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1. INTRODUCTION

Vibration of membranes is important in a variety of mechanical and physical devices. The
resulting Helmholtz equation also governs the transmission of ¹M waves in
electromagnetic waveguides. Gruner [1] used an eigenfunction matching method to study
a square boundary with a square core. Gutierrez and Laura [2] used a Ritz method to study
the related problem of a small, slightly rounded square core. The aim of the present Note is
to compute the fundamental frequency for the whole range of core sizes and to derive
asymptotic formulas in the cases of very large and very small cores.

We shall use a method similar to Gruner [3] but modi"ed especially for square
membranes. Such a method would also be more accurate for very small core sizes.

2. FORMULATION

Figure 1 shows the domain where all lengths have been normalized by the half-maximum
width. The core size ratio is a. Due to symmetry we need to consider only the sub-regions
I and II, each with their own co-ordinate axes as shown. The governing equation is

+2w#k2w"0, (1)

where w is the displacement and k is the frequency normalized by (halfwidth)
(density/tension per length)1@2. The boundary conditions are that w"0 on all the
boundaries.
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Figure 1. The square membrane with a square core.
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For region II we note w
II
(x, y)"w

II
(!x, y), together with w

II
(x, 0)"w

II
(x, 1!a)"0. The

general solution is

w
II
(x, y)"

=
+
1

B
n
sin(a

n
y)G

n
(x), (4)

where B
n
are to be determined and

G
n
(x),G

cos(s
n
x ),

cosh(s
n
x ),

k*a
n
,

k(a
n
.

(5)

Now w
I
and w

II
are to be matched along their common boundary. Using w
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Matching of derivatives w
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Multiplying by sin(a
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TABLE 1

Fundamental frequency

a 0 0)01 0)1 0)2 0)3 0)4 0)5 0)6 0)7 0)8 0)9 1

k 2)2214 2)595 3)088 3)583 4)172 4)934 5)980 7)528 10)08 15)14 30)29 R
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Truncating the series to N terms, equation (8) gives the algebraic system
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For non-trivial solutions the determinant of the coe$cients of A
n
is set to zero. The lowest

eigenvalue k is the fundamental frequency.
Table 1 shows the results. Usually N"20 is adequate for a 3-"gure accuracy. The value

for a"0 is k"n/J2 for a square membrane.
After k is found we set A

1
"1 in equation (9) and solve for the rest of the A

n
. Thus the

eigenfunctions w
I
and w

II
can be obtained.

3. ASYMPTOTIC FORMULAS

In a previous paper on polygonal membranes with circular core [4], it was found that the
frequency decays to the no-core frequency inverse logarithmically as the core tends to zero.
A square core is expected to behave similarly. Figure 2 shows the computed k versus
D ln a D~1 for a"0)2, 0)1, 0)05, 0)01, with N increased to 150 when necessary. We see that, for
small a, the tangent line is
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D ln a D
, a+0. (10)

Also shown in the "gure are the results of Gruner [1] and Gutierrez and Laura [2], both
inaccurate for small a. Figure 3 shows the level lines for a"0)001. The maximum
displacement is at four symmetric points displaced from the center. Note that even for such
small cores, the e!ects on frequency and displacement are considerable.

On the other hand, if a is close to unity, the geometry consists of four long strips plus four
corners. The e!ective dimension is now the strip width 1!a and the frequency is close to
the strip frequency n/(1!a). Plotting n!(1!a)k for large a we "nd the asymptotic



Figure 2. Frequency k versus D ln a D~1. L, computed values which tend to n/J2 as aP0; n from reference [2]; -
- - -, from reference [1].

Figure 3. Level lines for a"0)001. Only 1/4 of membrane is shown.
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where the last term is the e!ect of the corner. Figure 4 shows the comparison of the
fundamental frequency with the asymptotic formulas. Note the in"nite slope at a"0.



Figure 4. Fundamental frequency for square membrane with square core. Dashed lines (- - - -) are asymptotic
formulas (10) or (11).
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4. DISCUSSION

For very small cores most methods, including "nite di!erences, would have serious
scaling problems. The present paper uses a formulation which can be accurately solved for
a as low as 10~3 . We indeed "nd that the frequency tends to the no-core frequency inverse
logarithmically as aP0.

The e!ect of a corner is also of interest. Consider a long membrane strip with any number
of right-angled turns anywhere. The fundamental frequency normalized by width without
turns is n while with at least one turn the frequency decreases to n!0)1125.
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