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In this paper, the fuzzy sliding mode controller (FSMC) and region-wise linear fuzzy
sliding mode controller (RLFSMC) are applied to toggle and quick-return mechanisms,
which are driven by a permanent magnet (PM) synchronous servomotor. The FSMC and
RLFSMC are robust controllers developed to regulate the slider position of the coupled
motor-mechanism system. These controllers are designed via a quicker and easier method in
conjuction with the concept of the hitting condition. Numerical results are provided to
compare these controllers and to show that the dynamic behaviour of the proposed
controller-motor-mechanism systems are robust with respect to external disturbances.
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1. INTRODUCTION

Motion control technologies have been widely used in industrial applications. Due to the
fact that good technologies allow for high productivity and produce products of high
quality, the study of motion control is a signi"cant topic. The toggle mechanism [1] has
many applications, in which a large resistance is overcome with a small driving force, for
instance, clutches, rock crushers, truck tailgates, vacuum circuit breakers, punching
machines, forging machines, injection modelling machines, etc. The important feature is its
ability to produce high-value force at the slider with relatively low torque input. The
quick-return mechanism [2] is used for the purpose of giving a slow cutting stroke and a
quick-return stroke with a constant angular velocity of the driving crank. There are many
types of this kind of mechanism, such as crank-shaper, power-driven saw, drag link, o!set
slider crank, and so on.

In recent years, there have been many successful applications on fuzzy control, but several
di$culties still exist in the fuzzy logical controller (FLC) design. For example: (1) Fuzzy
control rules are experience-oriented. Thus, the designer will "nd it di$cult to establish the
fuzzy rule bases. (2) Characteristics of the fuzzy control systems cannot be pre-speci"ed.
(3) If p is the number of fuzzy sets for input variables, then the complete rule bases are equal to
p]p. This will cause the controller rule bases to be too huge to lower the performance of
the controlled system. (4) The scaling factors of fuzzy logic controllers are "xed, and cannot
be employed for the unknown conditions.
0022-460X/00/280471#19 $35.00/0 ( 2000 Academic Press
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To overcome the above di$culties (1) and (2) in the FLC design, we adopt the FSMC
which uses both s and sR as the inputs, and apply the sliding mode control techniques to
obtain the fuzzy control base. Although the di$culties (1) and (2) are solved by the FSMC, it
does not reduce the control rules. In order to solve di$culty (3), we adopt the RLFSMC [3],
which combines two input variables of the FSMC as a new one, and the number of fuzzy
control rules will be reduced e!ectively. In the FLC and FSMC, the "xed scaling factors
hardly improve the performance of the controller. Thus, the scaling factor tuner (SFT) is
designed to tune the scaling factor of the RLFSMC, and to have the best "tness for many
unknown conditions.

The organization of this paper is arranged as follows. In section 2, the kinematic and
dynamic analyses of the toggle and quick-return mechanisms are brie#y discussed. The
"eld-oriented PM synchronous motor is introduced in section 3. The FSMC and the
RLFSMC associated with the SFT are designed in sections 4 and 5 respectively.
The numerical results are compared for the motor-mechanism systems with the FSMC and
RLFSMC. Finally, some conclusions are drawn in section 7.

2. KINEMATIC AND DYNAMIC ANALYSIS OF MECHANISM

2.1. CO-ORDINATE PARTITIONING METHOD

In kinematic analysis, we use the co-ordinate partitioning method [4] to partition the
co-ordinate vector as

W"[W
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n
]T"[uTvT]T, (1)

where u"[u
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m
]T and v"[v

1
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k
]T are the m dependent and k independent

co-ordinates respectively. The m constraint equations are

U"U(W)"0 (2a)
or

U"U(u, v)"0. (2b)

Since the k independent co-ordinates are speci"ed at each instant of time t, equation (2)
becomes a set of m equations in m unknowns, which can be solved for the m dependent
co-ordinates. If the constraints of equation (2a) are independent, the existence of solution
u for given v is asserted by the implicit function theory [5]. Di!erentiating equation (2a)
yields the constraint velocity equation

UWW0 "0, (3)

where matrix UW"[LU/LW] is the partial derivatives of the constraint equations and is
called the constraint Jacobian matrix. Sequentially, equation (3) is rewritten in a partitioned
form as

Uuu5 "!Uvv5 , (4)

where Uu and Uv are two submatrices of UW. Since the m constraint equations (2a) are
assumed to be independent, then Uu is an m]m non-singular matrix. Equation (4) may be
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solved for u5 , once v5 is given. Di!erentiating the constraint velocity equation (3) yields the
acceleration equation

UWWG "!(UWW0 )WW0 ,c, (5)

where WG "[WG
1

WG
2
2WG

n
]T is a acceleration vector. In the mean time, equation (5) can be

written in a partitioned form as

UuuK"!UvvK!(UWW0 )WW0 . (6)

Since Uu is non-singular, equation (6) can be solved for uK , once vK is given. Note that the
velocity equation (4) and acceleration equation (6) are two sets of linear algebraic equations
in W0 and WG respectively.

The Euler}Lagrange equations, accounting for both applied and constraint forces, are

M(W)WG #N(W, W0 )#UTWj"BU, (7)

where M is the mass matrix, N is the non-linear vector, j is the Lagrange multipliers, B is
a constant matrix and U is the vector of applied forces. We combine equations (5) and (7) to
obtain the di!erential-algebraic equation in the matrix form as

C
M UT

W

UW 0 DC
WG

jD"C
BU!N(W, W0 )

c D. (8)

The implicit function method will be employed to solve equation (8) by reordering and
partitioning. According to the decomposition of W into u and v, we have

MvuuK#MvvvK#UT
v j"BvU!Nv, MuuuK#MuvvK#UT

uj"BuU!Nu, (9)

UuuK#UvvK"c.

Since the coe$cient matrix UT
u of j in the second of equation (9) is non-singular, this

equation could be solved for j as

j"(U~1
u )T[BuU!Nu

!MuvvK!MuuuK ]. (10)

Substituting equations (6) and (10) into the "rst of equation (9), we can obtain
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The result is a set of di!erential equation with only one independent generalized co-
ordinate v. The system becomes an initial-value problem and can be integrated by using
fourth order Runge}Kutta method [6].

2.2. DYNAMIC ANALYSIS OF THE TOGGLE MECHANISM

The matrix element of the di!erential-algebraic equation (8) can be found in Appendix A.
Equations (8) and (A6) may be reordered and partitioned according to the decomposition of
W"[uT vT]T. If the constraints are independent, the matrix UW has full row rank and there
is always at least one non-singular sub-matrix UW of rank 3. Gauss}Jordan reduction of the
matrix UW with double pivoting de"nes a partitioning of W"[uT vT]T, u"[h

5
h
3
]T,

v"[h
2
]T such that Uu is the sub-matrix of UW whose columns correspond to elements u of h,

and U
v
is the sub-matrix of UW whose columns correspond to element l of W. The elements

of the vectors u, v and matrices Uu, Uv, M
uu, Muv, Mvu and Mvv of equation (11) are detailed in

Appendix B.

2.3. DYNAMIC ANALYSIS OF THE QUICK-RETURN MECHANISM

The di!erential-algebraic equation [2] of the quick-return mechanism are summarized in
the matrix form of equations (8) and (C1), in which the matrices element can be found in
Appendix C. Equations (8) and (C1) could be reordered and partitioned according to the
decomposition of W"[uT vT]T. The elements of the vectors u, v and matrices Uu, Uv, Muu,
Muv, Mvu and Mvv are detailed in Appendix D.

3. THE MOTOR-MECHANISM SYSTEMS

The PM synchronous motor drive system [1] can be simpli"ed to a position and speed
control system block diagram, as shown in Figure 1, in which
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m
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m
are the electric torque, torque constant, torque

current command, number of pole pairs, d-axis mutual inductance, equivalent d-axis
magnetizing current, moment of inertial and damping coe$cient respectively.

The toggle mechanism driven by a PM synchronous servomotor is shown in Figure 2
while the quick-return mechanism is shown in Figure 3. The PM synchronous motor
system drives a geared speed-reducer associated with a gear ratio
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a
and n

b
are the gear ratio and gear numbers, and q
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The torque applied to the ball screw can be obtained as
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Figure 1. Toggle mechanism driven by a PM synchronous servomotor.

Figure 2. Quick-return mechanism driven by a PM synchronous servomotor.

Figure 3. Block diagram of a PM synchronous servomotor drive system.
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The screw is a medium that makes the smaller torque q convert into a larger P
B

force acting
on the slider B. The conversion relationship is

q"
P
B
¸
d

2nn
,

where ¸
d

is the lead of screw. It should be noted that there is no ball screw in the
quick-return mechanism.

4. DESIGN OF THE FSMC

In general, it is hard to obtain the bound of uncertainties and the exact mathematical
model in designing a sliding mode control system. Figure 4 is a block diagram of a PM
synchronous servomotor drive via a fuzzy sliding mode controller for the toggle mechanism
while Figure 5 represents the quick-return mechanism. In the FSMC as shown in Figure 4,
the switching function is s"Ce#eR and e is the error of angle position, and the signals
s and sR are selected as the inputs. In practical implementation, sR can be approximated by

sR (K¹)"
1

¹

[s(K¹)!s((K!1)¹)], (14)

where K is the number of iteration and ¹ is the sampling period [7]. The output of the
FSMC is Du which denotes the change of the controller output. The signals s and sR must be
transferred to their corresponding universes of discourse by multiplying scaling factors GS
and GCS, respectively, namely,

S"s*GS, SQ "sR *GCS. (15)
Figure 4. Block diagram of a fuzzy sliding mode controller for the motor-toggle mechanism.

Figure 5. Block diagram of a fuzzy sliding mode controller for the motor-quick-return mechanism.
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Since the output Du of the FSMC is in its corresponding universe of discourse, the Du
could be transferred, by multiplying a scaling factor G;, namely,

D;"Du*G; (16)

and the actual input is

; (K¹#¹)"; (K¹)#D;(K¹#¹). (17)

It is necessary to quantify the qualitative statements, and the linguistic control rules [8]
are de"ned as follows:

N: Negative, Z: Zero, P: Positive,

NH: Negative Huge, NB: Negative Big, NM: Negative Medium,

NS: Negative Small, ZE: Zero, PS: Positive Small,

PM: Positive Medium, PB: Positive Big, PH: Positive Huge.

Thus, the statement of the control rule is: If the S is NB and SQ is NB, then the input Du to
the system is PH.

In order to compare the FSMC and RLFSMC, the membership function of the two
mechanisms are chosen as the same, and these fuzzy sets corresponding to S, SQ or Du are
de"ned in Figure 6. The resulting fuzzy sliding mode control rules are shown in Table 1.

5. DESIGN OF THE RLFSMC

One important problem involved with the design of the FSMC is the complexity of fuzzy
controllers, which increases as the number of fuzzy if}then rules increases, and the number
of rules increases exponentially as the number of input variables of fuzzy controller
increases. If p is the number of fuzzy sets for S and SQ , then the complete rule bases are equal
to p]p. In order to reduce the number of fuzzy control rules in the FSMC, we adopt the
region-wise linear technique to design the FSMC.
Figure 6. Membership functions of S, SQ and Du for the toggle and quick-return mechanisms.
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From Table 1, we can "nd the fuzzy control rule bases for the FSMC are symmetric, and
the output variable of the controller depends on the negative weight sum of two input
variables [9]. Therefore, we de"ned

S*"S#SQ (18)

as the input to the RLFSMC. The block diagram of control are shown in Figures 7 and 8 for
the toggle and quick-return mechanisms respectively.

Let the input and output fuzzy variables of the RLFSMC have nine linguist labels which
are denoted by PH, PB, PM, PS, ZE, NS, NM, NB, and NH. The relationships between S*,
S and SQ for the toggle and quick-return mechanisms are the same and are listed in Table 2.
The rule base for the RLFSMC is shown in Table 3 and has only nine fuzzy if}then rules in
its rule base. It is easier than that of the FSMC. The change of control signal for the
RLFSMC can be calculated by

D; (K¹#¹)"R¸FSMC[S* (K¹#¹)]*G; (19)

and the actual input is

; (K¹#¹)"; (K¹)#D;(K¹#¹). (20)

The membership function of the RLFSMC variable S*and D; for the toggle and quick-
return mechanisms is shown in Figure 9.
TABLE 1

¹he linguistic rules based on the FSMC for the toggle and quick-return
mechanisms

S0

Du NB NM Z PM PB

NB PH PB PM PS ZE
NM PB PM PS ZE NS

S Z PM PS ZE NS NM
PM PS ZE NS NM NB
PB ZE NS NM NB NH

Figure 7. Block diagram of the RLFSMC for the toggle mechanism.



Figure 8. Block diagram of the RLFSMC for the quick-return mechanism.

TABLE 2

¹he relationships between S*, S and SQ

S0

S* NB NM Z PM PB

NB NH NB NM NS ZE
NM NB NM NS ZE PS

S Z NM NS ZE PS PM
PM NS ZE PS PM PB
PB ZE PS PM PB PH

TABLE 3

¹he rule base for the R¸FSMC

S* PH PB PM PS ZE NS NM NB NH

Du NH NB NM NS ZE PS PM PB PH

Figure 9. Membership functions of S* and D; of the RLFSMC.
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5.1. RLFSMC WITH SCALING FACTOR TUNER

In the fuzzy control system, the scaling factor plays an important role for the system's
stability and performance. A large scaling factor for the output may cause the system
response with smaller rise time but may result in chattering, while a small scaling factor for
the output may cause the rise time of the system to become very long and even make the
system unstable.

To achieve the control objective, a scaling factor tuner (SFT) is designed to tune the
scaling factor G;. The control signal is determined by the following strategies: (1) When the
state of the represented point is near or approaching the sliding surface, a small control
signal is required. Hence, we reduce the value of G; to shrink the change of control signal
so that the control signal can smoothly converge to this suitable value. (2) When the state of
the represented point is far from the sliding surface, we need to enlarge the value of G; so as
to make the state approach toward the sliding surface. Therefore, the control signal can
rapidly converge to the suitable value [3]. The SFT is given by

If s*!0)02, G;"a* DeDi, (21a)

If s(!0)02, G;"b* DeDp, (21b)

where a, b, i, and p are the constants, and e is the error of the actual and desired trajectories.

6. NUMERICAL SIMULATION

In order to compare the FSMC with RLFSMC, the system parameters, membership
function of the FSMC and RLFSMC, the coe$cient of the hyperplane and external
disturbances are chosen to be the same. The switching function s"Ce#eR with C"6 is
taken in the numerical simulations.

The parameters of the motor system [1] are

K
t
"0)6732 Nm/A,

JM
m
"1)32]10~3 Nms2"0)066 Nms rad/V,

BM
m
"5)78]10~3 Nm s/rad"0)289 N m/V.

In order to compare the performance of the two controllers clearly, we de"ne the
following performance indices J

1
[10] and J

2
[11]:

J
1
"

600
+

K/1

Ds(K¹)D, J
2
"

600
+

K/1

Du(K¹)D, (22a,b)

where ¹ equals 0)02.

6.1. THE TOGGLE MECHANISM

The control objective of the toggle mechanism is to regulate the position of the slider
B from the left end to the right one. The initial position of x

B
is 0)1016 m while the desired

position of x
B

is 0)1416 m.
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The parameters [1] of the toggle mechanism are chosen as follows:

m
2
"0)98 kg, m

3
"0)91 kg, m

5
"0)3 kg, m

B
"1)46 kg,

m
C
"1)85 kg, r

1
"0)07 m, r

2
"0)145 m, r

3
"0)19 m,

r
4
"0)1 m, r

5
"0)06 m, f"0)025 m, h"0)08 m,

¸
d
"0)005 m, k"0)1, n

r
"1.

6.1.1. Simulation of the FSMC

Now, the scaling factors of the FSMC are determined by observing the simulation results
to minimize the hitting time to the sliding surface. Thus, we choose the scaling factors of the
FSMC as

If s*!0)02, GS"80, GCS"1)2 and G;"8)12, (23a)

If s(!0)02, GS"2)65, GCS"13)2 and G;"4)4. (23b)

6.1.2. Simulation of the R¸FSMC

The scaling factors and all parameters are selected as

If s*!0)02, GS"80, GCS"1)2, a"10)12 and i"0)9, (24a)

If s(!0)02, GS"2)65, GCS"13)2, b"1)17 and p"0)9. (24b)

The compared numerical results of the FSMC and RLFSMC applied to the motor-toggle
mechanism are given in Figures 10(a)}(d) and 11(a)}(d) with P

E
"0 and 50 N, respectively.

The trajectories of slider B shown in Figure 10(a) and the phase plane of the angle position
shown in Figure 10(b) are almost the same for the FSMC and RLFSMC. However, the
performance indices J

1
and J

2
, shown in Figures 10(c) and 10(d), respectively, indicate that

the RLFSMC is better than the FSMC.

6.2. THE QUICK-RETURN MECHANISM

In the numerical simulations, the parameters [2] of the quick-return mechanism are
chosen as follows:

m
1
"1)082 kg, m

2
"0)82 kg, m

3
"1)1 kg, m

#
"1)84 kg,

D"0)19 m, Q"0)1595 m, ¸"0)28 m, H"0)05 m,

r"0)048 m, k"0)1, n
r
"0)5, g"9)8 m/s2.

It is clear that the mechanism system has one degree of freedom; the input angle h will
correspond to one and only one output position at slider C. Two cases are addressed in the
fuzzy sliding mode control and region-wise linear fuzzy sliding mode control. In all the
simulations, the control objective is to regulate the position of the slider C from the left end



Figure 10. Position regulation of the motor-toggle mechanism via the FSMC and RLFSMC without external
disturbance. (a) Slider position x

B
. (b) Phase plane of the angle position. (c) Performance index J

1
. (d) Performance

index J
2

(---: the FSMC; **: the RLFSMC).

Figure 11. Position regulation of the motor-toggle mechanism via the FSMC and RLFSMC with external
disturbance P

E
"50 N. (a) Slider position x

B
. (b) Phase plane of the angle position. (c) Performance index J

1
. (d)

Performance index J
2

(---: the FSMC; **: the RLFSMC).

482 RONG-FONG FUNG AND CHIN-CHI SHAW
to the right one. The initial position of x
C
is 0)08 m while the desired position of x

C
is 0)18 m.

Substituting the slider positions x
C
into equation (C16), the initial and desired angle h can be

obtained. It should be noted that the friction force P
c
is considered in the quick-return

mechanism.
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6.2.1. Simulation of the FSMC

We chose the scaling factors of the FSMC as

If s*!0)02, GS"80, GCS"1)2 and G;"8)12, (25a)

If s(!0)02, GS"2)65, GCS"13)2 and G;"4)4. (25b)

In the simulation of the FSMC applied to the quick-return mechanism, the system
becomes unstable by using the same membership of the toggle mechanism. It is shown that
the FSMC is not suitable for all the mechanisms with the same membership. The Du is
determined by the shape of membership and the actual input ; is calculated by equation
(17). It is known that the increasing control input as shown in equation (17) may not satisfy
the reaching condition ssR(0 [12] and cause the system to be unstable.

6.2.2. Simulation of the R¸FSMC

The scaling factors and all parameters are selected as

If s*!0)02, GS"80, GCS"1)2, a"0)25 and i"0)4, (26a)

If s(!0)02, GS"2)65, GCS"13)2, b"0)807 and p"0)7. (26b)

The simulation results of the RLFSMC applied to the quick-return mechanism are given
in Figures 12(a)}(d) for the external disturbances P

E
"0 (dash lines) and 5 N (solid lines). It

is seen that the motor mechanism via the RLFSMC is successfully controlled and is robust
with respect to the external disturbances. The performance index J

2
of the system

considering the external disturbance is larger than that without the disturbance.
Figure 12. Position regulation of the motor-quick-return mechanism via the RLFSMC. (a) Slider position x
C
. (b)

Phase plane of the angle position. (c) Performance index J
1
. (d) Performance index J

2
(---: P

E
"0;**: P

E
"5 N).
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7. CONCLUSIONS

This paper successfully proposes the FSMC and RLFSMC to the position control of the
toggle and quick-return mechanisms driven by the PM synchronous motor. The numerical
results of the RLFSMC are similar to those via the FSMC for the toggle mechanism, and
the performance indices of the RLFSMC are better than the FSMC. However, the FSMC
fails in the simulations of the quick-return mechanism. This is due to the fact that the FSMC
with a "xed scaling factor is only suited for some conditions. The RLFSMC can "t more
unknown conditions by using the SFT to tune the scaling factors in the motor-mechanism
systems. Besides, the RLFSMC has only nine fuzzy if}then rules in its rule base. We can
achieve almost the real-time control in the implementations.

From the designs of controllers and the numerical results, several conclusions can be drawn:

1. By using the technique of the FSMC, the designer can easily establish the fuzzy control
rule bases. By using the technique of the RLFSMC, the complexity of the fuzzy
controller and the computational time can be reduced.

2. The RLFSMC is suited for more unknown conditions by using a scaling factor tuner
to tune its factors. Thus, it is better than the FSMC with a "xed scaling factor.

3. Robust performance of the controller-motor-mechanism system can be achieved by
the FSMC and RLFSMC with respect to external disturbances.
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APPENDIX A: KINEMATIC AND DYNAMIC ANALYSIS OF THE TOGGLE MECHANISM

The motor-mechanism coupled system is shown in Figure 2, where links 2, 3 and
5 comprise a toggle mechanism with an o!set f. The h is the height between two horizontal
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guides where sliders B and C move along. A PM synchronous motor, gearbox and ball
screw are used to transfer the power. If the external force exerts on the slider C, links 5, 2 and
3 are then driven and the output force at slider B rises.

From the geometry of Figure 2, two relational equations in the y direction can be found
as

r
2
sin h

2
"f#r

3
sin (2n!h

3
), (A1)

r
5
sin (n!h

5
)#r

4
sin (h

2
#/)"h#f. (A2)

The position vector of the slider B can be expressed in the exponential form:

h
B
"r

2
e*h2#r

3
e*h3. (A3)

Using equation (A1) and expanding equation (A2) in terms of trigonometry, we have
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B
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2
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2
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3
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2
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3
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B
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where x
B

is the real part of h
B
. If h

2
is given, the position of the slider B can be determined

from equation (A4). While x
B

is given, the angle h
2

of link 2 can be determined from
equation (A5). It should be noted that the relationship between x

B
and h

2
is one-to-one.

Fung et al. [6] have exploited the holomonic constraint equation

U(W)"C
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3
#r

2
sin h

2
!f

r
5
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5
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4
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where W"[h
5

h
3

h
2
]T is the vector of generalized co-ordinates. Hamilton's principle and

Lagrange multiplier were used to derive the di!erential-algebraic equation for the toggle
mechanism [6]. The Euler}Lagrange equation of motion, accounting for both applied and
constraint forces, is the same with equation (7) associated with the coe$cients
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in which P
B

is the applied force acting on the slider B, P
E

is the external disturbance force
and
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and Z"2nn/¸d, n is the gear ratio and ¸d is the lead of screw.

APPENDIX B: MATRICES OF THE DECOUPLED EQUATION OF THE TOGGLE
MECHANISM

For the toggle mechanism, we choose

v"[h
2
], u"[h

5
h
3
]T, Uv"C

r
2
cos h

2
r
4
cos (h

2
#/)D and Uu"C

0 r
3
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3
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5
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5
0 D.

The determinant of Uu is!r
3
r
5
cos h

3
cos h

5
and is full stroke; there is no such h

3
and

h
5

that make the determinant of Uu"0. Therefore this partitioning of W"[uT vT]T is
suitable. The element of vector and matrices of equation (10) are
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0 BD, Muv
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E
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],

where the entries (e.g., A, B, C,2) are the same as in Appendix A.

APPENDIX C: KINEMATIC AND DYNAMIC ANALYSIS OF THE QUICK-RETURN
MECHANISM

From the geometry of the quick-return mechanism shown in Figure 3, we obtain the
following relational equations:

tan/"

R sin h
D#R cos h

, S
1
sin b!H"¸ (1!cos/). (C1,C2)

The position vector of the slider C can be expressed in the form

x
C
"S

1
cosb!¸ sin /. (C3)

Substituting equation (C2) into equation (C3) yields

x
C
"MS2

1
![¸ (1!cos /)#H]2N1@2!¸ sin /, (C4)

where
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2¸(x2#(¸#H)2)1@2 D#/@, (C5)
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Rewriting equation (C2), we can obtain
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R
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Substituting equation (C5) into equation (C6), we have
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The holomonic constraint equations of the quick-return mechanism is
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sin/ (D#R cos h)!R sin h cos/

S
1
sinb!¸ (1!cos/)!H D"0, (C8)

where W"[/ b h]T is the vector of generalized co-ordinates.
The Euler}Lagrange equation of motion [4], accounting for both applied and constraint

forces, is the same as equation (8) associated with the coe$cients
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in which P
E

is the external disturbance force, and P
c
is the friction force:
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and xR
C

is velocity of the slider C; k, g are the friction coe$cient and gravity acceleration,
respectively,
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APPENDIX D: MATRICES OF THE DECOUPLED EQUATION OF THE QUICK-RETURN
MECHANISM

We chose v"[h], then u"[/, b], and

Uv"C
!R sin/ sin h!R cos h cos/

0 D,

Uu"C
cos /(D#R cos h)#R sin h sin/ 0

!¸ sin/ S
1
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The determinant of Uu is S
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1
cosb sin h sin/ and is non-

singular. Since there are no / and b in the analyzed mechanism that makes the determinant
of Uu"0, this partitioning of W"[uT, vT]T is suitable. The submatrices of equation (10) are
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where the entries (e.g., C1, D1, CC,2) are the same as in Appendix C.
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