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This work presents the governing equations for both the in-plane motion and out-of-
plane motion of a curved hollow shaft. Two types of shaft structures, which are a curved
hollow shaft and a straight-curved-straight hollow shaft, are considered. An analytical
method is also presented to examine the free vibration of the two types of shaft structures.
The orthogonality of any two distinct sets of mode shape functions for both the in-plane
motion and out-of-plane motion of the structures is also derived. The first in-plane modal
frequency of a structure is greater than the first out-of-plane modal frequency of the same
structure.
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1. INTRODUCTION

The ducts with a circular cross-section have been widely used in fluid transportation. The
duct structures can basically be simulated as hollow shafts. The displacement fields of
a hollow shaft contain three displacement components, two bending slopes and one twist
angle. Hollow shaft structures are normally organized in a straight type. Owing to the
restriction of space and environment, hollow shafts are almost arranged in a straight-
curved-straight type for industrial usage. The geometry of this type of shaft structure
completely differs from that of a straight shaft. The initial curvature of a curved hollow shaft
causes the coupling effect between twist angle and bending slope in bending moment and
torque. The coupling effect causes the governing equations of curved hollow shafts to be
more complicated than those of straight hollow shafts.

The straight-curved-straight hollow shaft consists of two straight hollow shafts and one
curved hollow shaft. The vibration of this type of shaft structure induced by external forces
sometimes causes significant disasters. However, the vibration problems of this type of shaft
structure have rarely been studied. The hollow shaft can basically be regarded as a hollow
beam. There are two kinds of motions for the hollow beam: in-plane motion and out-of-
plane motion. The vibration of straight beams can be easily examined based on the
Timoshenko beam theory. As for curved beams, the free vibration of the out-of-plane
motion of the shafts has been studied over two decades [1-5]. Moreover, the vibration of
thin-walled beam can be examined based on Vlasov’s [6] theory. Wang and Sang [7] set up
the displacements for a curved beam to derive the equations for the out-of-plane motion of
the beam via the Timoshenko beam theory. Further, Wang [8] set up the displacements,
which are three displacement components; two bending slopes and one twist angle, for
a curved frame to derive the governing equations of a T-type curved frame via the same
beam theory. Further, an analytical method has been successfully adopted in studying the
forced vibration of a multi-span curved beam and the T-type curved frame due to a moving
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force. Therefore, an analytical method will be proposed in the paper to study the vibration
of straight—-curved-straight hollow shaft structures.

The study presents the displacements of curved hollow shaft and those of a straight
hollow shaft. The hollow shafts have a circular type of cross-section. Further, the shafts are
considered to be homogeneous and isotropic with Young’s modulus E, shear modulus G,
Poisson’s ratio u and mass density p. The initial radius of the curved shaft is considered to
be larger than the radius of the cross-section of the shaft. The governing equations for the
in-plane motion of the curved hollow shaft and the straight hollow shafts are presented.
A fixed-fixed curved hollow shaft and a fixed—fixed straight-curved-straight hollow shaft
are taken as two examples. An analytical method is presented to obtain the respective
frequency responses for the in-plane motion and the out-of-plane motion and the out-of-
plane motion of the hollow shaft structures. The transfer matrix of response relations
between two ends of each shaft component is set up. The modal frequencies and their
corresponding sets of mode shape functions for either the in-plane motion or the out-of-
plane motion of the two types of hollow shaft structures are obtained via the method of
transfer matrix. Further, the orthogonality of any two distinct sets of mode shape functions
for either the in-plane motion or the out-of-plane motion is derived to quarantee the
feasibility of the method of modal analysis. The effects of initial radius and thickness and
radius of cross-section of the curved hollow shaft on the modal frequencies of the two shaft
structures are investigated.

2. STRESS RESULTANTS

2.1. CURVED HOLLOW SHAFT

A curved hollow shaft is depicted in Figure 1(a). The angle measured from the bisector of
angle between any ends is ¢. The radius of the shaft along its curved axes is R. The Cartesian
co-ordinates (x, y and z) system and the cylindrical co-ordinate (r, # and z) system for the
shaft are depicted in the figure. The x- and z-axis coincide with the principal centrodial axes
of the shaft, while the y-axis is tangent to the curved axis of the shaft. The co-ordinates r,
0 and z are taken at the center of curvature of the shaft. The shaft has a uniformly circular
cross-section with radius a and thickness h. The displacement components along these
principal axes are denoted as u,, u, and u, respectively. Furthermore, ¢,, ¢, and ¢, are the
respective rotation angles of the cross-section along these principal axes.

The displacement fields of the cross-section along these principal axes in the Cartesian
co-ordinates are

ux*(xa Y,z t) = ux(y) t) + Z¢y(y7 t)a (13)
uy*(x’ Vs z, t) = uy(y7 t) - Z¢x(y> t) + X(pbz(y» t): (lb)
uz*(xa Y, z, t) = uz(y7 t) - x¢y(y7 t)' (1C)

By performing similar procedures described by Wang [8], the stress resultants g, ¢,(= ¢q)
and g, and the stress-couple resultants m,, m,(= m,) and m, of the curved shaft about the
principal axes are obtained:

Ou, u, o ou,
qx_KGA (a)}_R+¢z>’ qy_qG_EA <ay+R>a (2aab)
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Figure 1. Displacements, stress resultants and stress-couple resultants for (a) the curved hollow shaft and (b) the
straight hollow shaft.

ou 0. @
= xGA z_ =m. = — EI *_ 2¢,d
qz K <ay d)x>9 mx mr <ay R >’ ( C’ )
o by ¢« 09,
my—mg—GJ<ay+R>, m, = EI 3y’ (2e,f)

where A is the cross-sectional area, J is the polar moment of the cross-section and I is the
moment of area about the x-axis or the z-axis.

2.2. STRAIGHT HOLLOW SHAFT

The Cartesian co-ordinate (x, y and z) system of the straight hollow shaft is depicted in
Figure 1(b). The x- and z-axis coincide with the principal centroidal axes of the shaft while
the y-axis denotes the longitudinal axis of the shaft. The shaft has a uniform circular
cross-section with radius a and thickness h, polar moment J around the y-axis, and second
moment of area I around the x-axis (or z-axis). The displacement components along these
principal axes are denoted as i,, i, and @, respectively. Furthermore, P qNSy and ¢, are the
respective rotation angles of the cross-section along these principal axes. The displacement
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fields of the cross-section along these principal axes in the Cartesian co-ordinates are

ax*(x’ Y, Z, t) = ﬁx(ys t) + Z(I)y(y’ t)’ (38.)
(X, Y, 2, 8) = B,(0, 1) — 2 (0, £) + x.(, 1), (3b)
(X, 0, 2, 1) = @(0, 1) — Xy (1, 2). (3c)

The stress resultants g,, §, and §., and the stress-couple resultants r1,, 11, and 71, of the shaft
along these principal axes are

i, dil o,
—kGA(Z2 4+ 8. ), G, =EAZ2, G =xGA(2=—§,), (dac)
ady oy’ ay
i, = — EI s _ Gy ad’y i, = £1 20 (4d-f)
oy’ oy’ dy

3. EQUATIONS OF MOTION

3.1. CURVED HOLLOW SHAFT

The governing equations for the in-plane motion of the curved hollow shaft are [§]

4. q, 0%u g 0q 0%u
_Yx  dy A—>=0 —=_- A—3=0,
oy TR R oy TP %e
om 2
—-—= 1 £=0. Sa-
T +pl—5 (5a—c)

Further, the governing equations for the out-of-plane motion of the shaft are

oq 0%u m, om 0%¢
By 40 — == S+ pl—5=0
gy PAgr =% Tt R T A e =0
om, m, 0%,
- Ty + i +p o2 = 0. (68.—0)

The sign conventions for the displacements, rotations, stress resultants and stress-couple
resultants at the two ends of the curved hollow shaft are

{ rlj {M u)¢ } (0 t) {frl}(t) = {_ — 4y — sz (0 t) (733 b)
{dll }(t) = {uxuy¢z}T(L’ t)> {f;'l }(t) = {qXQymz}T(L: t)> (7C> d)
{er}(t) = {uz¢xd)Y}T(0, t)> {f;’Z}(t) = {_ q:my — mY}T(Oa t)a (83, b)

{dlz}(t) = {uz¢x¢y}T(Ls t)’ {le}(t) = {QZ - mxmy}T(La t)' (80, d)
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3.2. STRAIGHT HOLLOW SHAFTS

The governing equations for the in-plane motion and the out-of-plane motion of one
straight hollow shaft can be obtained similarly as

0§ 0% 0§ 0% . oW %P
— 4 pA—F=0, ——24+pA—FL=0, G.=—+pI—=5-=0, (9a-
oy PG =0 T AR T = T Ga-0)
aq %l o 3¢ o 62(;5
——E 4 pA—F=0, —§ *hpl —2=0 Y= 0. (10a-
ay + p atz > QZ + 6y + p 61,2 > Oy ( a C)

The sign conventions for the displacements, rotations, stress resultants and stress-couple
resultants at the two ends of the jth straight hollow shaft are

{di }5(0) = {@01,. 17 0,0, { f11 },(0) = {— dx — G, — 1 }] 0, 1), (11a,b)
(i }(0) = (@it d- ] (Lys 1), {fua }5(0) = (@i} (L, 1), (11c,d)

{dia}j(0) = {8020, 1] (0, 0), { f12}5(0) = { = Gutfic — 1, }1(0,0), (12a,b)
(i }(0) = (s} (L ), {fia}(0) = 1@ — i} J(Ly, 0, j=1,2,  (12¢,d)

where L; is the length of the shaft.

3.3. BOUNDARY CONDITIONS

3.3.1. Fixed—fixed curved hollow shaft

The boundary conditions at the two ends of a fixed-fixed curved hollow shaft (see
Figure 2(a)) are

{di 1) = {dy2 }(0) = {diy } () = {d12 }(1) = {00 O} (13)

Figure 2. A fixed-fixed curved hollow shaft.
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3.3.2. Fixed—fixed straight-curved-straight hollow shaft

The boundary conditions at the two ends of a fixed—fixed straight-curved-straight
hollow shaft (see Figure 2(b)) are

{grl J1(t) = {&11 }2()=1{000}7, {&rz}l(t) = {&12}2(t) =1{000}". (14a, b)

Further, the displacement continuity and the force balances at two balances at two
connections between the curved shaft and the two straight shafts respectively, are

{di } (0 = {din ;1 (0, { S} () = = {fu}1(0), (15, b)
{d2}(0) = {1 (0), (£} () = = {fi2}10) (15¢, d)
{di (0 = {dn 0. { i} 0 = — {f1}2(0), (16a,b)
{di2}(0) = {dp2}2(0. { fi2} () = — {fi2}20). (16c, d)

4. FREQUENCY RESPONSES

4.1. IN-PLANE MOTION OF CURVED HOLLOW SHAFT

The responses uy, u,, ¢., g, 4. and m, for the in-plane motion of curved hollow shaft are
denoted as

(uuy-qxqym.)(y, 1) = (U U, ®.0,.0,M)(y) sin(wi), (17)
where

dU U, dU U do
=KrkGA Ty =EA|(——2+-2 M,=EI—= 18a-
Qx K <dy R + z>» Qy <dy + R )7 z dy > ( a C)

in which w denotes the circular frequency. Substituting equations (17)-(18c) into equations
(5a)—(5¢) yields

de Qy _ 2 Qx dQY _ 2
dM
0, — ——=plo*d,. (19a—c)
dy
The solutions of equations (19a)—(19c¢) are [&]
6
(UU,2.1 (y) = a;{pigivi¥ ) () (20a)
i=1
6
{0:0,M:}1(v) = ¥ ai{niBili}" (v), (20b)

i=1

where a;-ag are constants needed to be determined.
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The sign conventions for the frequency responses of the displacements, rotation, stress
resultants and stress-couple resultants at the two ends of the curved shaft can be expressed
as

{dv1 }(t) = {Dyy Jsin(wt),  {f1}(1) = {F,}sin(wt}, (21a, b)
{(diy }(t) = {Dyy }sin(wt), { fis }(t) = {Fyy }sin(or). (21c, d)
where
(D} ={UY,@.}7(0), {Fo1} = {— Qs — Q) — M_}"(0), (22a, b)
D} = {U.Y, .} (L), {Fii } = {Q.Q,M.}"(L), (22¢,d)

Substituting equations (20a) and (20b) into equations (22a) and (22b) simultaneously and
solving the constants a;—a¢ in terms of {D,;} and {F,;}, then substituting these values of
a,—ae into equations (22c) and (22d) and arranging the results into the symbolic vector form

yields
{DZI}Z[BII B12:|{Drl}. (23)
Fll BZl B22 Frl
Equation (23) presents the relation of in-plane frequency responses at the two ends of the
curved shaft.

4.2. OUT-OF-PLANE MOTION OF CURVED HOLLOW SHAFT

The responses u., ¢, ¢, 4., m, and m, for the out-of-plane motion of the curved hollow
shaft are denoted as

(u-pxbyq-mam,)(y, t) = (U.®.D,0.M M,)(y)sin(wt), (24)
where
B dU, B do, o, B do, &,
Qz_KGA(dy <Px>, M, = E1<dy R>’ My—GJ<dy +R>, (25a—c)

in which w denotes the circular frequency. Substituting equations (24)-(25c) into equations
(6a)—(6¢) yields

do M, dM
- z = A 2U B - z — = = I Z(va
dy pA®~U, 0.+ R T & plw
dM, M,
- dyy + ? = pr2¢y' (263-(7)
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The solutions of equations (26a)-(26c¢) are [7]

12

{Uzéx@y}T(y) = Z, al{plglpl*}T(y)? (273)
{Q:-MM,} () = 3 ai{niBili}" (v), (27b)

i=7

where a-,-a,, are constants needed to be determined.
By performing similar procedures described in the preceding section, the relation of
out-of-plane frequency responses at the two ends of the shaft can be expressed in the

symbolic form as
DIZ} |:C11 C12:|{Dr2}
- , 28
{FIZ C21 CZZ Fr2 ( )
where

(D2} = {U.®:®,}7(0), {F,»} = {— Q.M. — M, }"(0), (29a, b)

{Di} = {U.9.®,}"(L), {Fp2} = {Q. — MM, }"(L). (29¢, d)

4.3. STRAIGHT HOLLOW SHAFT

The responses iy, iy, iz, Oxj> Pyjs Pzj» Gxj> Ayjs G=j» Mixj> Hy; and mi,; of the jth straight
shaft are denoted as

(axﬁy quqvmz)j(y7 t) = (Uny¢zQzQxMz)j(.V) Sin(wt)a (303)
(ﬁzd;xq;qumxﬁly)j(ya t) = (UzixészMxMy)j(Y)Sin(wt)a (30b)
where

- a0, - do,, a0, -

ij =kGA (d—yj + dej)’ QYJ' =EA dyyjr sz =KkGA <d—yj - (pxj>7 (313—C)
- dé,;, - dé,, - dé_;

M,=El—> M,=GJ—2, M, =EIl—=2 31d-f
xj dy P vi dy P zj dy 5 ( )

in which w denotes the circular frequency. Under these circumstances, equations (9a)-(10c)
becomes

o dej _
dy

- dod,; N
pAw*U,;, — dyyj = pAw*U,;, (32a,b)
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dg, <AV

dy =pAw*U,;, —Q.; + & - pla?d,;,
dM ~  dM,; -
dyyj = pr ij - dy = lezdjq

The general solutions of equations (32a)-(32f) can be expressed as
6

{ﬁxﬁyéz}}-(y) = Z Cij{flifzif3i}T(J/),

i=1

6

{QnyMz}]T(y) = Z Cij{f4if5if6i}T(y)a

i=1

{Uzixd;y}}(w = ‘;1 dij{flif3if7i}T(Y)’

6
{Q:Mny},T(J’) = Z dij{ faifsi —fei}T(J’),
i=1
where ¢, ;—c¢; and d; j~ds; denote constants and these functions f;(y)-fss(y)

J15(0) =f16(0) =0, f21(0) =f22(y) = f23(¥) = f24(y) =
f210) = f22(0) = f73(y) = f74(y) = 0,

fas(y) = sin <\/§ wJ’>sf26(J’) = COS <\/§ CU;V>> f75(y) = sin <\/§ wJ’>a

377

(32¢, d)

(32¢, )

(33a)

(33b)

(33¢)

(33d)

_dfy R
ﬁwwm{f>ﬁm T 2 [ty futn = = poa 1

le dfs, cy Y7

Ssi(y) = EA dy

. Jei(y)

f81( )

These functions f;(y)-f14(y) are listed in Appendix A.

The sign conventions for the displacement, rotations, stress resultants and stress-couple

resultants at the two ends of the straight shaft are
{di1}j(0) = (Do }ysin(et),  {fo}5(0) = {Foi};sin(or),
{din};(0) = (D Jysin(@t), { fia}(0) = {Fiy } sin(or),
{dia} (1) = (Dy2}sin(e1), {fr2}(0) = {F,2}; sin(ot),

{gzz }i(t) = {512 }jsin(wt), {f~12 }it) = {Flz }j sin(wt),

(34a, b)

(34c, d)

(34e, )

(34g, h)
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where
D1}, =10.0,8.370), {F.};={-0.—0,— M.}j0) (353, b)
D} ={0.0,8.3](L), {Fu};={0.0,M.}](L), (35¢, d)
(D2} = {U.8.8,}7(0), {F.};={—0.M,— M} 0), (35¢, )
Din};={0.8.8,}](Ly), {Fn};=1{0.— MM.}j(L). (35g,h)

Substituting equations (33a) and (33b) into equations (35a) and (35b) simultaneously and
solving the constants ¢; ~ce; in terms {D,; }; and {F,,};, then substituting these values of
c1j-Cq; into equations (35c) and (35d) and arranging the results into the symbolic vector

form yields
{bzll} :|:H11 H12:| {D:rl} ) (36)
Fllj H,, H22jFr1j
Equation (36) presents the relation of in-plane frequency responses at the two ends of the jth

straight shaft. Similarly, the relation of out-of-plane frequency responses at the two ends of
the jth straight shaft can be expressed in the symbolic vector form as

{512} =|:Pll P12j| {ﬁrz} (37)
Fle P21 P22jFr2 j'

5. MODAL FREQUENCIES

5.1. FIXED-FIXED CURVED HOLLOW SHAFT

5.1.1. In-plane motion

Employing the conditions of zero displacements at two fixed ends of the curved hollow
shaft into equation (23) yields the characteristic equation of the curved hollow shaft,

[B12]{Fll} = {0 0 O}T’ (38)

The ith modal frequency for the in-plane motion of curved hollow shaft satisfies the
determinant of [B;,] being zero or one eigenvalue of [B;,] being zero. Further,
the corresponding set of mode shape functions can be obtained by performing similar
procedures described by Wang and Sang [7].

5.1.2. Out-of-plane motion

The characteristic equation for the out-of-plane motion of the curved hollow shaft with
both ends fixed is

[C12]{F12} = {0 0 O}T (39)

from which the ith modal frequency and its corresponding set of mode shape functions can
also be obtained by performing similar procedures described by Wang and Sang [7].
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5.2. FIXED-FIXED STRAIGHT-CURVED-STRAIGHT HOLLOW SHAFT

5.2.1. In-plane motion

The conditions of displacement continuity and force balances at the right conjunction
between the curved hollow shaft and the first straight hollow shaft are

{Dn}:{ﬁn}l,{Fn} = —{F11}1 (40a)

Further, the conditions of displacement continuity and force balances at the left conjunction
between the curved shaft and the second straight hollow shaft are

(D} = {Dy1}2, {Fu} = — {Fuu}2 (40b)

Substituting equations (40a) and (40b) into equation (23), then employing the relation of
responses (36) for j = 1, 2 into the result yields the responses relation at the two ends of the

whole structure as
{D:ll} — |:Y11 Y12:| {D:rl} ) (41)
Fll 2 Y21 Y22 Frl 1

|:Y11 Y12:|=|:H11 H12:| |: Bll BIZ:||: Hll H12:|

Yo Yoo Hyy Hyy |5 — B2y — Bas —H,; —Hy |
Employing the boundary conditions of zero displacements at the two ends of equation (41)
yields the characteristic equation for the in-plane motion of the entire structure:

where

[YIZ:HFH}I = {OOO}T (42)

from which the ith modal frequency and its corresponding set of mode shape functions can
also be determined by performing similar procedures described by Wang and Sang [7].

5.2.2. Out-of-plane motion

The ith modal frequency and its corresponding set of mode functions for the out-of-plane
motion of the entire structure can similarly be determined from the characteristic equation

[212]{ﬁr2}1 = {OOO}T, (43)

where [Z,,] is the sub-matrix of the matrix [Z]:
[Z]=|:le ZIZ:|=|:P11 P12:| |: Cll C12:||: Pll P12:|
ZZI ZZZ P21 P22 2 _C21 _C22 _P21 _P22 1

6. ORTHOGONALITY

The ith modal frequency and its corresponding displacement components, rotation angle,
stress resultants and stress-couple resultant for the in-plane motion of the curved hollow
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shaft are denoted as Q;, UY, U, @, 0¥, 0 and MY respectively. Further, the ith modal
frequency and its corresponding displacement component, rotation angles, stress resultant
and stress-couple resultants for the out-of-plane motion of the curved shaft are denoted as
w;, UP, 0P, &P, 0V, MY and M{" respectively.

6.1. FIXED-FIXED CURVED HOLLOW SHAFT

By performing similar procedures to those described by Wang and Sang [7], the
following four equations are obtained:

L
p f (AUDUD + AUPUY + 1.o0d®) dy = 0. (44a)
0
L/ MOM® (i) (k) (i) (k)
z z + Qy Qy + X Qx dy — 0’ (44b)
o \ EL EA kGA
L . e .
p J o UPUY + 1. dPP + JoPdM) dy = 0. (440)

i k i k i)k
JL<M§C)M§C)+M;)M;)+Q(Z) (Z)

-0, ik 44
El GJ KGA >dy 0 i#k (44d)

0

Equations (44a), (44b), (44c) and (44d) indicate that the corresponding sets of mode shape
functions of any two distinct modal frequencies for both the in-plane motion and out-of-
plane motion of the curved hollow shaft are orthogonal to each other. Further, the
following two equations are obtained:

2 t (i)? i) (i) t o (yi)2 Q(i)2
Q| (AUY" + AU 4+ o) dy = =+ + =2 ) dy, 45
p L( Y Jdy L(EIZ EA KGA) Y (452)
L 2 2 2 L/mM» M
2| (AU + 1,00 + Jo)dy = X 4= )dy. 45b
pLi L( N o » ) dy L <EIx GJ KGA) Y (45b)

6.2. STRAIGHT-CURVED-STRAIGHT HOLLOW SHAFT
The orthogonality of two distinct sets of mode shape functions for both the out-of-plane

motion and in-plane motion of the entire structure is similarly obtained:

2 Li S~ S~ S~ i~
Y j (ATOATE + JBODE + 1B9DY) dy
j=1Jo

L
+p f . (ATVTY + 1,000% + JPPW) dy = 0. (46a)
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S J <QS}Q;’? | MG +M;3M;§)> dy
= lo \ kG4 EI GJ

+

L @) (k) @) p r(k) (@) p r(k)
J(QZQZ L MOME MM
0

- TR — >dy =0, i#k (46b)

2
p Z f (A0OTY + ATHUY + 1.69PY) dy

L
+p JO (AUPUY + AUPUY + LLoPoP) dy = 0. (47a)
$ ((Q80 | Moy 080l
= lo kG4 EI, EA

L (@) (k) @) p g(k) (@) (k)

00y  MPM:’ 00, .
dy =0, k. 47b

+L<KGA+ El.  Ea )V ’7é (470)

Further, the following two equations are obtained:

2 L
pQ? Y j (AT + AU + 1.3) dy + p? J (AUD" + AUY” + 1.60") dy
j=14J0
( (48a)

(l)2 (t)Z ]\4(1)Z
- d
Z <KGA EA T > v
2

L;
pw7 Z J (ATET, 4+ O 4+ JGY) dy + pw? J (AUY + 1,00 + Joi)) dy
o My My Liow MO MY
d dy. 48b
ZJ(KGA Lt ) Yt AT EL Ter )Y @8

7. EXAMPLES AND DISCUSSION

Q(l)2 MO?
=) dy.
AT Ea " EIZ> y

In most cases, the first modal frequency and its corresponding set of mode shape
functions dominate the vibration of structure. Therefore, the effects of initial radius and
thickness and radius of cross-section on only the first modal frequency of the two types of
hollow shafts are considered in this section. In the method of modal analysis in the
numerical computation, the constants E =70GPa, G =26Gpa, u=0346.
p =2710 kg/m® and the following coefficient x of the circular hollow shaft [9] are
considered:

_ 6(1 + (1 +m)*
(7 + 61 + m)? + (20 + 12)m?

(49)

where m = (a — 0-5h)/(a + 0-5h).

7.1. CURVED HOLLOW SHAFT

The lowest three modal frequencies and their corresponding mode shapes U, for the
in-plane motion of the curved hollow shaft (¢ = 20 cm, h = 20 cm, L = 10 m, R = 30 m) are
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Figure 3. A fixed-fixed straight-curved-straight hollow shaft.

30

Figure 4. The lowest three modal frequencies and their corresponding mode shapes U, for the in-plane motion
of the curved hollow shaft (a=20cm, h=2cm, L=10m, R=30m). ——, Q; =261-272rad/s; ---,
Q, =415-003 rad/s; - -+, 23 = 795-871 rad/s.

displayed in Figure 4. The lowest three modal frequencies and their corresponding mode
shapes U, for the out-of-plane motion of the curved shaft are depicted in Figure 5. Results of
the two figures show that these modes are bending modes.

The effect of R on the comparison of Q; and w; of the curved hollow shaft (a = 20 cm,
L =10m, h = 2 cm is displayed in Figure 6. The initial radius causes a stiffening effect on
the in-plane motion. As a result, £, is greater than w;. The stiffening effect decreases as
R increases. Therefore, the results of the figure show that the deviation between Q; and
w; decreases as R increases. Further, Q; will equal w; as R approaches infinity.

The effect of h on the comparison of Q; and w, of the curved hollow shaft (« = 20 cm,
R =20m, ¢ = 30°) is depicted in Figure 7. The per unit length ratio of bending rigidity (or
torsional rigidity) to mass is proportional to the second order of h. Therefore, both Q,; and
w, are almost linearly proportional to thickness as indicated in the figure. The effect of a on
the comparison of Q; and w; of the curved hollow shaft (h =2 cm, R =20 m, ¢ = 30°) is
displayed in Figure 8. The per unit length ratio of bending rigidity (or torsional rigidity) to
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-4

Figure 5. The lowest three modal frequencies and their corresponding mode shapes U, for the out-of-plane
motion of the curved hollow shaft (¢ =20cm, h=2cm, L =10m, R =30m). ——, w; = 155412 rad/s; —-—-,
w, =417-631 rad/s; -- -+, wz = 790-250 rad/s.
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Figure 6. The effect of R on the comparison of Q; and w, of the curved hollow shaft (a = 20 cm, L = 10 m,
h=2cm) ——, Qq; --- w;.
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Figure 7. The effect of h on the comparison of ©; and w; of the curved hollow shaft (¢ =20 cm, R = 20 m,
@ =30 ——, Q; --- w;.
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Figure 8. The effect of a on the comparison of Q; and w; of the curved hollow shaft (1 =2cm, R =20 m,
¢ =30"): —— Qy; --- 0.
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Figure 9. The effect of R on the comparison of Q; and w; of the straight-curved-straight hollow shaft
(@a=20cm, L=10m, h =2cm). ——, Qy; --- ;.

mass is proportional to the second order of a. Therefore, Q; and w; are almost linearly
proportional to the radius as indicated in the figure.

7.2. STRAIGHT-CURVED-STRAIGHT HOLLOW SHAFT

The effect of R on the comparison of ©; and w; of the straight-curved-straight hollow
shaft (¢ =20cm, L = L; = L, = 10 m, h = 2 cm) is shown in Figure 9. The initial radius
also has a stiffening effect on the in-plane motion. As a result, Q; is greater than w,. The
stiffening effect decreases as R increases. Therefore, the results of the figure show that the
deviation between Q; and w; decreases as R increases. Further, Q; will equal w; as
R approaches infinity.

The effect of h on the comparison of Q; and w, of the straight-curved-straight hollow
shaft(a =20cm, L = 10m, L, = L, = 10 m, R = 20 m) is shown in Figure 10. The per unit
length ratio of bending rigidity (or torsional rigidity) to mass is proportional to the second
order of h. Therefore, both Q; and w, are almost linearly proportional to the thickness as
indicated in the figure. The effect of a on the comparison of Q; and w; of the
straight—curved-straight hollow shaft (h =2cm, R=20m, L =10m, L; = L, = 10 m) is
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Figure 10. The effect of h on the comparison of Q; and w,; of the straight-curved-straight hollow shaft
(a=20cm, R =20m, ¢ =30°): ——, Qy; --- ;.
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Figure 11. The effect of a on the comparison of Q; and w,; of the straight-curved-straight hollow shaft
(h=2cm, R=20m, ¢ =30): ——, Qy; --- ®;.

shown in Figure 11. The per unit length ratio of bending rigidity (or torsional rigidity)
to mass is proportional to the second order of a. Therefore, the results of the figure also
show that both Q; and w, are almost linearly proportional to the radius as indicated in
the figure.

8. CONCLUSIONS

This study presents the equations for both the in-plane motion and out-of-plane motion
of a curved hollow shaft and a straight-curved-straight hollow shaft. The orthogonality of
any two distinct sets of mode shape functions for the in-plane motion or the out-of-plane
motion of the structures is shown. The forced vibration of the structures can be further
investigated via the present study. The first modal frequency of a straight hollow shaft is the
lower bound for that of the in-plane motion, but the upper bound for that of the
out-of-plane motion, of the same shaft which is curved. The first modal frequency for both
the in-plane motion and out-of-plane motion of the structures is almost linearly
proportional to the thickness and the radius of the cross-section.
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