&decoupled'' from the
other physical modes. The second one is the coupled response along or about several axes;
the roll mode is now &&coupled'' with the other physical modes. Some caution must be
exercised regarding the terminology that is used in this area, especially with terms such as
&&coupling'', &&decoupling'' and &&mode''. The term &&mode'' may refer to the forced response
&&mode'' along or about a chosen physical co-ordinate axis. Hence, the term &&physical mode''
is adopted here instead of simply &&mode'' in order to di!erentiate it from the natural mode
of vibration. Consequently, some of the terminology used before in the literature such as the
&&three coupled natural modes'' [7] should be changed to the &&three coupled physical
modes'' to avoid confusion.
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2. TORQUE ROLL AXIS DECOUPLING CONCEPTS

Most dynamic design principles attempt to place the natural frequencies of the system
below and above the excitation frequency range [8, 9]. However, if a system has several
resonances within a narrow band, it becomes a rather di$cult task to achieve. Therefore,
a physically decoupled system has a better chance of producing fewer resonances over the
operating range. For example, if a system is completely decoupled in physical modes,
excitation along one physical co-ordinate should excite only one mode, as shown in Figure
1(c). Even when two or three di!erent excitations are simultaneously applied to the
powertrain, projected excitations along the physical co-ordinates may have only a few
non-trivial values. Hence, physical decoupling of the powertrain is often necessary to ensure
that vibro-acoustic performance goals will be achieved. Concurrently the mounting system
must also satisfy the packaging needs, geometric constraints and static load-bearing
requirements.

The elastic axis decoupling scheme is frequently a starting point in the industrial
mounting system design practice [2, 6, 7, 10]. Elastic axes for an elastically supported
rigid-body system are those axes along which only the displacement (or rotation), collinear
with the direction of the applied static force (or moment), occurs as shown in Figure 2(a) and
2(b). If a physical co-ordinate system can be de"ned using elastic axes C

e
and if it coincides

with the principal inertial co-ordinate system C
p
, the dynamic response consists of three

decoupled translational and three rotational modes as shown in Figure 2(c). System mass
and sti!ness matrices are then diagonal either in C

p
or C

e
co-ordinates. However, Kim [11]

maintains that the elastic center of mounts cannot always exist in a full three-dimensional
(3-D) rigid-body system since only the six o!-diagonal terms are forced to vanish in the
physical domain. Therefore, the complete decoupling of a practical powertrain by the elastic
axis mounting concept is impossible to achieve when one considers the 3-D asymmetric
shape of the inertial body and arbitrary placement of the mounts. Consequently, the
focalization method, which is related to the elastic axis decoupling concept, has been
implemented as it partially decouples a system [2, 7]. Direct design methods of the
mounting system also have been tried, using optimization algorithms, regardless of the
coupling of physical modes. Bernard and Starkey [8] and Spiekermann et al. [9] applied
optimization algorithms to prevent the resonances of the engine natural rigid-body mode
from being excited by engine excitation. Ashra"uon attempted to minimize the forces
transmitted from the engine to the nacelle in an aircraft [14].

The true TRA mode decoupling strategy has also been sought by designers and
researchers over the past two decades [4}6]. Requirements for the existence of a decoupled
TRA mode are suggested by Geck and Patton [5] and these have been implemented in
a numerical optimization scheme. But they could not obtain a more complete decoupling of
the TRA mode. The TRA decoupling mechanisms therefore remain poorly understood and
inadequately analyzed. New or re"ned dynamic decoupling conditions are obviously
needed and these will be examined in this paper.

3. PROBLEM FORMULATION

Consider the generic powertrain system of Figure 3(a). Several approximations and
simpli"cations must be made to establish a tractable research problem. These include the
following. (1) Displacements of the powertrain are small. (2) The powertrain is represented
by a rigid body of time-invariant inertial matrix M of dimension 6. (3) The powertrain is
supported at four discrete locations as shown in Figure 5; rubber or hydraulic mounts are



Figure 2. Elastic axis decoupling scheme and relevant coordinate systems. (a) A powertrain mount system with
Cg (x, y, z) and C

p
(x

p
, y

p
, z

p
) co-ordinate systems. Here, Cg is the center of gravity. (b) Equivalent system

representation in the elastic axis co-ordinate system C
e

(x
e
, y

e
, z

e
) when C

e
is the elastic center. (c) Elastic axis

decoupled system.
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represented by tri-axial linear spring elements (k
p
, k

q
, and k

r
). (4) Viscous C and/or

structural H damping matrices are assumed to be known; they may be estimated from
known modal damping ratios assuming a proportionally damped system. (5) The vehicle
chassis may be modeled as a rigid termination. (6) The excitation is assumed to be either
harmonic or periodic of known frequencies, amplitudes, and phases. (7) Emphasis is initially
placed on the lower frequencies (up to 50 Hz) covering six modes of rigid-body vibration;
the upper-frequency range may be extended in future work when the relevant vehicle chassis
and powertrain vibrational responses are included.

For the generic powertrain mount system of Figure 3(b), the inertial co-ordinate system
for the rigid body is denoted as Cg , the TRA co-ordinate system is given by C

TRA
, and the



Figure 3. Physical system of interest. (a) A generic powertrain with rubber and/or hydraulic mounts. Only
pulsating torque excitation is illustrated here. (b) Co-ordinate systems Cg (x, y, z), C

TRA
(x@, y@, z@) , and C

si
(x

si
, y

si
, z

si
).
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principal elastic co-ordinate system of the ith mount is de"ned by C
si
. The crankshaft axis is

parallel to the x direction in Cg and the TRA is parallel to the x@ direction in C
TRA

. The
position vector r

i
"[a

xi
a
yi

a
zi
]T of the ith mount is in the Cg system. A generalized

co-ordinate vector q is de"ned by combining translations (wg) and rotational (hg)
displacements of the powertrain center of gravity (Cg):

q"[wTg , hTg ]T"[[w
x

w
y

w
z
], [h

x
h
y

h
z
]]T. (1)

Speci"c objectives of this article are as follows. (1) Develop an analytical formulation of the
problem and derive mathematical conditions that yield a more complete dynamic
decoupling of the torque roll axis mode by proposing a new axiom. (2) Compare the
proposed dynamic decoupling technique with the existing elastic axis mounting design and
focalization methods. (3) Obtain closed-form solutions for a few simpli"ed mounting
schemes to better understand the e!ect of mounting parameters. (4) Compare various
methods and validate the proposed formulation by comparing modal solutions with those
given by Spiekermann et al. [9].
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4. ANALYTICAL MODEL

The inertia matrix M of the powertrain (engine and gearbox) consists of the following
translational (M

w
) and rotational (Mh) inertia terms, where m is the system mass, I is the

moment of inertia, and diag implies a diagonal matrix (also refer to Appendix A for the
identi"cation of symbols):

M"C
M

w
0

0

MhD , M
w
"diag ([m m m]), Mh"

I
xx

!I
xy

!I
xz

!I
xy

I
yy

!I
yz

!I
xz

!I
yz

I
zz

. (2)

Inertial properties may be estimated based on simpli"ed powertrain geometry or from solid
models/"nite element analyses. The mounting system sti!ness matrix K can be obtained by
considering the reaction forces and moments from mounts when the center of gravity Cg is
displaced. Consider the planar rigid-body powertrain of Figure 4 where only the
translations along x and y directions and the rotation (h

z
) around the z axis are considered

[7]. The torque reaction from mounts due to h
z
will be (k

t
#a2

y
k
x
)h

z
. If k

t
is assumed to be of

the same order of magnitude as r2
c
k
x
, where r

c
is a characteristic dimension of a mount, we

obtain the following relationship: k
t
/a2

y
k
x
+(r

c
/a

y
)2. Values of r

c
/a

y
for a typical rubber

mount range from 0.1 to 0.2, and therefore the contribution of k
t
is negligible. Consequently,

the sti!ness matrix of the ith mount K
si

in C
si

may be simpli"ed as

K
si
"diag ([k

pi
k
qi

k
ri
]), (3)

where k
p

is the principal compressive sti!ness, and k
q

and k
r

are the principal shear
sti!nesses. A transformation matrix Rg,si

between Cg and C
si

co-ordinates is used to obtain
the static sti!ness matrix Kgi

of the ith mount in Cg from K
si
. The elements of R

g,si
consist of

directional cosines of C
si

with respect to Cg since only the rotational transformation must be
considered. The matrix Kgi

is obtained as

Kgi
"Rg,si

K
si
RTg, si

"

k
xxi

k
xyi

k
xzi

k
xyi

k
yyi

k
yzi

k
xzi

k
yzi

k
zzi

. (4)
Figure 4. Consideration of torsional sti!ness k
t
in a powertrain mount.
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Let w
i
be the de#ection vector for the ith mount,

w
i
"wg#hg]r

i
. (5)

Instead, we use the rotation matrix B
i
for the cross-vector product and rewrite equation (5)

as follows where I is an identity matrix of dimension 3:

w
i
"[I BT

i
]q , B

i
"

0 !a
zi

a
yi

a
zi

0 !a
xi

!a
yi

a
xi

0

. (6, 7)

The translational reaction force R
wi

and moment reaction Rhi from the ith mount are

R
wi
"!Kgi

w
i
"!Kgi

[I BT]q, (8)

Rhi"r
i
]R

wi
"B

i
R

wi
"!B

i
Kgi

[I BT]q. (9)

Combining reaction force and moment, one obtains the reaction vector

C
R

wi
RhiD"!C

Kgi
(Kgi

BT
i
)T

Kgi
BT

i
B
i
Kgi

BT
i
D q. (10)

Hence, the contribution of all mounts to the system sti!ness matrix may be combined and
expressed as follows, where both K

i
and K are square matrices of dimension 6 and i is the

mount index:

K"

n
+
i/1

K
i
"

n
+
i/1
C

Kgi
(Kgi

BT
i
)T

Kgi
BT
i

B
i
Kgi

BT
i
D . (11)

Using equation (2) and (11) we can construct the governing equations of the LTI system
in matrix form as follows where only small oscillations are assumed in addition to linear
system parameters:

MqK (t)#Cq5 (t)#Kq (t)"f (t), (12)

where f is the external force vector and C is the viscous damping matrix assuming
a proportionally damped system. Note that the mean load and torque terms are deleted
and hence the generalized vector q represents perturbations about the static equilibrium.
Mean rotation is ignored as well. Structural damping may also be included by replacing

Cq5 (t) by iHq(t), where i"J!1, but this formulation is valid in the frequency
domain only.

5. TORQUE ROLL AXIS DECOUPLING AXIOMS

Geck and Patton [5] have stated the following two axioms and provided the necessary
mathematical proofs regarding the TRA mode decoupling, by assuming the powertrain
mounting system is given an undamped LTI system formulation. These are rephrased using
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our notation. Refer to Appendix B for a more mathematical de"nition of the TRA direction
q
TRA

.

1. ¹he torque pulses ¹(t) will excite one and only one mode if and only if the mode shape of that
mode is a rotation around the torque roll axis.

2. A system has a mode about the torque roll axis if and only if Kq
TRA

is parallel to T where
K is the sti+ness matrix for the system, q

TRA
is the normalized ¹RA direction and T is

oscillating torque.

We may conclude from the above statements that if the TRA direction coincides with one of
the natural modes of vibration, i.e., the natural mode of vibration is solely a rigid-body
rotation, then the response will be a rotation around the TRA regardless of the excitation
frequency. Note that the response has a constant direction since the TRA depends only on
the time-invariant inertial properties and the direction of the applied torque which also has
a "xed direction. The following two questions may be raised in criticism to the above
because one may question if the TRA mode decoupling is the only method of obtaining
a constant directional response.

(a) If the response to a torque has a constant rotational direction, should it be a rotation
around the TRA?

(b) If the response to a torque is a pure rotation around the TRA, should it belong to one
of the natural modes of vibration?

To answer the above, we propose a new axiom, designated below as 3.

3. If a rigid-body system excited by a force (torque or moment) with a constant direction
responds in a constant translational (rotational) direction and varies only with the excitation
frequency, then that response must be one of the natural modes of vibration.

The proof of axiom 3 is given next. Assume, without loss of generality, that a powertrain
mounting system is linear and undamped. Also assume that system matrices of dimension
N are positive de"nite, and that excitation is harmonic at frequency u. Distinct natural
frequencies (u

r
) and eigenvectors (u

r
) are also assumed here, where r is the modal index.

De"ne harmonic force f (t)"a(u)f
a
e*ut and response q(t)"b (u)q

a
e*u t vectors where a and

b are spectrally varying scalar functions, and f
a

and q
a

are frequency-invariant amplitude
vectors. By using the modal expansion theorem, the response is as expressed.

b (u)q
a
"

N
+
r/1

c
r
(u)u

r
, (13)

where c
r
is scalar and a function of u and it may be called the modal participation factor.

Since all eigenvectors are linearly independent of each other, they form a basis for the real
vector space of dimension N. Hence q

a
is expressed as

q
a
"

N
+
r/1

d
r
u
r
, (14)

where d
r
is a scalar constant. Since the response is non-trivial, at least one of the scalar

coe$cients in equation (14) should not be zero. Assume that d
j
O0. Substituting equation

(14) into equation (13) and rearranging, obtain

0"(c
1
(u)!d

1
b(u))u

1
#2#(c

r
(u)!d

r
b(u))u

r
#2#(c

N
(u)!d

N
b(u))u

N
. (15)
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Since the u
r
's are independent of each other, c

r
(u) equals to d

r
b(u), where b(u) equals to

c
j
(u)/d

j
from the jth term. Hence d

r
(r"1,2 , N; rOj ) is expressed as

d
r
"d

j

c
r
(u)

c
j
(u)

. (16)

The relationship (16) should be valid at all frequencies. Choose a case when the excitation
u approaches the jth natural frequency u

j
,

lim
uPu

j

d
r
" lim

uPu
j
Cdj

c
r
(u)

c
j
(u)D"0. (17)

Therefore, we can conclude that all d
r
1s are zero unless r"j, meaning that f

a
is parallel to

u
j
and it is also one of the natural modes. This completes the proof.
The axiom 3 can now answer the two questions that were posed previously. For question

(a), when the constant direction of the response becomes a natural mode of the system by
axiom 3, then it should be a rotation around the TRA per axiom 1. Regarding question (b),
since the response is a rotation around the TRA, it has a constant direction. Hence it should
belong to the natural modes by axiom 3. Therefore, the TRA mode decoupling is the only
way to achieve a constant directional response. A complete dynamic decoupling of the TRA
mode depends solely now on whether a natural mode can be forced to be in the TRA
direction or not. In general, a constant directional response may be obtained for any
arbitrary force input with a constant direction. For example, if a dynamic force is vertically
applied at Cg , there exists an axis along which the response occurs as a free rigid body.
Similar to the TRA mode decoupling, a complete or partial decoupling of other physical
modes may also be obtained; this goal is left for future research.

6. DYNAMIC DECOUPLING METHOD

6.1. ANALYTICAL FORMULATION

A more general mathematical condition for a complete decoupling can be obtained in the
TRA co-ordinate system where TRA is one of the axes. De"ne a transformation from
co-ordinate system Cg to co-ordinate system C

TRA
. Start with the following undamped

equations of motion for a powertrain mounting system:

MqK (t)#Kq(t)"f (t), (18)

where M is de"ned by equation (2) and K by equation (11). De"ne the following relationship
where a is a normalizing constant for the "rst column of matrix:

J"a

J
11

J
12

J
13

J
21

J
22

J
23

J
31

J
32

J
33

"

I
xx

!I
xy

!I
xz

!I
xy

I
yy

!I
yz

!I
xz

!I
yz

I
zz

~1

. (19)

Assume that a harmonic torque is applied about the x-axis. Using equations (B2) and (B3),
the TRA direction is de"ned as

q
TRA

"[0 0 0 J
11

J
21

J
31

]T. (20)
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Formulate a new co-ordinate system where the x@ direction is parallel to q
TRA

and the origin
is located on the center of gravity Cg of the powertrain. The directional cosine vector
between x@ and the original co-ordinate system (x, y, z) is obtained as

[v
x{x

v
x{y

v
x{z

]"[J
11

J
21

J
31

]. (21)

The directional cosine vectors for y@ and z@ directions may be chosen arbitrary as long as the
following equation is valid and the resulting transformation matrix is orthonormal. Any
orthonormal vectors lying on the following plane that is de"ned in Cg can be used as the
directional cosine vectors for them:

J
11

x#J
21

y#J
31

z"0. (22)

Similarly, the directional cosine vectors for y@ and z@ may be de"ned as

[v
y{x

v
y{y

v
y{z

]"
[v

y{x0
v
y{y0

v
y{z0

]

D [v
y{x0

v
y{y0

v
y{z0

]D
; [v

z{x
v
z{y

v
z{z

]"
[v

z{x0
v
z{y0

v
z{z0

]

D[v
z{x0

v
z{y0

v
z{z0

] D
, (23)

where v
y{y0

, v
y{z0

, and v
z{z0

may assume any arbitrary values and

v
y{x0

"!

J
21

v
y{y0

#J
31

v
y{z0

J
11

; C
v
z{x0

v
z{y0
D"!C

J
11

v
y{x

J
21

v
y{y
D
~1

C
J
31

v
y{z
D v

z{z0
. (24)

Designate this as the orthonormal transformation matrix Rg@, g :

Rg@,g"

v
x{x

v
x{y

v
x{z

v
y{x

v
y{y

v
y{z

v
z{x

v
z{y

v
z{z

, (25)

where the entire row vectors are de"ned by equations (21) and (23). De"ne the
transformation matrix, Pg@, g of dimension 6 as

Pg@ ,g"C
Rg@ ,g

0

0

Rg@ ,gD . (26)

The undamped governing equation of motion in the TRA co-ordinate system is
de"ned as

M@qK @(t)#K@q@(t)"f @(t), (27)

M@"Pg@ ,g MPTg@ ,g , K@"Pg@ ,gKPTg@ ,g , f @"Pg@ ,gf. (28)

6.2. CONDITIONS FOR DECOUPLING THE TORQUE ROLL AXIS MODE

All equations in this section are de"ned in the TRA co-ordinate system (x@, y@, z@).
However, the superscript used to denote the TRA coordinate system is dropped here for the
sake of convenience. To achieve a complete decoupling of the TRA mode from other
physical modes, the TRA direction q

TRA
"[0 0 0 1 0 0]T should be one of natural modes.
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In other words, the Kq
TRA

"jMq
TRA

relationship should be satis"ed where j is the
eigenvalue. Expressed in detail,

n
+
i/1

(k
xzi

a
yi
!k

xyi
a
zi
)"0,

n
+
i/1

(k
yzi

a
yi
!k

yyi
a
zi
)"0,

n
+
i/1

(k
zzi

a
yi
!k

yzi
a
zi
)"0, (29a}c)

n
+
i/1

(k
yyi

a2
zi
#k

zzi
a2
yi
!2k

yzi
a
yi
a
zi
)"jI

xx
, (29d)

n
+
i/1

(k
xzi

a
yi
z
zi
#k

yzi
a
xi
a
zi
!k

zzi
a
xi
a
yi
!k

xyi
a2
zi
)"!jI

xy
, (29e)

n
+
i/1

(k
xyi

a
yi
a
zi
#k

yzi
a
xi

a
yi
!k

yyi
a
xi
a
zi
!k

xzi
a2
yi
)"!jI

xz
. (29f )

These equations represent the conditions for a complete decoupling of the TRA mode. Since
in equations are available, up to six mounting parameters may be adjusted. For example,
one may vary three sti!ness ratios and three orientation angles or even six location
parameters while holding other parameters as constants.

7. ANALYTICAL SOLUTIONS FOR SIMPLIFIED MOUNTING SYSTEMS

Consider several simpli"ed mounting systems, which are devised to obtain closed-form
solutions to equation (29). Analytical results should reveal an understanding of the e!ect of
mounting parameters, while providing a starting point for the dynamic design. The
traditional mount-positioning scheme, as shown in Figure 5, is examined.

7.1. FOUR-POINT MOUNTING SYSTEM

A four-point simpli"ed mounting system is shown in Figures 6 and 7. Note that the
inertial system is not simpli"ed here. Instead, the only simpli"cation made here is to restrict
the mounting orientations such that the compressive principal sti!ness direction and one
shear sti!ness direction from each mount lie in the so-called mounting planes, which are
parallel to the y}z plane. The TRA co-ordinate system is adopted and the proposed
decoupling conditions will be employed. The origin of C

si
in the mounting plane is speci"ed

in the two-dimensional mounting co-ordinate system C
mi

. The origin of C
mi

is located at
point P

i
whose co-ordinates are (p

xi
, p

yi
, p

zi
) in C

TRA
. Two system design parameters are

orientation angle /
i
and mounting distance s

i
; these are in C

mi
. Assume that all four mounts

are elastically identical, all orientation angles are equal to / and the two mounting planes
are located from Cg by the same distance a

x
. Since two principal sti!ness directions are

parallel to the y}z plane, two cross-axis sti!ness values, k
xz

and k
xy

, of each mount are zero;
this assumption eliminates equation (29a). De"ne the relationship

k
y
"k

p
sin2/#k

q
cos2/, k

z
"k

p
cos2/#k

q
sin2/, k

yz
"(k

p
!k

q
) sin / cos/.

(30a}c)



Figure 5. Four-point mount positioning scheme.

Figure 6. Simpli"ed mounting scheme for an asymmetric powertrain.

Figure 7. Scheme for the mounting plane.
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Now express sti!nesses of each mount as

k
yy1

"k
yy2

"k
yy3

"k
yy4

"k
y
, k

zz1
"k

zz2
"k

zz3
"k

zz4
"k

z
,

k
yz1

"!k
yz2

"k
yz3

"!k
yz4

"k
yz

. (31a}c)

Mount locations are de"ned as

a
y1
"p

y1
!s

1
cos /, a

y2
"p

y2
#s

2
cos/, a

y3
"p

y3
!s

3
cos/,

a
y4
"p

y4
#s

4
cos /, a

z1
"p

z1
#s

1
sin/, a

z2
"p

z2
#s

2
sin /,

a
z3
"p

z3
#s

3
sin/, a

z4
"p

z4
#s

4
sin/. (32a}h)

Substituting equations (31) and (32) into equations (29b}d, f ), and solving for s
i
, one obtain

s
1
"

1

2N
1

Mk
yz

(p
y1
!p

y2
)!k

y
(p

z1
#p

z2
)N#

1

2N
2

Mk
z
(p

y1
#p

y2
)

!k
yz

(p
z1
!p

z2
)N#

j
4a

x
A
I
xz

N
1

!

I
xy

N
2
B ,

s
2
"

1

2N
1

Mk
yz

(p
y1
!p

y2
)!k

y
(p

z1
#p

z2
)N!

1

2N
2

Mk
z
(p

y1
#p

y2
)

!k
yz

(p
z1
!p

z2
)N!

j
4a

x
A
I
xz

N
1

#

I
xy

N
2
B ,

s
3
"

1

2N
1

Mk
yz

(p
y3
!p

y4
)!k

y
(p

z3
#p

z4
)N!

1

2N
2

Mk
z
(p

y3
#p

y4
)

!k
yz

(p
z3
!p

z4
)N#

j
4a

x
A
I
xz

N
1

!

I
xy

N
2
B ,

s
4
"

1

2N
1

Mk
yz

(p
y3
!p

y4
)!k

y
(p

z3
#p

z4
)N#

1

2N
2

Mk
z
(p

y3
#p

y4
)

!k
yz

(p
z3
!p

z4
)N!

j
4a

x
A
I
xz

N
1

#

I
xy

N
2
B , (33a}d)

where

N
1
"k

yz
cos/#k

y
sin/"k

p
sin/, N

2
"k

yz
sin/#k

z
cos/"k

p
cos /. (33e, f )

A similar but rather lengthy expression is obtained from equation (29e)

jI
xx

k
p

"(s2
1
#s2

2
#s2

3
#s2

4
)#2(p

z1
s
1
#p

z2
s
2
##p

z3
s
3
#p

z4
s
4
) sin/

!2(p
y1

s
1
!p

y2
s
2
#p

y3
s
3
!p

y4
s
4
) cos/#(p2

z1
#p2

z2
#p2

z3
#p2

z4
) sin2/
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#(p2
y1
#p2

y2
#p2

y3
#p2

y4
) cos2/!2(p2

y1
p
z1
!p

y2
p
z2
#p

y3
p
z3
!p

y4
p
z4

) sin / cos/

#

1

¸

M(p2
z1
#p2

z2
#p2

z3
#p2

z4
) cos2/#(p2

y1
#p2

y2
#p2

y3
#p2

y4
) sin2/

#2 (p
y1

p
z1
!p

y2
p
z2
#p

y3
p
z3
!p

y4
p
z4

) sin / cos/N. (34)

Equations (33) and (34) are rather cumbersome to analyze. Therefore, consider two special
cases to get more tractable closed-form solutions.

7.2. SYMMETRIC INERTIAL SYSTEM

Because of the physical symmetry of the powertrain, I
xy

and I
xz

of equation (2) are zero.
Choose the origins of the mounting co-ordinates such that p

y1
"!p

y2
"

p
y3
"!p

y4
"!y

0
(0 and p

z1
"p

z2
"p

z3
"p

z3
"p

z3
!z

0
(0. Equation (33) is reduced

as follows, where ¸"k
p
/k

q
is the sti!ness or rate ratio:

s
1
"s

2
"s

3
"s

4
"s

0
"(z

0
sin/!y

0
cos/)#

cos/
¸

(z
0
cot/#y

0
). (35)

Insert the above into equation (34) and obtain the following natural frequency for the
decoupled TRA mode:

j
r0
"u2

r0
"

4k
p

¸2I
xx

M (z
0
cos/ cot/#y

0
cos/ )2#¸ (z

0
cos /#y

0
sin/)2N. (36)

Combine equations (35) and (36) to yield the following results; this matches with the
expression of reference [7]:

j
r0
"u2

r0
"

4k
p

I
xx
G

(y
0
#s

0
cos/)2

1
L
sin2/#cos2 /H . (37)

7.3. ASYMMETRIC INERTIAL SYSTEM

Again, choose the origins of the mounting co-ordinates such that

p
z1
"p

z2
"p

z3
"p

z3
"!z

0
(0, p

y1
"p

y3
, p

y2
"p

y4
, p

y1
!p

y2
"p

y3
!p

y4
"!2y

0
(0,

and p
y1
#p

y2
"p

y3
#p

y4
"2Dy

0
. Due to the asymmetric nature, the s

i
1s are obtained as

s
0
"(z

0
sin/!y

0
cos/)#

cos/

¸

(z
0
cot/#y

0
), s

1
"s

0
#s

g
#s

Ixz
!s

Ixy
,

s
2
"s

0
!sg#s

Ixz
#s

Ixy
, s

3
"s

0
#sg!s

Ixz
#s

Ixy
, s

4
"s

0
!sg!s

Ixz
!s

Ixy
,

sg"DyAcos/#

1

¸

sin/ tan/B , s
Ixz
"

jI
xz

4a
x
k
p
sin/

, s
Ixy
"

jI
xy

4a
x
k
p
cos/

. (38a}h)
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Here, we may interpret sg as a &&correction factor'' to s
0

due to a change in the Cg location
along the y direction; s

Ixz
is due to the coupling moment of inertia I

xz
, and s

Ixy
is due to I

xy
.

Using equation (38), the e!ect of asymmetry in achieving the TRA mode decoupling may be
determined. When combined with equation (34), some mounting parameters for a complete
decoupling may be obtained. Substituting equation (38) into equation (34), one obtains
a second order polynomial of j"u2

r
. The solution is

u2
r
"

2k
p
a2
x
sin2/

I
xx

(c2
z
#c2

y
tan2/)

(1$J1!D) , c
y
"

I
xy

I
xx

, c
z
"

I
xz

I
xx

,

D"

4

a2
x
¸2A

c2
z

sin2/
#

c2
y

cos2/BG
(z

0
cos/ cot/#y

0
cos/)2#¸ (z

0
cos/#y

0
sin/)2

#Dy2 sin2/(tan2/#¸) H.
(39a}d)

From equation (39) one can determine whether a complete decoupling exists or not for a given
mounting con"guration; it is given by

D)1 (40)

The parametric study based on equation (40) will be discussed in section 9 where two
numerical examples are presented that will con"rm the closed-form solutions.

8. ELASTIC AXIS DECOUPLING AND FOCALIZATION METHODS

To achieve a decoupled powertrain system, the mounting system should be adjusted such
that the elastic center C

e
exists within the powertrain body. After statically adjusting the

mounting system, one may try matching C
e

to C
p
. The mathematical interpretation of the

elastic axis decoupling method is described next. When equation (12) is derived in C
p
, the mass

matrix M becomes diagonal. Elastic axis decoupling is now achieved by diagonalizing the
sti!ness matrix K in C

p
through the proper selection of mount locations, orientations, and

sti!ness rates. The 15 o!-diagonal terms of K must vanish. However, for a three-dimensional
rigid-body system supported by 3 or 4 mounts, the complete dynamic decoupling of mounts is
virtually impossible to achieve [11]. Therefore, only the partial decoupling is possible based
on the focalization method [2, 7, 10]. It is presented in this paper and it will be compared with
the proposed dynamic decoupling method. When a rigid body has a two plane symmetry or
when it is represented in C

p
, the cross-moments of inertia (I

xy
, I

xz
, and I

yz
) vanish. Partial

decoupling of physical modes, w
y
, w

z
, and h

x
may be achieved by placing four identical

mounts in a symmetrical manner as shown in Figure 8 [7]. The physical projection of the
elastic center of inclined mounts in the y}z plane onto the x-axis is mathematically achieved
by forcing the element K

24
of K (derived in C

p
and given by equation (11)) to be zero. This

leads to the relationship between the mount location parameter (a
y
and a

z
) and orientation

angle (/) and sti!ness rates (k
p

and ¸"k
p
/k

q
):

a
z

a
y

"

(¸!1) tan/

¸ tan2/#1
. (41)

Equation (41) is graphically shown in Figure 9; it matches the results given in reference [2].
For a given sti!ness ratio ¸, a

z
/a

y
should not exceed the following maximum value in order to



Figure 8. Focalization by the partial elastic axis decoupling method.

Figure 9. Design map for a symmetrical mounting system based on the focalization method. Key: *, ¸"2;
, ¸"4; } }, ¸"8.
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ensure the decoupling of elastic axis:

A
a
z

a
y
B
.!9

"

¸!1

2J¸

at /"tan~1A
1

J¸B. (42)
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The natural frequency of the decoupled natural roll mode along h
x
is given by equation (37).

Note that y
0
#s

0
cos/ in equation (37) corresponds to a

y
in Figure 8. This focalization

method may also be applied to an asymmetrical inertial system in Cg provided cross-moments
of inertia are small compared to I

xx
. Examples of the next section will illustrate the

focalization method using both C
p

and Cg co-ordinate systems. Complete elastic axis
decoupling of powertrain mounting system will also be attempted by minimizing the o!-
diagonal terms of sti!ness matrix that is de"ned in the C

p
co-ordinates.

9. EXAMPLES AND RESULTS

9.1. CONFIRMATION OF CLOSED-FORM SOLUTION: EXAMPLES I AND II

Two numerical examples for the mount-positioning scheme of Figure 5 are chosen to
con"rm the utility of the proposed method. System parameters are given in Table 1(a). From
Table 1(b) observe that the proposed TRA mode decoupling approach works well as shown
by the calculated eigenvector u

TRA
for both examples. In particular, examine the displacement

spectra for Example II there are shown in Figures 10}12. Only a dynamic range of 100 dB is
shown in the spectra. The harmonic torque excitation ¹(t) is parallel to the crankshaft axis
and its amplitude is 100N m over the range of frequencies. Directions of dynamic responses
(w

x
, w

y
, w

z
, h

x
, h

y
, and h

z
) are de"ned in the rigid-body inertial co-ordinate system (Cg) for

Figure 10, in the principal inertial co-ordinate system (C
p
) for Figure 11, and in the TRA

co-ordinate system (C
TRA

) for Figure 12. While the original mounting system and the elastic
TABLE 1

Examples I and II: simpli,ed powertrain mounting systems
(a) System parameters

Mass Example I Example II
m"50)5 kg m"73)2 kg

Moment of inertia
(kg m2)

Ig"

1)65 0 0

0 2)43 0

0 0 2)54

Ig"

1)94 !0)129 !0)415

!0)129 3)43 0)073

!0)415 0)073 3)39

Mount sti!ness rates k
p
"8)4]105N/m; ¸"2)5 k

p
"8)4]105 N/m; ¸"2)5

Mount orientation /"303 /"303

(b) Results

Example f
TRA

(a
xi

, a
yi
, a

zi
) mm, i"mount index

Hz
i"1 i"2 i"3 i"4

I 38)3 (318,!198,!93)4) (318, 198,!93)4) (!318,!198,!93)4) (!318, 198,!93)4)
II 29)8 (251,!173,!62)7) (251, 182,!71)0) (!251,!146,!78)3) (!251, 144,!93)0)

Example u
TRA

I [4)6]10~18 !9)3]10~17 8)6]10~16 1)0 !7)6]10~19 4)6]10~16]T
II [2)8]10~17 !1)0]10~17 8)6]10~16 1)0 !2)6]10~16 !6)1]10~16]T



Figure 10. Displacement magnitude spectra of an asymmetric inertial system (Example II). These are for the
original mounting system in Cg . (a) Dw

x
D, (b) Dw

y
D, (c) Dw

c
D, (d) Dh

x
D, (e) Dh

y
D, (f ) Dh

z
D.

Figure 11. Displacement magnitude spectra of an asymmetric inertial system (Example II). These are for the
elastic axis mounting system in C

p
(focalized by partially decoupling). (a) Dw

x
D, (b) Dw

y
D, (c) Dw

c
D, (d) Dh

x
D, (e) Dh

y
D, (f ) Dh

z
D.
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Figure 12. Displacement magnitude spectra of an asymmetric inertial system (Example II). These are for the
TRA mode-decoupled mounting system in C

TRA
. (a) Dw

x
D, (b) Dw

y
D, (c) Dw

z
D, (d) Dh

x
D, (e) Dh

y
D, (f ) Dh

z
D.
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axis mounting strategy produce non-negligible responses in several directions, the
proposed method shows a true decoupling of the TRA mode, which is parallel to the
x-axis in C

TRA
. These examples con"rm the utility of the new axiom and the closed-form

solution.

9.2. PARAMETRIC STUDIES: EXAMPLE II

The results of a typical parametric study are shown in Figure 13. Three parameters
have been selected to illustrate the design concepts: orientation angle /, sti!ness ratio
¸"k

p
/k

q
, and principal compressive sti!ness value k

p
. Their e!ects are quanti"ed in

terms of the natural frequency of the decoupled TRA mode f
TRA

. All parameters and
results are non-dimensionalized by using the values of Example II (given Tables 1) as
reference (ref ):

f *
TRA

"

f
TRA

f
TRA,ref

, /*"
/

/
ref

, ¸*"
¸

¸
ref

, k*
p
"

k
p

k
p,ref

. (43)

Design guidelines are clearly depicted in Figure 13. For example, when f
TRA

is decreased
further to provide improved vibration isolation at lower speeds including the idling condition,
one needs to reduce / and ¸ since they are almost inversely proportional to f

TRA
. Even though

the results of Figure 11 are generated by varying one parameter at a time, two parameters
may be simultaneously changed producing a 3-D design map, which will be very helpful
especially in the early stages of design.



Figure 13. E!ect of design parameters on the decoupled TRA mode natural frequency (Example II).

TABLE 2

Example III: original mounting system of <-6 diesel
engine [9]

Mass Moment of inertia (kg m2)

m"276)70 kg

Ig"

11)64 !0)8 3)2

!0)8 15)8 0)9

3)2 0)9 15)69

Mount d Sti!ness (N/m)
Compression, k

p
Lateral, k

q
Fore-aft, k

r
1 223 667 44 733 44 733
2 170 167 126 050 48 619
3 217 167 434 334 108 583
4 232 167 464 334 116 083

Mount d Mount orientation (deg)
u
x

u
y

u
z

1 0 !45 0
2 0 !39 180
3 0 !75 0
4 0 !45 180
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9.3. COMPARISON WITH LITERATURE: EXAMPLE III

The next example Example III considers the mounting parameters for a V-6 diesel engine
as listed in Table 2. This case was considered by Spiekermann et al. [9]. They had simulated
the engine mounting system and its was validated by comparing predictions with a modal



TABLE 3

Modal analysis of Example III
(a) Natural frequencies

Natural mode 1st 2nd 3rd 4th 5th 6th

Computer Our method 4)473 5)971 7)479 9)872 12)266 16)452
Simulation Spiekermann et al. [9] 4)47 5)97 7)48 9)87 12)26 16)46
Experiment [9] 4)17 5)66 6)47 8)76 12)47 N/A

(b) Natural mode shapes from computer simulation

Natural mode 1st 2nd 3rd 4th 5th 6th

x Our method 0)300 0)107 0)057 !0)018 !0)117 !0)178
Spiekermann et al. 0)300 0)107 0)058 !0)108 !0)117 !0)180

y Our method 0)081 !0)414 0)134 0)094 !0)077 0)018
Spiekermann et al. 0)080 !0)414 0)137 0)093 !0)078 0)018

z Our method !0)029 0)049 1)000 !0)004 0)029 !0)005
Spiekermann et al. !0)029 0)050 1)000 !0)004 0)029 !0)005

h
x

Our method !0)163 1)000 0)012 1)000 !0)706 0)490
Spiekermann et al. !0)163 1)000 0)015 1)000 !0)708 0)491

h
y

Our method 1)000 0)220 0)019 0)133 0)607 1)000
Spiekermann et al. 1)000 0)220 0)021 0)134 0)609 1)000

h
z

Our method !0)019 !0)194 !0)244 0)391 1)000 !0)984
Spiekermann et al. !0)019 !0)195 !0)243 0)392 1)000 !0)987
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experiment; key results are shown in Table 3. Our method is compared with prior modal
solutions in Table 3. Here the amplitude of the pulsating torque is 200 Nm.

9.4. COMPARATIVE EVALUATION OF MOUNTING METHODS: EXAMPLES III AND IV

Figures 14 and 15 compares the displacement spectra corresponding to the original engine
mounting, the optimized design of Spiekermann et al. [9], and the focalized mounting
concept; relevant parameters of Example III are listed in Tables 2 and 4. All mounting system
designs are described in Cg. Since the main objective in the earlier optimization [9] was to
ensure that the rigid-body vibration modes do not fall within the undesirable frequency band,
they could not decouple the physical modes. In contrast, the focalized engine mounting
concept (as presented in this article) decouples the physical modes between h

x
, w

y
, and w

z
.

However, this particular method still does not decouple other physical modes. Even the
elastic axis decoupling method (focalization in C

p
via partial elastic axis decoupling) produces

non-negligible responses in w
x
, h

y
, and h

z
as shown in Figure 16. Both focalizations produce

the same degree of decoupling. While the focalization in C
p
has only one peak in the physical

roll mode, the one in Cg has two peaks. However, if one considers the mount locations of
Figures 18 and 19, one may conclude that a simple focalization in Cg is more feasible than the
one in C

p
. Figure 17 con"rms that only the TRA mode decoupling achieves a complete

decoupling of physical modes.
Consider the "nal example (Example IV) based on the minimization of the o!-diagonal

terms of sti!ness matrix in C
p
to achieve a complete elastic axis decoupling using the MATLAB

based algorithm [16]. Initial values for the minimization are taken from Example III;



Figure 14. Comparison of translational displacement magnitude spectra between three di!erent engine
mounting schemes (Example III). Key: *, original mounting system [9]; }}, optimized mounting system [9];

, focalized mounting system in Cg. (a) Dw
x
D, (b) Dw

y
D, (c) Dw

z
D.

Figure 15. Comparison of rotational displacement magnitude spectra between three di!erent engine mounting
schemes (Example III). Key:*, original mounting system [9]; } }, optimized mounting system [9]; , focalized
mounting system in Cg. (a) Dh

x
D, (b) Dh

y
D, (c) Dh

z
D.
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TABLE 4

Comparison of ¹RA decoupling methods for Example III

Parameters Focalization in Cg Focalization in C
p

TRA decoupling in
C
TRA

Mount sti!ness rates k
p
"2)5]105 N/m k

p
"2)5]105 N/m k

p
"2)5]105 N/m

¸"2)5 ¸"2)5 ¸"2)5
Mount orientation /"453 /"453 /"553

Figure 16. Displacement magnitude spectra of the focalized (partial elastic axis decoupling) engine mounting
system in C

p
for Example III. (a) Dw

x
D, (b) Dw

y
D, (c) Dw

z
D, (d) Dh

x
D, (e) Dh

y
D, (f ) Dh

z
D.
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the mount locations in the original mounting system, the mount orientations and sti!ness
rates in the focalized mounting system. Results are shown in Table 5. Note that the
orientation angle is de"ned by the Eulerian angles /

ui
[17]. Based on the minimized sti!ness

matrix of Table 5(b), the calculated mode shapes, as shown in Table 5(c), show a virtually
decoupled mounting system using the elastic axis mounting method. Finite responses along
h
y
and h

z
, as shown in Figure 20, are due to the projected torque components (of ¹

x
(t) in Cg )

around the y- and z-axis in C
p
. Mount locations of Example IV are shown in Figure 21; note

that signi"cant changes in the locations are necessary to decouple the powertrain.

10. CONCLUSION

A new axiom for the TRA mode decoupling has been suggested and the necessary
mathematical conditions have been established. Computer simulations con"rm the "ndings



Figure 17. Displacement magnitude spectra of the TRA decoupled engine mount system in C
TRA

for Example
III. (a) Dw

x
D, (b) Dw

y
D, (c) Dw

z
D, (d) Dh

x
D, (e) Dh

y
D, (f ) Dh

z
D.

Figure 18. Location of mounts in Cg for Example III. s, original mounting; j, optimized mounting; ],
focalized mounting in Cg . The origin is at Cg . Also compare this sketch with Figure 19.
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TABLE 5

Example I<: elastic axis decoupling by minimizing the o+-diagonal terms of sti+ness matrix
in C

p
(a) Sti!ness rates and orientation angles

Mount d Sti!ness (N/m)

Compression, k
p

Lateral, k
q

Fore-aft, k
r

1 426 870 207 470 147 790
2 347 590 182 370 114 400
3 224 710 265 710 126 250
4 314 550 159 470 140 860

Mount d Mount orientation: Euler angles (deg.)

/
u1

/
u2

/
u3

1 162)8 !117)9 40)92
2 !141)6 !127)7 !4)520
3 90)65 !52)35 !16)01
4 !144)0 !60)24 !2)669
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(b) Sti!ness matrix

K"

7)11 1)26]10~6 !4)97]10~7 !2)32]10~7 !1)89]10~5 3)50]10~6

9)32 1)60]10~6 1)04]10~5 !1)41]10~5 !2)44]10~6

1)02 !5)02]10~6 !6)21]10~7 2)46]10~7

6)87 !8)10]10~7 !7)64]10~6

0)456 1)32]10~5

0)912

]105N/m

(c) Natural frequencies and mode shapes

Natural 1st 2nd 3rd 4th 5th 6th
mode 8)07 Hz 8)52 Hz 9)24 Hz 9)64 Hz 11)5 Hz 13)4 Hz

x 1'0000 !2)3]10~5 5)7]10~7 !1)6]10~7 4)8]10~7 !1)9]10~8
y !5)7]10~7 1)0]10~8 1'0000 1)9]10~6 !4)8]10~7 1)0]10~6
z 1)6]10~7 2)8]10~7 !1)9]10~6 1'0000 5)8]10~8 !5)3]10~7
h
x

5)3]10~7 2)0]10~6 !2)9]10~5 1)5]10~5 4)1]10~5 1'0000
h
y

4)0]10~4 1'0000 !1)8]10~7 !4)9]10~6 3)6]10~5 !1)2]10~6
h
z

!7)6]10~6 !3)2]10~5 7)6]10~6 !9)2]10~7 1'0000 !2)3]10~5

and demonstrate that only the TRA mode decoupled engine mounting scheme provides
a complete decoupling of physical modes. When a powertrain has small cross-moment of
inertia terms compared with the diagonal terms, the focalization in Cg is found to be better
than the one in C

p
. Based on the results of this paper, key features of the competing

mounting methods, and characteristics of mounting methods are summarized in Table 6.
When compared with the original mounting locations, the TRA-mounting scheme and the



Figure 19. Location of mounts in Cg for Example III. s, original mounting; e, focalized mounting in C
p
;

m , TRA decoupled in C
TRA

. The origin is at Cg. Also compare this sketch with Figure 18.

Figure 20. Displacement magnitude spectra of the minimized elastic axis engine mounting system in C
p

for
Example IV. (a) Dw

x
D, (b) Dw

y
D, (c) Dw

z
D, (d) Dh

x
D, (e) Dh

y
D, (f ) Dh

z
D.
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minimized elastic-axis-mounting scheme show a signi"cant change in the locations of
mounts d1 and d2. Also recall from the closed-form solution developed for a simpli"ed
mounting scheme, the restriction p

zi
, i"1}4, to be !z

0
. Such a restriction may cause one

pair of mounts to be located rather too high compared with the original mount positions. In
general, an optimization algorithm is needed to restrict the location and the orientation of



Figure 21. Location of mounts in Cg for Example IV. s, original mounting; ]; minimized elastic axis mounting
in C

p
.

TABLE 6

Comparison of ¹RA decoupling methods

Focalization method Partial elastic axis TRA decoupling
decoupling method method

Co-ordinate system
to be chosen

Cg (rigid-body inertial) C
p

(principal inertial) C
TRA

axes)

Applicable to Symmetric system or Asymmetric system Asymmetric system
almost symmetric
system

Equations Mass Diagonal or almost Diagonal Non-diagonal
of motions matrix diagonal

Damping Proportional damping Proportional damping Proportional damping
matrix

Sti!ness Diagonal except the Diagonal except the Non-diagonal
matrix coupling term coupling term between

between w
x

and h
y

w
x

and h
y

Concept Place the elastic
center of inclined
mounts on the roll
axis assuming that
the rigid-body system
has two planes of
symmetry

Place the elastic center
of inclined mount on
the roll axis. Or mini-
mize the o!-diagonal
terms of sti!ness
matrix

Force the total mount
reaction forces to cancel
out and induce the total
mount reaction moment
to be parallel to the
excitation torque. Hence
produce pure rotation
only about the TRA axis

Dynamic response When the powertrain
has negligible cross
moment of inertia,
it decouples physical
modes between
w
y
, w

z
, and h

x

Decouples physical
modes between w

y
,

w
z
, and h

x
.

The TRA mode is
completely decoupled
with other physical
modes.
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mounts and to ensure that the natural frequencies of the engine rigid-body modes lie within
the desirable band while maintaining the decoupled TRA mode. This work is beyond the
scope of this paper.

Future study may also include modi"cations to the closed-form solutions, which should
remove some of the constraints in selecting the origins of mounting co-ordinates. In addition,
the e!ect of frequency- and amplitude-dependent mount properties, and the in#uence of
compliant body/chassis on the mounting system should be considered [1, 3, 14, 15].
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APPENDIX A: DEFINITION OF THE DIRECTION

To de"ne the TRA direction, consider the Euler's equations of motion when a harmonic
torque ¹

x
(t)"¹

xa
e*ut is applied about the x-axis:

MhhG g (t)#h0 g(t) ?Mhh0 g(t)"[¹
xa

0 0]Te*ut, (A1)
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where Mh is de"ned in equation (2), ? is the vector product, and hg is de"ned in equation (1).
Since the rotational displacements are assumed to be small, the term h0 g ?Mhh0 g is negligible.
Hence the response hg(t), which is the rotation about the TRA, will be
!M~1h [¹

a
0 0]Te*ut/u2. This results in the unique TRA direction h

TRA
as follows:

h
TRA

"aM~1h [1 0 0]T, (A2)

where a is normalizing constant for the "rst column of M~1h . One can de"ne the TRA
direction in the Cg co-ordinate system by using equation (A2) as

q
TRA

"[0 0 0 hT
TRA

]T, (A3)

For an arbitrary torque T(t)"T
a
e*ut"[0 0 0 ¹

xa
¹
ya

¹
za

]Te*ut, the TRA direction q
TRA

is
obtained as follows where b is a suitable normalizing constant:

q
TRA

"bM~1T
a
. (A4)

APPENDIX B: NOMENCLATURE

a, b, c, d arbitrary scalar constant or coe$cient
a
x
, a

y
, a

z
distance of mount from Cg in x, y, and z directions

a
xi

, a
yi
, a

zi
co-ordinates of the ith mounting point

a(u), b(u), c(u) spectral functions
B rotation matrix for the cross-vector product
C viscous damping matrix
Cg center of gravity
f
TRA

natural frequency of the TRA mode
f external force vector
H structural damping matrix
i J!1
I moment of inertia
I identity matrix
J matrix element of J
J inverse of moment of inertia matrix
k sti!ness
k
p
, k

q
, k

r
principal sti!nesses

k
t

torsional sti!ness
K sti!ness matrix
¸ sti!ness ratio (k

p
/k

q
)

m mass
M inertia matrix
N dimension of a dynamic system
r
c

characteristic dimension of mount
r position vector in the geometric co-ordinates
R reaction force vector
P
i

origin of C
mi

(P
xi

, P
yi
, P

zi
) co-ordinates of P

i
in C

TRA
q generalized displacement vector
q
TRA

torque roll axis vector
t time
¹ torque amplitude
T torque vector
u eigenvector of dimension N
w translational displacement
w translational displacement vector of dimension 3
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x, y, z geometric co-ordinates in Cg or C
TRA

x@, y@, z@ geometric co-ordinates in C
TRA

x
e
, y

e
, z

e
geometric co-ordinates in C

e
x
p
, y

p
, z

p
geometric co-ordinates in C

p
x
si
, y

si
, z

si
geometric co-ordinates in C

si
s
i
, /

i
geometric co-ordinate in C

miC
e

principal elastic axis co-ordinate system
Cg rigid-body inertial co-ordinate system with origin at Cg

C
mi

mounting co-ordinate system for the ith mount
C
p

principal inertial co-ordinate system
C
si

principal elastic co-ordinate system of the ith mount
C
TRA

torque roll axis co-ordinate system
/ orientation angle of mount
/
ui

ith Eulerian angle
j eigenvalue
R rotational transformation matrix
h rotational displacement
h rotational displacement vector of dimension 3
u frequency, rad/s
l directional cosine
P transformation matrix

Subscripts
a amplitude
e C

e
co-ordinate system

g Cg co-ordinate system
i"1, 2, 3, 4 mount index
j, r"1, 2,2 , N modal indices
p C

p
co-ordinate system

p, q, r principal sti!ness directions
si C

si
co-ordinate system for the ith mount

ui ith Eulerian angle
w translational direction
¹RA torque roll axis direction or (C

TRA
)

x, y, z Cartesian co-ordinates
h rotational direction

Superscripts
T transpose

Operators
diag diagonal matrix


	1. INTRODUCTION
	Figure 1

	2. TORQUE ROLL AXIS DECOUPLING CONCEPTS
	3. PROBLEM FORMULATION
	Figure 2
	Figure 3

	4. ANALYTICAL MODEL
	Figure 4

	5. TORQUE ROLL AXIS DECOUPLING AXIOMS
	6. DYNAMIC DECOUPLING METHOD
	7. ANALYTICAL SOLUTIONS FOR SIMPLIFIED MOUNTING SYSTEMS
	Figure 5
	Figure 6
	Figure 7

	8. ELASTIC AXIS DECOUPLING AND FOCALIZATION METHODS
	Figure 8
	Figure 9

	9. EXAMPLES AND RESULTS
	TABLE 1
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	TABLE 2
	TABLE 3
	Figure 14
	Figure 15
	TABLE 4
	Figure 16

	10. CONCLUSION
	Figure 17
	Figure 18
	TABLE 5
	Figure 19
	Figure 20
	Figure 21
	TABLE 6

	ACKNOWLEDGMENT
	REFERENCES
	APPENDIX A: DEFINITION OF THE DIRECTION
	APPENDIX B: NOMENCLATURE

