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This work presents the governing equations for both the in-plane motion and out-of-
plane motion of a curved hollow shaft. Two types of shaft structures, which are a curved
hollow shaft and a straight}curved}straight hollow shaft, are considered. An analytical
method is also presented to examine the free vibration of the two types of shaft structures.
The orthogonality of any two distinct sets of mode shape functions for both the in-plane
motion and out-of-plane motion of the structures is also derived. The "rst in-plane modal
frequency of a structure is greater than the "rst out-of-plane modal frequency of the same
structure.
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1. INTRODUCTION

The ducts with a circular cross-section have been widely used in #uid transportation. The
duct structures can basically be simulated as hollow shafts. The displacement "elds of
a hollow shaft contain three displacement components, two bending slopes and one twist
angle. Hollow shaft structures are normally organized in a straight type. Owing to the
restriction of space and environment, hollow shafts are almost arranged in a straight}
curved}straight type for industrial usage. The geometry of this type of shaft structure
completely di!ers from that of a straight shaft. The initial curvature of a curved hollow shaft
causes the coupling e!ect between twist angle and bending slope in bending moment and
torque. The coupling e!ect causes the governing equations of curved hollow shafts to be
more complicated than those of straight hollow shafts.

The straight}curved}straight hollow shaft consists of two straight hollow shafts and one
curved hollow shaft. The vibration of this type of shaft structure induced by external forces
sometimes causes signi"cant disasters. However, the vibration problems of this type of shaft
structure have rarely been studied. The hollow shaft can basically be regarded as a hollow
beam. There are two kinds of motions for the hollow beam: in-plane motion and out-of-
plane motion. The vibration of straight beams can be easily examined based on the
Timoshenko beam theory. As for curved beams, the free vibration of the out-of-plane
motion of the shafts has been studied over two decades [1}5]. Moreover, the vibration of
thin-walled beam can be examined based on Vlasov's [6] theory. Wang and Sang [7] set up
the displacements for a curved beam to derive the equations for the out-of-plane motion of
the beam via the Timoshenko beam theory. Further, Wang [8] set up the displacements,
which are three displacement components; two bending slopes and one twist angle, for
a curved frame to derive the governing equations of a T-type curved frame via the same
beam theory. Further, an analytical method has been successfully adopted in studying the
forced vibration of a multi-span curved beam and the T-type curved frame due to a moving
2-460X/00/280369#18 $35.00/0 ( 2000 Academic Press
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force. Therefore, an analytical method will be proposed in the paper to study the vibration
of straight}curved}straight hollow shaft structures.

The study presents the displacements of curved hollow shaft and those of a straight
hollow shaft. The hollow shafts have a circular type of cross-section. Further, the shafts are
considered to be homogeneous and isotropic with Young's modulus E, shear modulus G,
Poisson's ratio k and mass density o. The initial radius of the curved shaft is considered to
be larger than the radius of the cross-section of the shaft. The governing equations for the
in-plane motion of the curved hollow shaft and the straight hollow shafts are presented.
A "xed}"xed curved hollow shaft and a "xed}"xed straight}curved}straight hollow shaft
are taken as two examples. An analytical method is presented to obtain the respective
frequency responses for the in-plane motion and the out-of-plane motion and the out-of-
plane motion of the hollow shaft structures. The transfer matrix of response relations
between two ends of each shaft component is set up. The modal frequencies and their
corresponding sets of mode shape functions for either the in-plane motion or the out-of-
plane motion of the two types of hollow shaft structures are obtained via the method of
transfer matrix. Further, the orthogonality of any two distinct sets of mode shape functions
for either the in-plane motion or the out-of-plane motion is derived to quarantee the
feasibility of the method of modal analysis. The e!ects of initial radius and thickness and
radius of cross-section of the curved hollow shaft on the modal frequencies of the two shaft
structures are investigated.

2. STRESS RESULTANTS

2.1. CURVED HOLLOW SHAFT

A curved hollow shaft is depicted in Figure 1(a). The angle measured from the bisector of
angle between any ends is u. The radius of the shaft along its curved axes is R. The Cartesian
co-ordinates (x, y and z) system and the cylindrical co-ordinate (r, h and z) system for the
shaft are depicted in the "gure. The x- and z-axis coincide with the principal centrodial axes
of the shaft, while the y-axis is tangent to the curved axis of the shaft. The co-ordinates r,
h and z are taken at the center of curvature of the shaft. The shaft has a uniformly circular
cross-section with radius a and thickness h. The displacement components along these
principal axes are denoted as u

x
, u

y
and u

z
respectively. Furthermore, /

x
, /

y
and /

z
are the

respective rotation angles of the cross-section along these principal axes.
The displacement "elds of the cross-section along these principal axes in the Cartesian

co-ordinates are
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By performing similar procedures described by Wang [8], the stress resultants q
x
, q

y
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and q
z
, and the stress-couple resultants m
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("mh) and m

z
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Figure 1. Displacements, stress resultants and stress-couple resultants for (a) the curved hollow shaft and (b) the
straight hollow shaft.
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where A is the cross-sectional area, J is the polar moment of the cross-section and I is the
moment of area about the x-axis or the z-axis.

2.2. STRAIGHT HOLLOW SHAFT

The Cartesian co-ordinate (x, y and z) system of the straight hollow shaft is depicted in
Figure 1(b). The x- and z-axis coincide with the principal centroidal axes of the shaft while
the y-axis denotes the longitudinal axis of the shaft. The shaft has a uniform circular
cross-section with radius a and thickness h, polar moment J around the y-axis, and second
moment of area I around the x-axis (or z-axis). The displacement components along these
principal axes are denoted as uJ

x
, uJ

y
and uJ

z
respectively. Furthermore, /J

x
, /J

y
and /J

z
are the

respective rotation angles of the cross-section along these principal axes. The displacement
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"elds of the cross-section along these principal axes in the Cartesian co-ordinates are
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The stress resultants qJ
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, and the stress-couple resultants mJ

x
, mJ

y
and mJ

z
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3. EQUATIONS OF MOTION

3.1. CURVED HOLLOW SHAFT

The governing equations for the in-plane motion of the curved hollow shaft are [8]
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Further, the governing equations for the out-of-plane motion of the shaft are
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The sign conventions for the displacements, rotations, stress resultants and stress-couple
resultants at the two ends of the curved hollow shaft are
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3.2. STRAIGHT HOLLOW SHAFTS

The governing equations for the in-plane motion and the out-of-plane motion of one
straight hollow shaft can be obtained similarly as
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The sign conventions for the displacements, rotations, stress resultants and stress-couple
resultants at the two ends of the jth straight hollow shaft are
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where ¸
j
is the length of the shaft.

3.3. BOUNDARY CONDITIONS

3.3.1. Fixed},xed curved hollow shaft

The boundary conditions at the two ends of a "xed}"xed curved hollow shaft (see
Figure 2(a)) are

Md
r1

N(t)"Md
r2
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N(t)"M0 0 0NT (13)
Figure 2. A "xed}"xed curved hollow shaft.
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3.3.2. Fixed},xed straight}curved}straight hollow shaft

The boundary conditions at the two ends of a "xed}"xed straight}curved}straight
hollow shaft (see Figure 2(b)) are
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Further, the displacement continuity and the force balances at two balances at two
connections between the curved shaft and the two straight shafts respectively, are
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4. FREQUENCY RESPONSES

4.1. IN-PLANE MOTION OF CURVED HOLLOW SHAFT

The responses u
x
, u

y
, /

z
, q

x
, q

z
and m

z
for the in-plane motion of curved hollow shaft are

denoted as
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in which u denotes the circular frequency. Substituting equations (17)}(18c) into equations
(5a)}(5c) yields
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The solutions of equations (19a)}(19c) are [8]

M;
x
;

y
U

z
NT(y)"

6
+
i/1

a
i
Mp

i
g
i
p*
i
NT(y), (20a)

MQ
x
Q

y
M

z
NT(y)"

6
+
i/1

a
i
Mg

i
b
i
f
i
NT(y), (20b)

where a
1
}a

6
are constants needed to be determined.



VIBRATION OF STRAIGHT-CURVED-STRAIGHT HOLLOW SHAFTS 375
The sign conventions for the frequency responses of the displacements, rotation, stress
resultants and stress-couple resultants at the two ends of the curved shaft can be expressed
as
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where
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Substituting equations (20a) and (20b) into equations (22a) and (22b) simultaneously and
solving the constants a

1
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6
in terms of MD
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N, then substituting these values of
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Equation (23) presents the relation of in-plane frequency responses at the two ends of the
curved shaft.

4.2. OUT-OF-PLANE MOTION OF CURVED HOLLOW SHAFT

The responses u
z
, /

x
, /

y
, q

z
, m

x
and m

y
for the out-of-plane motion of the curved hollow

shaft are denoted as
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in which u denotes the circular frequency. Substituting equations (24)}(25c) into equations
(6a)}(6c) yields
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The solutions of equations (26a)}(26c) are [7]
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By performing similar procedures described in the preceding section, the relation of
out-of-plane frequency responses at the two ends of the shaft can be expressed in the
symbolic form as
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4.3. STRAIGHT HOLLOW SHAFT
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in which u denotes the circular frequency. Under these circumstances, equations (9a)}(10c)
becomes
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The general solutions of equations (32a)}(32f ) can be expressed as
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These functions f
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(y) are listed in Appendix A.
The sign conventions for the displacement, rotations, stress resultants and stress-couple

resultants at the two ends of the straight shaft are
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N
j
"M;I

z
UI

x
UI

y
NT
j
(0), MFI

r2
N
j
"M!QI

z
MI

y
!MI

x
NT
j
(0), (35e, f )

MDI
l2

N
j
"M;I

z
UI

x
UI

y
NT
j
(¸

j
), MFI

l2
N
j
"MQI

z
!MI

y
MI

x
NT
j
(¸

j
). (35g, h)

Substituting equations (33a) and (33b) into equations (35a) and (35b) simultaneously and
solving the constants c

1j
}c

6j
in terms MDI

r1
N
j
and MFI

r1
N
j
, then substituting these values of

c
1j
}c

6j
into equations (35c) and (35d) and arranging the results into the symbolic vector

form yields

G
DI

l1
FI
l1
H
j

"C
H

11
H

21

H
12

H
22
D
j
G
DI

r1
FI

r1
H
j

. (36)

Equation (36) presents the relation of in-plane frequency responses at the two ends of the jth
straight shaft. Similarly, the relation of out-of-plane frequency responses at the two ends of
the jth straight shaft can be expressed in the symbolic vector form as

G
DI

l2
FI
l2
H
j

"C
P
11

P
21

P
12

P
22
D
j
G
DI

r2
FI
r2
H
j

. (37)

5. MODAL FREQUENCIES

5.1. FIXED}FIXED CURVED HOLLOW SHAFT

5.1.1. In-plane motion

Employing the conditions of zero displacements at two "xed ends of the curved hollow
shaft into equation (23) yields the characteristic equation of the curved hollow shaft,

[B
12

]MF
l1

N"M0 0 0NT, (38)

The ith modal frequency for the in-plane motion of curved hollow shaft satis"es the
determinant of [B

12
] being zero or one eigenvalue of [B

12
] being zero. Further,

the corresponding set of mode shape functions can be obtained by performing similar
procedures described by Wang and Sang [7].

5.1.2. Out-of-plane motion

The characteristic equation for the out-of-plane motion of the curved hollow shaft with
both ends "xed is

[C
12

]MF
l2

N"M0 0 0NT (39)

from which the ith modal frequency and its corresponding set of mode shape functions can
also be obtained by performing similar procedures described by Wang and Sang [7].
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5.2. FIXED}FIXED STRAIGHT}CURVED}STRAIGHT HOLLOW SHAFT

5.2.1. In-plane motion

The conditions of displacement continuity and force balances at the right conjunction
between the curved hollow shaft and the "rst straight hollow shaft are

MD
r1

N"MDI
l1

N
1
, MF

r1
N"!MFI

l1
N
1

(40a)

Further, the conditions of displacement continuity and force balances at the left conjunction
between the curved shaft and the second straight hollow shaft are

MD
l1

N"MDI
r1

N
2
, MF

l1
N"!MFI

r1
N
2

(40b)

Substituting equations (40a) and (40b) into equation (23), then employing the relation of
responses (36) for j"1, 2 into the result yields the responses relation at the two ends of the
whole structure as

G
DI

l1
FI
l1
H
2

"C
>

11
>

21

>
12
>

22
D G

DI
r1

FI
r1
H
1

. (41)

where

C
>

11
>

21

>
12
>

22
D"C

H
11

H
21

H
12

H
22
D
2
C

B
11

!B
21

B
12

!B
22
D C

H
11

!H
21

H
12

!H
22
D
1

.

Employing the boundary conditions of zero displacements at the two ends of equation (41)
yields the characteristic equation for the in-plane motion of the entire structure:

[>
12

]MFI
r1

N
1
"M0 0 0NT (42)

from which the ith modal frequency and its corresponding set of mode shape functions can
also be determined by performing similar procedures described by Wang and Sang [7].

5.2.2. Out-of-plane motion

The ith modal frequency and its corresponding set of mode functions for the out-of-plane
motion of the entire structure can similarly be determined from the characteristic equation

[Z
12

]MFI
r2

N
1
"M0 0 0NT, (43)

where [Z
12

] is the sub-matrix of the matrix [Z]:

[z]"C
Z

11
Z

21

Z
12

Z
22
D"C

P
11

P
21

P
12

P
22
D
2
C

C
11

!C
21

C
12

!C
22
D C

P
11

!P
21

P
12

!P
22
D
1

.

6. ORTHOGONALITY

The ith modal frequency and its corresponding displacement components, rotation angle,
stress resultants and stress-couple resultant for the in-plane motion of the curved hollow
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shaft are denoted as X
i
,;(i)

x
, ;(i)

y
, U(i)

z
, Q(i)

x
, Q(i)

y
and M(i)

z
respectively. Further, the ith modal

frequency and its corresponding displacement component, rotation angles, stress resultant
and stress-couple resultants for the out-of-plane motion of the curved shaft are denoted as
u

i
,;(i)

z
, U(i)

x
, U(i)

y
, Q(i)

z
, M(i)

x
and M(i)

y
respectively.

6.1. FIXED}FIXED CURVED HOLLOW SHAFT

By performing similar procedures to those described by Wang and Sang [7], the
following four equations are obtained:

o P
L

0

(A;(i)
x
;(k)

x
#A;(i)

y
;(k)

y
#I

z
U(i)

z
U(k)

z
) dy"0. (44a)

P
L

0
A
M(i)

z
M(k)

z
EI

z

#

Q(i)
y
Q(k)

y
EA

#

Q(i)
x
Q(k)

x
iGA B dy"0, (44b)

o P
L

0

(A;(i)
z
;(k)

z
#I

x
U(i)

x
U(k)

x
#JU(i)

y
U(k)

y
) dy"0. (44c)

P
L

0
A
M(i)

x
M(k)

x
EI

x

#

M(i)
y
M(k)

y
GJ

#

Q(i)
z
Q(k)

z
iGA B dy"0, iOk. (44d)

Equations (44a), (44b), (44c) and (44d) indicate that the corresponding sets of mode shape
functions of any two distinct modal frequencies for both the in-plane motion and out-of-
plane motion of the curved hollow shaft are orthogonal to each other. Further, the
following two equations are obtained:

oX2
i P

L

0

(A;(i)2
x

#A;(i)2
y

#I
z
U(i)2

z
) dy"P

L

0
A
M(i)2

z
EI

z

#

Q(i)2
y

EA
#

Q(i)2
x

iGAB dy, (45a)

ou2
i P

L

0

(A;(i)2
z

#I
x
U(i)2

x
#JU(i)2

y
) dy"P

L

0
A
M(i)2

x
EI

x

#

M(i)2
y

GJ
#

Q(i)2
z

iGAB dy. (45b)

6.2. STRAIGHT}CURVED}STRAIGHT HOLLOW SHAFT

The orthogonality of two distinct sets of mode shape functions for both the out-of-plane
motion and in-plane motion of the entire structure is similarly obtained:

o
2
+
j/1

P
Lj

0

(A;I (i)
zj
A;I (k)

zj
#JUI (i)

yj
U(k)

yj
#I

x
UI (i)

xj
U(k)

xj
) dy

#o P
L

0

(A;I (i)
z
;I (k)

z
#I

x
U(i)

x
U(k)

x
#JUI (i)

y
U(k)

y
) dy"0. (46a)
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2
+
j/1

P
Lj

0
A
QI (i)

zj
QI (k)

zj
iGA

#

MI (i)
xj
MI (k)

xj
EI

#

MI (i)
yj
MI (k)

yj
GJ B dy

#P
L

0
A
Q(i)

z
Q(k)

z
iGA

#

M(i)
x
M(k)

x
EI

x

#

M(i)
y
M(k)

y
GJ B dy"0, iOk. (46b)

o
2
+
j/1

P
Lj

0

(A;I (i)
xj
;I (k)

xj
#A;I (i)

yj
;(k)

yj
#I

z
UI (i)

zj
UI (k)

zj
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#o P
L

0

(A;(i)
x
;(k)

x
#A;(i)

y
;(k)

y
#I

z
U(i)

z
U(k)

z
) dy"0. (47a)

2
+
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A
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#
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zj
MI (k)
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EI

z

#

QI (i)
yj
QI (k)
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#P
L

0
A
Q(i)

x
Q(k)

x
iGA

#

M(i)
z
M(k)

z
EI

z

#

Q(i)
y
Q(k)

y
EA B dy"0, iOk. (47b)

Further, the following two equations are obtained:

oX2
i

2
+
j/1

P
Lj

0

(A;I (i)2
xj

#A;I (i)2
yj

#I
z
UI (i)

zj
2) dy#oX2

i P
L

0

(A;(i)2
x

#A;(i)2h #I
z
U(i)2

z
) dy

"

2
+
j/1

P
Lj

0
A

QI (i)2
xj

iGA
#

QI (i)2
yj

EA
#

MI (i)2
zj

EI
z
B dy#P

L

0
A

Q(i)2
x

iGA
#

Q(i)2
y

EA
#

M(i)2
z

EI
z
B dy. (48a)

ou2
i

2
+
j/1

P
Lj

0

(A;I (i)2
zj

I
x
#UI (i)2

xj
#JUI (i)2

yj
) dy#ou2

i P
L

0

(A;(i)2
zj

#I
x
U(i)2

xj
#JU(i)2

yj
) dy

"

2
+
j/1

P
Lj

0
A

QI (i)2
zj

iGA
#

MI (i)2
xj

EI
x

#

MI (i)2
yj

GJ B dy#P
L

0
A

Q(i)2
zj

iGA
#

M(i)2
xj

EI
x

#

M(i)2
yj

GJ B dy. (48b)

7. EXAMPLES AND DISCUSSION

In most cases, the "rst modal frequency and its corresponding set of mode shape
functions dominate the vibration of structure. Therefore, the e!ects of initial radius and
thickness and radius of cross-section on only the "rst modal frequency of the two types of
hollow shafts are considered in this section. In the method of modal analysis in the
numerical computation, the constants E"70 GPa, G"26 Gpa, k"0)346.
o"2710 kg/m3 and the following coe$cient i of the circular hollow shaft [9] are
considered:

i"
6(1#k) (1#m)2

(7#6k)(1#m)2#(20#12k)m2
(49)

where m"(a!0)5h)/(a#0)5h).

7.1. CURVED HOLLOW SHAFT

The lowest three modal frequencies and their corresponding mode shapes ;
x

for the
in-plane motion of the curved hollow shaft (a"20 cm, h"20 cm, ¸"10 m, R"30 m) are



Figure 3. A "xed}"xed straight}curved}straight hollow shaft.

Figure 4. The lowest three modal frequencies and their corresponding mode shapes ;
x
for the in-plane motion

of the curved hollow shaft (a"20 cm, h"2 cm, ¸"10 m, R"30 m). **, X
1
"261)272 rad/s; } } },

X
2
"415)003 rad/s; ) ) ) ), X

3
"795)871 rad/s.
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displayed in Figure 4. The lowest three modal frequencies and their corresponding mode
shapes;

z
for the out-of-plane motion of the curved shaft are depicted in Figure 5. Results of

the two "gures show that these modes are bending modes.
The e!ect of R on the comparison of X

1
and u

1
of the curved hollow shaft (a"20 cm,

¸"10 m, h"2 cm is displayed in Figure 6. The initial radius causes a sti!ening e!ect on
the in-plane motion. As a result, X

1
is greater than u

1
. The sti!ening e!ect decreases as

R increases. Therefore, the results of the "gure show that the deviation between X
1

and
u

1
decreases as R increases. Further, X

1
will equal u

1
as R approaches in"nity.

The e!ect of h on the comparison of X
1

and u
1

of the curved hollow shaft (a"20 cm,
R"20 m, /"303) is depicted in Figure 7. The per unit length ratio of bending rigidity (or
torsional rigidity) to mass is proportional to the second order of h. Therefore, both X

1
and

u
1

are almost linearly proportional to thickness as indicated in the "gure. The e!ect of a on
the comparison of X

1
and u

1
of the curved hollow shaft (h"2 cm, R"20 m, /"303) is

displayed in Figure 8. The per unit length ratio of bending rigidity (or torsional rigidity) to



Figure 5. The lowest three modal frequencies and their corresponding mode shapes ;
z

for the out-of-plane
motion of the curved hollow shaft (a"20 cm, h"2 cm, ¸"10 m, R"30 m). **, u

1
"155)412 rad/s; } } },

u
2
"417)631 rad/s; ) ) ) ), u

3
"790)250 rad/s.

Figure 6. The e!ect of R on the comparison of X
1

and u
1

of the curved hollow shaft (a"20 cm, ¸"10 m,
h"2 cm): **, X

1
; - - - u

1
.

Figure 7. The e!ect of h on the comparison of X
1

and u
1

of the curved hollow shaft (a"20 cm, R"20 m,
u"303): **, X

1
; - - - u

1
.
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Figure 8. The e!ect of a on the comparison of X
1

and u
1

of the curved hollow shaft (h"2 cm, R"20 m,
u"303): **, X

1
; - - - u

1
.

Figure 9. The e!ect of R on the comparison of X
1

and u
1

of the straight}curved}straight hollow shaft
(a"20 cm, ¸"10 m, h"2 cm): **, X

1
; - - - u

1
.
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mass is proportional to the second order of a. Therefore, X
1

and u
1

are almost linearly
proportional to the radius as indicated in the "gure.

7.2. STRAIGHT}CURVED}STRAIGHT HOLLOW SHAFT

The e!ect of R on the comparison of X
1

and u
1

of the straight}curved}straight hollow
shaft (a"20 cm, ¸"¸

1
"¸

2
"10 m, h"2 cm) is shown in Figure 9. The initial radius

also has a sti!ening e!ect on the in-plane motion. As a result, X
1

is greater than u
1
. The

sti!ening e!ect decreases as R increases. Therefore, the results of the "gure show that the
deviation between X

1
and u

1
decreases as R increases. Further, X

1
will equal u

1
as

R approaches in"nity.
The e!ect of h on the comparison of X

1
and u

1
of the straight}curved}straight hollow

shaft (a"20 cm, ¸"10 m, ¸
1
"¸

2
"10 m, R"20 m) is shown in Figure 10. The per unit

length ratio of bending rigidity (or torsional rigidity) to mass is proportional to the second
order of h. Therefore, both X

1
and u

1
are almost linearly proportional to the thickness as

indicated in the "gure. The e!ect of a on the comparison of X
1

and u
1

of the
straight}curved}straight hollow shaft (h"2 cm, R"20 m, ¸"10 m, ¸

1
"¸

2
"10 m) is



Figure 10. The e!ect of h on the comparison of X
1

and u
1

of the straight}curved}straight hollow shaft
(a"20 cm, R"20 m, u"303): **, X

1
; - - - u

1
.

Figure 11. The e!ect of a on the comparison of X
1

and u
1

of the straight}curved}straight hollow shaft
(h"2 cm, R"20m, u"30): **, X

1
; - - - u

1
.
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shown in Figure 11. The per unit length ratio of bending rigidity (or torsional rigidity)
to mass is proportional to the second order of a. Therefore, the results of the "gure also
show that both X

1
and u

1
are almost linearly proportional to the radius as indicated in

the "gure.

8. CONCLUSIONS

This study presents the equations for both the in-plane motion and out-of-plane motion
of a curved hollow shaft and a straight}curved}straight hollow shaft. The orthogonality of
any two distinct sets of mode shape functions for the in-plane motion or the out-of-plane
motion of the structures is shown. The forced vibration of the structures can be further
investigated via the present study. The "rst modal frequency of a straight hollow shaft is the
lower bound for that of the in-plane motion, but the upper bound for that of the
out-of-plane motion, of the same shaft which is curved. The "rst modal frequency for both
the in-plane motion and out-of-plane motion of the structures is almost linearly
proportional to the thickness and the radius of the cross-section.
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