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This paper addresses the problem of identifying structural damage a!ecting one zone of
a beam using measured frequencies. The beam model has a zone in which the sti!ness is
lower than the undamaged value. Damage is de"ned by three parameters: position,
extension and degree, which need to be identi"ed in the inverse problem. The solution of the
direct problem is "rst obtained and the peculiarities of damage detection are examined. Two
di!erent procedures for damage identi"cation are proposed, which use frequency
measurements and take advantage of the peculiarities of the problem: the "rst procedure is
based on the characteristic equation error and the second on the comparison between
analytical and experimental frequency values. The identi"ability and ill-conditioning
properties are discussed by referring to cases with pseudo-experimental data.
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1. INTRODUCTION

Techniques of structural identi"cation have received considerable attention in recent
decades, for di!erent reasons. One of the most interesting applications involves the
monitoring of structural integrity through the identi"cation of damage [1, 2]. It is well
known that damage modi"es the dynamic response of a structure and, at the same time, that
changes in its behavior may be associated with the decay of the system's mechanical
properties [3}7]. Based on these considerations, various papers have examined the use of
measured variations in dynamic behavior to detect structural damage. Particular attention
has been focused on the use of frequencies only, on account of the simplicity of measuring
them and, therefore, their experimental reliability [8}19].

As with most inverse problems, ill-conditioning complicates the search for a solution,
since it strongly depends on the quantity and quality of experimental data [17, 19}21].
Another di$cult aspect is the modelling of damage, even when the attention is limited to
beam structures. Linear behavior is assumed here, both before and after damage; damage is
therefore thought of as an open crack or decay of the mechanical properties of a small beam
element and is represented by a more or less localized decrease in sti!ness.

Damage detection has generally been viewed as a reconstruction problem, where the
distribution of the sti!ness parameter along the structure is completely unknown and the
0022-460X/00/270259#18 $35.00/0 ( 2000 Academic Press
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solution calls for a quantity of data that is seldom available. In previous papers [16, 17],
starting from the classical problem of damage identi"cation in a vibrating beam due to
single cracks, it was pointed out that very few data are required for the evaluation of
damage quantities. The same consideration holds good even when a discretized model is
used [16], although this has not been taken into account. The peculiarity of damage
detection is precisely the circumstance that only a few parameters need to be determined,
since the damaged sections are very few, albeit unknown. The desired solution is such that
the sti!ness is known throughout to be equal to the undamaged value except in the few
damaged zones. Most of these points have already appeared in di!erent papers, albeit less
than in some recent publications [16, 17, 22}24].

When the damage is concentrated, a rotational spring can accurately model the dynamic
behavior of a damaged beam [5, 9, 12]. With this model damage is described by two
parameters, location and degree, and it has been shown by means of experimental and
pseudo-experimental data that in the inverse problem the two parameters can be suitably
determined using not more than three frequencies [16, 17]. In several scenarios damage
may be spread over a particular zone, albeit a small one; this occurs when several cracks are
close to each other or when one part of an element is a!ected by a sti!ness reduction due to
cracking [18, 25], a problem that has not received particular attention until now.

The present paper addresses precisely this last problem of di!used damage in a vibrating
beam. Three quantities are needed to represent di!used damage: location, extension and
magnitude. First, the direct problem is solved and discussed, along with the characteristics
of identi"ability: it is shown that when the extension is limited three damage parameters
cannot be identi"ed, since the problem reverts to the previous case of concentrated damage
described by only two parameters. Two di!erent identi"cation techniques are used, which
take into account the peculiarity of the above problem: in the "rst the optimal parameter
estimate is based on the characteristic equation, in the second on the error between the
analytical and measured frequencies. The reliability of the results of the identi"cation
procedure depends more on the accuracy of the frequency data, than on their number, when
it is su$cient, but also on the characteristics of the damage.

2. DIRECT PROBLEM

Before tackling the inverse problem, it is useful to analyze in depth the direct problem, i.e.,
the evaluation of the natural frequencies of a beam with a damaged zone. As a "rst step,
a model able to represent such damage by means of a suitable number of parameters has to
be introduced. The model of a beam with a segment damaged by di!used cracking, with the
axis at distance X from the beam's middle span and with the length of the segment ¸D can
be represented by a beam with a zone of lower sti!ness EID than the initial one EIU
(Figure 1). The parameters adopted to de"ne the damage are the central axis position x and
the length b of the damaged zone, and the damage degree coe$cients; they are de"ned in
adimensional form by
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¸
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EIU!EID

EIU
. (1)

The governing equation of the free #exural vibrations of a uniform Euler}Bernoulli beam of
mass per unit length (oA) is given by
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Figure 1. Model of beam with a zone damaged by di!use cracking.
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which admits as a solution v(x, t)"< (x) cos(ut!u) which, substituted into equation (2)
leads to

EI
d4<

dx4
!u2oA<"0, (3)

where u is the frequency of the motion.
The three beam segments can be treated separately; the equation for each segment is as

follows:
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The solution of equation (4) for the three zones is written in the form
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where A
ij

are arbitrary constants.
The boundary conditions at the ends for a simply supported beam are
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while the compatibility conditions of the displacement, slope, moment and shear force at the
boundary sections of two zones are
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where the co-ordinates m1
r

can be suitably expressed in terms of the quantities x and
b previously introduced: m1
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From conditions (4) and (5) and after some manipulations the characteristic equation for
the problem is obtained
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where j4"u2 (oA/(EI)U)¸4 and c"1/(1!b)1@4.
Equation (8) represents a relationship among the damage parameters x, b, b and the

eigenvalue j, and so the frequency of the harmonic motion, can be written in a compact
form as

g (j, x, b, b)"0. (9)

The characteristic equation (9) makes it possible to determine the vibration frequencies jD
r

for a beam with a damaged zone de"ned by the parameters x, b, b. For a beam with
a damaged zone extending over a length b equal to 0)2, equation (9) is used to evaluate the
"rst three frequencies for di!erent degrees and locations of damage. Parameters x and b are
geometrically restrained to be x)1!b, as the damaged zone remains inside the beam. In
the case considered (b"0)2) the x position of the axis therefore ranges within the interval
[0, 0)8].

Figure 2 shows, in particular, the development of the ratio Du
r
/uU

r
for the "rst three

modes of vibration (r"1, 2, 3), as de"ned by

Du
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r
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2

D. (10)

As would be expected, frequencies decrease regularly with the degree of damage and are
lower when the damaged segment is close to an in#ection point of the eigenfunction, where
the #exural curvature is zero, and on the contrary is greater where the curvature is greatest.
The trend of the curves is very similar to those already found for localized damage [17];
however, even when the damage here is close to points with zero curvature (the boundary,
the midspan and one-third of the length for the "rst, second and third mode, respectively),
a small decrease in frequency is found, due to the extension of the damaged zone.



Figure 2. Relative variations of the "rst three frequencies versus the positions of damage with assigned length
(b"0)20) for di!erent b intensities.
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When the extension is limited in comparison with the length of the beam, it is possible
to simplify the model by introducing concentrated damage with an equivalent
deformability. In this case a torsional spring with sti!ness K represents both the extension
and the entity of the damage. In order to determine the spring parameter K the following
procedure can be used: the relative rotation uD between the sections delimiting the damaged
zone is expressed as

uD"uU#Du, (11)

where uU represents the relative rotation in undamaged conditions and Du represents the
increase in rotation due to damage. Rotations uD and uU are expressed by the ratios

uD"
M

EID
¸
D
, uU"

M

EIU
¸
D
. (12)

By means of equation (11) the increase in the rotation Du can be expressed in terms of the
damage parameters

Du"M
¸

EIU
b

b
(1!b)

. (13)

In the case of localized damage Du"M/K, the non-dimensional sti!ness k"K/(EIU/¸) of
an equivalent torsional spring can therefore be written as a function of b and b

k"
(1!b)
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. (14)
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Figure 3 shows the curves of the function k"k (b, b) for some assigned values of parameter
b. In this case, the damage is de"ned by two parameters only, the position x and the
intensity k; however, di!erent combinations of limited extension and intensity correspond
to a given k value and in practice furnish the same variation of frequencies.

The characteristic equation for a simply supported beam with torsional spring k is
expressed as

4k sin j sinh j#j[sin j(cosh j!cosh jx)#sinh j(cos j!cos jx)]"0, (15)

which can be written in a compact form as

kg
1
(j)!g

2
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In this particular problem, equation (16) can be solved for k in an explicit form as
a function of position x
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Figure 4. Curves k
r
as a function of parameter x for assigned j

r
.

Figure 3. Curve k"k (b, b) for values of parameter b ranging in 0)01}0)10.
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This equation makes it possible to analyze the uniqueness of the problem of evaluating the
damage parameters k and x. For an assigned value j

r
the ratio g

2
(x, j

r
)/g

1
(j

r
) exclusively

depends on the parameter x and determines a curve in the plane of parameters x and k, the
locus of points which satisfy the characteristic equation for the rth vibration mode. Two
values of j

r
are su$cient to determine x and k when there is only one point, P, at which the

curves k
r
(x) associated with the two di!erent j

r
meet as already observed [8, 13].

Figure 4 shows the functions k
r
(x), r"1, 2, 3, related to assigned values of j

r
due to

damage de"ned by the parameter values k"47, x"0)10. The knowledge of the "rst and
second frequencies furnishes two curves which cross only in the right solution. But a pair of
frequencies does not always de"ne one solution, as occurs for the curves k

1
(x) and k

3
(x). In

any case, even when two frequencies determine two solutions, the addition of a further
frequency de"nes the solution exactly.

3. INVERSE PROBLEM

The identi"cation of damage parameters on the basis of known experimental frequencies
belongs to the class of inverse problems. The damage identi"cation procedure generally
comprises two parts:

f determination of the beam model in the undamaged condition
f determination of the damage parameters when the beam is damaged.

The attention is here focused on the second phase, on the assumption that the
representative model for the undamaged beam has already been determined.

From the study of the direct problem, it is known that for a given set of measured
frequencies, di!erent conditions are satis"ed by the true solution. Two of these conditions
are considered in the following:

g (j
r
, x, b, b)"0 ∀r (18)

according to equation (9), and the classical comparison between experimental u
e

and
analytical frequencies expressed as functions of damage parameters x, b and b:

u
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Condition (18) can be specialized in the case of concentrated damage due to the explicit
expression of k

r
(x):
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The "rst procedure for damage identi"cation is based on the eigenvalue equation and will
be known as the modal equation procedure; the second is based on the frequency comparison
and known as the response quantities procedure.

3.1. PROCEDURE BASED ON THE MODAL EQUATION

In this procedure the inverse problem for the determination of damage parameters is
based on the characteristic equation that governs free #exural oscillations of the damaged
beam and is generally an implicit function in the eigenvalue j and in the damage
parameters. In the case of a simply supported beam with damage extended over a zone with
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"nite length, the characteristic equation (9) is really an implicit function of the three
parameters and is di!erent from the case of concentrated damage governed by the
two-parameter equation (16). Evaluation of the three damage parameters requires at least
a system of three equations

g
r
(x, b, b)"0 with r"p, s, t (21)

associated with three experimental eigenvalues jD
r
. Since the system is non-linear, it can

exhibit more than one solution and another frequency should be used in addition to ensure
a unique solution.

In the three-dimensional parameter space any one of the g
r
functions represents a surface

whose points satisfy the corresponding jD
r

eigenvalue equation. The intersection curve C
ps

of the two surfaces g
p
and g

s
related to two di!erent eigenvalues p and s, represents the locus

of the parameters that at the same time satisfy the experimental eigenvalues jD
p

and jD
s
.

Repeating this procedure for another couple of eigenvalues, for example pth and tth,
another curve C

pt
is obtained and, "nally, the solution point of the problem is given as the

intersection of the two curves in the space of the damage parameters.
In order to analyze the characteristics of the problem and the procedure, the inverse

problem of damage detection is solved for di!erent cases, using pseudo-experimental data,
i.e., the frequencies obtained from the direct problem in undamaged conditions and in some
damaged conditions de"ned by three damage parameters. The beam for the case study has
the following geometrical and mechanical characteristics: length ¸"1000 mm, area
A"15 mm2, moment of inertia I"31)25 mm4, modulus of elasticity E"2)1]105 N/mm2

and density o"0)784]10~8 Ns2/mm4.
Three di!erent cases of damage among several studied are presented: they are illustrative

of the main features of the inverse problem. The "rst case is characterized by a limited
extension of the damaged zone, and the other two by larger damaged zones in two di!erent
positions. The frequency values for the undamaged beam and their variations associated
with the three cases of damage are shown in Table 1 and used in the identi"cation
procedure. From the frequency values in the undamaged conditions uU

r
and in the damaged

conditions uD
r
"uU

r
!Du

r
, it is possible to obtain the pseudo-experimental damaged

eigenvalues jD
r
"jU

r
(uD

r
/uU

r
)1@2.

For the "rst case of damage, speci"ed by parameters x"0)375, b"0)05, and b"0)30,
Figures 5(a) and 5(b), respectively, represent the curves locus of the points that satisfy the
characteristic equations written for the "rst and second frequencies (C

12
), and for the "rst

and third frequencies (C
13

), respectively, projected on the plane x}b. By superposing these
curves, as in Figure 6, the intersection in the space of damage parameters gives the solution
to the inverse problem. Figures 5(a) and 5(b) show that each curve is de"ned in a small range
of the parameter x within the interval [0, 1]. In particular, the curve C

12
that satis"es the

"rst and second frequencies is de"ned within an interval between the value
x
lim

"0)36*associated with the position of the limit case of concentrated damage that
satisfy the assigned "rst and second frequencies*and a value of the damage position
associated with the maximum damage extension compatible with the condition x)1!b.
The curve C

13
related to the "rst and third frequencies is de"ned within the interval between

the two values x
lim

"0)28 and 0)374, both associated with the two positions of the
concentrated damage that satisfy the characteristic equation for the "rst and third
frequencies. The presence of two vertical asymptotes, corresponding to small b values,
should not surprise since for localized damage there are two di!erent positions of
a torsional spring k that satisfy the assigned "rst and third frequencies, which are not able to
localize damage uniquely.



Figure 5. Loci of the three parameter values for which (a) g
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"0; (b) g
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"0 and g

3
"0.

Figure 6. Projection in the x}b plane of the point P solution of the inverse problem.
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Both curves show patterns in which high values of b are associated with small values of
b and the limit location coincides with the case of concentrated damage. On the contrary,
small values of b and large b values are related to locations around the zone of vanishing
curvature in the modal shape where the damage e!ect is small.

It is possible to observe that, in the case of limited damage extension and in the absence of
errors, the position of damage x is determined exactly, as are the other two parameters
b and b. However, the inverse problem of evaluating parameters b and b is badly
conditioned, because the cross is almost singular. Therefore, when damage extends over
a small segment, it is advisable to abandon the two distinct damage parameters b and b and
instead to tackle the problem of determining the equivalent parameter k*damage



268 M. N. CERRI AND F. VESTRONI
entity*which results in a well-conditioned problem, with reference to the model of a beam
with concentrated damage. In this case expected value of k corresponding to the couple
b and b is 47, as indicated in Figure 3.

The three curves k
r
(x), r"1, 2, 3, in Figure 7 do not intersect exactly at one point;

although the problem under consideration is pseudo-experimental, there is no exact
solution, since the interpretative model or interpretation model with concentrated damage
is di!erent from that generating pseudo-experimental data. It is nevertheless possible to
obtain an optimum estimate of the two parameters that minimize the di!erence among the
three curves; the estimated values practically coincide with the expected values (x"0)375
and k"47). In the inverse problem, of course, it is not possible to obtain b and b from the
value of k, but all the couples determined by the horizontal line indicated in Figure 3 in the
range of small b satisfy the characteristic equation for the assigned three eigenvalues with
good approximation. As clearly outlined by the direct problem, a greater amount of data
could not furnish better results concerning b and b, which for small extension damage are
scarcely observable.

In the case of damage extending over a length b"0)20, it is possible to use the procedure
already described, thus obtaining in the x}b plane the curve locus of the points that
simultaneously satisfy the characteristic equations of the "rst and second modes and of the
"rst and third modes (Figures 8(a) and 8(b)). The intersection of the curves in the damage
parameter space makes it possible to determine the unique solution, de"ned by the expected
parameter values: x"0)375, b"0)20, and b"0)30 (Figure 9). The curves are similar to
those in the previous damage case, but in this case, where the damage is more extended, the
intersection between the two curves is better de"ned and the three parameters can be
determined exactly, again in the absence of model or experimental errors.

The third example considered is the case of a beam with extended damage, b"0)20, with
its axis in a di!erent position close to the middle of the beam x"0)10. Figures 10(a) and
10(b) show the curve locus of the points satisfying the characteristic equations of the "rst
and second frequencies, and of the "rst and third frequencies, projected on the x}b plane
and Figures 10(c) and 10(d) show the same curves on the x}b plane. An almost perfect
superposition of part of the two curves can be appreciated from Figures 11(a) and 11(b). It is
useful to analyze the intersection of the curves in the two planes, x}b and x}b; indeed, the
superposition on both sections indicates that in the presence of an even small error, it
becomes practically impossible to obtain one single solution to the inverse problem with the
amount of data considered, but there is a surface in the damage parameter space where each
point P(x, b, b) almost simultaneously satis"es all three given frequencies. For the damage
Figure 7. Curves k
r
, r"1, 2, 3, for small extension damage.



Figure 8. Loci of the three parameter values for which (a) g
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1
"0 and g

3
"0.

Figure 9. Projection in the x}b plane of the point P solution of the inverse problem.
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position considered, the problem is very ill-conditioned and practically indeterminate,
although in a limited parameter range. This is nevertheless a di!erent situation from that of
the "rst case, where indetermination only concerned b and b, owing to the redundant
parameter of the interpretation model, which cannot be observable. In the present case,
a greater amount of data could lead to a better de"ned unique solution.

The e!ect of errors in the experimental data is analyzed in Figures 12(a) and 12(b), where
the curves C

12
and C

13
are reported for the case of damage already discussed in Figure 9.

The noise corrupted frequencies are reported in Table 1, cases 2a and 2b refer to a smaller
and a greater error respectively. The curves are a!ected by error, but not very much. When
three frequencies only are used, a solution is found which is di!erent from the exact one, but
close to it. The identi"ed damage parameters in the case of a small error are
(x, b, b)"(0)39, 0)17, 0)33), while in the case of greater error they are (0)40, 0)14, 0)38), when
the exact values are (0)375, 0)20, 0)30). It can be observed that the identi"ed damage
parameters b and b are di!erent from the exact values, but identifying a damage globally
equivalent to the real condition, because b is smaller than the true value while b is larger.



Figure 10. Loci of the three parameter values for which (a, c) g
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When four frequencies are used, that is a number greater than that strictly necessary, any
pair C

rs
and C

pt
do not cross at the same point as it happens in absence of error. The optimal

values of damage parameters can then be obtained as the minimum of the objective
function:

lI (x)" +
r,s,p, t

((b
rs
!b

pt
)2#(b

rs
!b

pt
)2), (22)

where rs and pt must be any, but di!erent, couple for r, s, p, t"1, 4.
For the case of greater error previously discussed (2b in Table 1) the use of four

frequencies de"nes three di!erent points, furnishing a best estimate of parameters
su$ciently close to the exact values (Figure 12(c)).



Figure 11. Projection of the point P, solution of the inverse problem (a) in the plane x}b; (b) in the plane x}b.

Figure 12. Curves C
rs

for the cases 2a and 2b (Table 1) using three frequencies (a and b, thin lines are without
error, case 2) and curves C

rs
for the case 2b using four frequencies (c).
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TABLE 1

Frequencies for the undamaged beam and variations associated to three cases of damage free of
error (1}3) and two cases with error (2a}2b)

Natural frequencies (rad/s)
u

1
u

2
u

3
u

4
u

5

Undamaged 73)728 294)91 663)55 1179)6 1843)2

Damage Damage Damage Variations of natural frequencies
Case position extension coe$cient (rad/s)
number x b b Du

1
Du

2
Du

3
Du

4
Du

5

1 0)375 0)05 0)30 1)070 5)075 0)750 12)01 32)50
2 0)375 0)20 0)30 3)977 16)09 14)44 43)09 61)42
3 0)100 0)20 0)30 5)341 4)543 30)17 40)80 66)96
2a 0)375 0)20 0)30 3)900 17)15 13)00 * *

2b 0)375 0)20 0)30 3)700 17)60 10)10 45)00 *
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In the inverse problem solution, the error in the data is usually ampli"ed strongly, in this
case it can be noticed that this is not very pronounced, a mean error of 0)23 and 0)54% in
frequency measurements in the cases 2a and 2b, respectively, becomes 2)5 and 5)2% in the
damage parameters.

3.2. PROCEDURE BASED ON THE RESPONSE COMPARISON

To solve the damage identi"cation by means of the procedure based on the response
comparison, it is useful to introduce an objective function de"ned by the di!erence between
experimental and analytical frequency values:

l(x, b, b)"+
r
K
uD

r
!uD

r
(x, b, b)

uU
r

K
2
, (23)

where uD
r

represents the experimental value of the damaged rth frequency, uD
r
(x, b, b)

represents the analytical value as a function of damage parameters, and uU
r

represents the
frequency of the undamaged beam.

The identi"cation of the damage parameters coincides with the search for the minimum
of function (23). In the case of the beam with a damaged zone, as in the case of concentrated
damage, it is possible to use a two-phase procedure [17, 23]. The objective function

lI (x)"min
b,b

l (x, b, b) (24)

as a function of parameter x only is initially determined from the minimization of equation
(23) with respect to parameters b and b. For an assigned damage location x, the function lI (x)
determines the best values of damage parameters such that to minimize the error between
experimental and analytical frequencies. The solution to the inverse problem can then be
given by the minimum of lI (x). If the problem exhibits only one minimum, it is possible to
determine one single value xN satisfying the condition lI (xN )"0 for a number of frequencies
equal to or greater than three.
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Let us consider again the second case of damage described in section 3.1 above, which
gave a well-de"ned solution to the data in Table 1. Figure 13(a) shows the function lI (x)
associated with this case of damage; it reaches its minimum at the expected parameter
values: x"0)375, b"0)20 and b"0)30. The minimum of the function lI (x) is very well
de"ned, and the exact solution is clearly furnished. For the "rst case in Table 1
characterized by equal parameters x and b but with limited extension b"0)05, the same
identi"cation procedure gives the curve lI (x) shown in Figure 13(b). The curve has a shape
similar to that shown in Figure 13(a), but the minimum has a smaller resolution.

In Figures 14(a) and 14(b), the objective function lI (x) for the third case of Table 1 with
damage located close to the midspan is drawn. The curve shown in Figure 14(a) is obtained
considering the "rst three frequencies, while the curve shown in Figure 14(b) is obtained
using the fourth frequency instead of the second. In Figure 14(a), two minimum points are
present. The absolute minimum gives the exact solution of the inverse problem. In Figure
14(b), a lot of minimum points are present, but also in this case the exact solution is given by
the absolute minimum at x"0)10. The use of higher frequencies introduces irregularities in
the objective function, and sometimes multiple solutions, as can be argued from Figure 14
and it is clear in Figure 7, due to the higher number of zero point in the k

r
(x) for increasing r.

In the presence of model and experimental errors, the minimum of lI (x) still gives the most
appropriate solution. In order to limit the interference of such errors in identifying the
Figure 13. Objective function log lI (x) for two damage cases: (a) x"0)375, b"0)20 and b"0)30; (b) x"0)375,
b"0)05 and b"0)30.



Figure 14. Objective function log lI (xc) for a damage case (x"0)10, b"0)20 and b"0)30) with di!erent sets of
frequencies.

274 M. N. CERRI AND F. VESTRONI
solution, a larger number of experimental frequencies than is strictly necessary may be used.
If the same problem is dealt with by using four frequencies, only one minimum*the
absolute minimum*remains just in the right position. This can be very useful in the real
word because the distribution of errors cannot realistically alter the lI (x) function in such
way that the true minimum becomes unrecognizable. On the contrary, this could happen
when several minima are present; a relative minimum corrupted by noise can appear as the
absolute minimum. However, in accordance with the consideration described above*that
few frequencies, about three, are su$cient to identify a unique solution*, it is advisable to
have as precise as possible an estimate of the experimental frequencies in order to reach an
accurate solution to the inverse problem.

This second procedure of damage parameter identi"cation based on the minimization of
an objective function, is without doubt more easily generalized than the procedure based on
the modal equation, especially when errors are present and complex structures, which need
to be modelled by large discrete models, are tackled. The procedure illustrated in section 3.1
has nevertheless enabled us to assess more clearly which data can be used to "nd a solution
to the inverse problem and has shown that situations such as the limited extension of
damage and its position mean that the solution is not well determined. In this respect, when
a real problem with experimental data has to be solved, it is very useful to study the similar
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inverse problem with pseudo-experimental data, which can give information about the
uniqueness and ill-conditioning of the speci"c problem.

4. CONCLUSIONS

A model of a damaged beam is de"ned that is useful to evaluate damage caused by
di!used cracking in one zone of a beam. First, the relations among the damage
parameters*position, extension and degree*and the frequency variations in the "rst
vibration modes are considered. In the case of concentrated damage, a rotational spring k is
frequently used to represent the increment in #exibility introduced by damage. The
characteristic equation can be solved with respect to k and this circumstance has suggested
a very simple damage detection technique, already presented in references [17, 23]. For the
present case of di!used damage, the characteristic equation is an implicit relation among
the damage parameters and an extension of the earlier approach is proposed.

Two identi"cation procedures are used: in the "rst the optimal value of parameters is
such as to satisfy at best the characteristic equation written for no less than three measured
frequencies; in the second procedure the optimal value is such as to minimize an objective
function based on the error between analytical and experimental values of three or more
frequencies.

Illustrative examples with pseudo-experimental data are used to discuss the identi"ability
and ill-conditioning of the problem. Similarly to the case of concentrated damage, few data
are su$cient to solve the inverse problem, speci"cally, few more than three frequencies. The
presence of experimental errors produces a modi"cation in the damage parameter estimate,
but the error in the data is not strongly ampli"ed in the solution. Thus, it is not the quantity
but the quality of the experimental data that is important in achieving reliable results. The
problem is generally ill-conditioned, but when the extension is small, one parameter can no
longer be observable and the problem reverts to the case of concentrated damage with only
two parameters to identify. It is shown that the identi"ability properties depend strongly on
the characteristics of the damage, especially its location.
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