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A dynamic absorber, which can move in the transverse or longitudinal direction, is
added to an externally excited pendulum. The quenching e$ciency of the two di!erent
systems is studied and compared. The absorber can be highly e$cient for slightly damped
systems if it is correctly tuned. This is especially true when only small absorber mass can be
used. ( 2000 Academic Press
1. INTRODUCTION

The dynamic absorber is an important tool for vibration quenching. In most cases where
vibration needs to be reduced the body or structure (basic subsystem) performs a rectilinear
motion. The motion of the added dynamic absorber (absorber subsystem) can be rectilinear
when it consists of a mass and a spring, but it can also be rotational when dealing with
a swinging pendulum. In the "rst case (rectilinear motion for both subsystems) the theory is
well known (see, e.g., reference [1]), while the second case (rectilinear motion of the body
and rotational motion of the pendulum) is less well understood.

This second problem has been studied extensively by one of the authors, and the results
obtained can be summarized as follows. There are two principal possibilities for the
absorber: the equilibrium axis of the pendulum is either perpendicular to or coincident with
the vibration direction of the basic subsystem. In the "rst case the theory also includes the
case of a rotating pendulum [2], while in the second, the system belongs to the class of
autoparametric systems [3}6].

The present paper deals with two new systems, "rstly where the basic subsystem performs
a swinging motion and secondly where the absorber executes rectilinear motion relative to
it. Such systems can be found in di!erent "elds of applied engineering. In Naval
Architecture, for example, the "rst system is used to model the roll motion of a ship
stabilized by means of passive tanks [7], while the second system is used to model the roll
motion of a #oating o!shore structure equipped with passive dampers [8].

2. DIFFERENTIAL EQUATIONS OF MOTION, BASIC ANALYSIS

Two di!erent mechanical systems consisting of a basic subsystem, a pendulum of mass
M and length l, and an absorber of mass m elastically suspended to the pendulum are
22-460X/00/290611#14 $35.00/0 ( 2000 Academic Press
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considered. The systems di!er from each other only in the elastic mounting of the absorber
with respect to the basic subsystem. For System I the absorber mass can move transversally
in the direction perpendicular to the pendulum axis (see Figure 1), while for System II the
absorber mass can move longitudinally along the pendulum axis (see Figure 2).

Here, u is the angular de#ection of the pendulum and u is the displacement of the absorber
mass from its equilibrium position. At rest, mass m is usually not at the centre of gravity C of the
pendulum, but can be shifted by a length l

0
, which can either be positive (m below C) or negative

(m above C). The sti!ness of the elastic mounting of the absorber is denoted as k in both cases.

2.1. SYSTEM I

By considering the system in Figure 1, the kinetic and potential energies are given in the
following terms:

¹"1
2
Ml2u5 2#1

2
mM[(l#l

0
)u5 #u5 ]2#u2u5 2N,

;"Mgl(1!cosu)#mg[(l#l
0
)(1!cosu)#u sinu]#1

2
ku2, (1)
Figure 2. Schematic representation of System II. The absorber moves longitudinally along the pendulum axis.

Figure 1. Schematic representation of System I. The absorber moves transversally to the pendulum axis.



DYNAMIC ABSORBERS FOR A PENDULUM 613
where g is the acceleration due to gravity. Using Lagrangian equations and taking into
account the e!ects of linear viscous damping, the following di!erential equations of motion
are obtained:

[Ml2#m(l#l
0
)2]uK#b

0
u5 #[Ml#m(l#l

0
)]g sinu

#m[u2uK#(l#l
0
)uK#2uu5 u5 #gu cosu]"Pl cosut,

muK#bu5 #ku#m[(l#l
0
)uK!uu5 2#g sinu]"0. (2)

Here, it is assumed that an external excitation moment is acting on the basic subsystem.

Denoting u
0

as "Jg/l
c

the natural frequency of the basic subsystem, and using the
time transformation q"u

0
t, equations (2) can be transformed into the dimensionless form:

uA#i
0
u@#sinu

#k6 [w2uA#(1#a)wA#2ww@u@#q2w cosu]"e cos(gq#t),
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where l
c
"[Ml2#m(l#l

0
)2]/[Ml#m(l#l

0
)] is the reduced length of the pendulum and
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0
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0
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0
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0
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0
m,e"P/Mlu2

0
[

1#k(1#a)2]. In the "rst equation (3) the phase shift t between excitation and the steady
state response is introduced in order to simplify the further analysis. The equations of
motion are mutually coupled by linear, third and higher order terms.

Approximating the steady state response by the following expressions:

u"R cos gq, w"A cos gq#B sin gq, (4)

after substituting equation (4) in equation (3) and using the harmonic balance method, the
following algebraic equations are obtained:

(1!g2)R#k6 fA"e cost, !i
0
gR#k6 fB"!e sint,

(Q2!g2)A#igB"!fR, !igA#(Q2!g2)B"0, (5)

where

f"q2!(1#a)g2, (6)

and third and higher order terms have been neglected.
By solving the previous system, equation (5), the oscillation amplitude of the absorber is

r"JA2#B2"
D f D

J(Q2!g2)2#i2g2
R , (7)
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and for the basic subsystem

R"

e

J(1!g2#k6 fF
1
)2#(i

0
g!k6 fF

2
)2

, (8)

where

F
1
"!f

Q2!g2
(Q2!g2) 2#i2g2

, F
2
"!f

ig
(Q2!g2)2#i2g2

. (9)

In particular, for Q"g"1,

(R)
Q/g/1

"

e
Dk

0
#k6 f/iD

, (10)

from which follows

lim
i?0

(R)
Q/g/1

"0. (11)

This con"rms the rule of optimal tuning at Q"g and minimal damping of the absorber,
as in the case where both the motions of the basic body and the absorber mass are
rectilinear [1].

2.2. SYSTEM II

The kinetic and potential energies for the system in Figure 2 can be expressed as follows:

¹"1
2
Ml2u5 2#1

2
m[u5 2#(l#l

0
#u)2u5 2],

;"Mgl(1!cos u)#mg(l#l
0
#u)(1!cosu)#1

2
ku2. (12)

By means of Lagrangian procedure and considering both the e!ects of linear viscous
damping and external excitation on the basic subsystem, the following equations are
obtained:

[Ml2#m(l#l
0
)2]uK#b

0
u5 #[Ml#m(l#l

0
)]g sinu

#mM[2(l#l
0
)#u]uuK#2(l#l

0
#u)u5 u5 #gu sin uN"Pl cos ut,

muK#bu5 #ku!m(l#l
0
#u)u5 2#mg(1!cos u)"0. (13)

Using again the time transformation q"u
0
t and the previous notations for the system

parameters, the following equations of motion in dimensionless form result:

uA#i
0
u@#sin u#k6 M[2(1#a)#w]wuA
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#2(1#a#w)w@u@#q2w sinuN"e cos (gq#t),

wA#iw@#Q2w!(1#a#w)u@2#q2(1!cosu)"0. (14)

The equations of motion (14) di!er from equations (3) due to the fact that the coupling terms
are of second and higher order, i.e., the linear coupling terms are missing. There is a certain
similarity with the autoparametric systems presented in reference [5], although equations
(14) have no semi-trivial solution. In any case, the internal reasonance 1 : 2 can be expected
and therefore considered as important for the behaviour of the system.

When the system is tuned into or close to the internal resonance, the steady state solution
can be approximated in the form

u"R cos gq, w"w
0
#A cos 2gq#B sin 2gq. (15)

Using the harmonic balance method, and neglecting the terms of the third and higher order,
the following algebraic equations are obtained after substituting equation (15) into equation
(14):
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where

h
~
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`
"q2#2(1#a)g2. (17)

By solving the previous system (16), it is possible to obtain for the absorber
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and for the basic subsystem
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Once again, it can be shown that the optimal tuning condition occurs at Q"2g"2.
Moreover,

lim
i?0

(R)
Q/2g/2

"0, (21)

from which follows the need for little absorber damping.
A system similar to the one here considered, but with elastic mounting of the pendulum,

has been analyzed in references [9,10].

3. ENGINEERING APPLICATIONS

Two practical applications from the "eld of Naval Architecture will be here considered:
the case of a seagoing ship equipped with antirolling tanks as an example of System I, and
a #oating o!shore structure with passive dampers as an example of System II.

3.1. SYSTEM I

To improve successful exploitation and mission e!ectiveness of a ship in rough sea it is
necessary to increase the seakeeping performance of the vessel by reducing motions and
related undesirable e!ects. Due to relatively small wave-induced excitations, the roll motion
is the most easily controlled from a point of view of stabilization. There are many types of
stabilizers and other tools to control rolling [11], e.g., bilge keels, gyroscopic stabilizers,
movement of weight, rudder action, jet #aps, passive and active roll tanks, stabilizing "ns.
Some of the above devices are not used at present mainly because of economic
considerations. Others, although not the most e!ective, are technically well developed and
suitable for practical use.

Passive antirolling tanks are usually left alone on board except for tuning operations,
which are needed for a change in the ship loading conditions. The sophisticated control unit
required in an active system is not needed in a passive system, and this makes the latter
more attractive than its active counterpart. It is also relatively simple to design and build
a resonant antirolling tank system. Three types of antirolling tanks have been used in
practical applications [12], namely, the free surface tank, the U-tube tank and the external
tank. Apart from their technical di!erences, it has been shown [7] that any ship}tank
system used as a passive motion stabilizer is equivalent to a compound pendulum, having
the two pendula of the same length in order to make their periods close to each other.

A vessel "tted with antirolling U-tanks, having the following main characteristics [13] is
now considered: length between perpendiculars ¸"49)10 m, beam B"9)00 m, draft
¹"3)68 m, mass displacement M"936 t, centre of gravity and metacentre above keel at
KG"3)69 m and KM"4)32 m respectively. The hydrodynamic computations give
I"12655 t m2 for the moment of inertia of the vessel about its central longitudinal axis
(taking into account the added moment of inertia) and ¹

0
"8)63 s for the period of rolling

in still water. In the model this corresponds to a physical pendulum with same mass, same
moment of inertia about the oscillation axis and reduced length equal to the metacentric
height (GM"KM!KG), i.e., l"0)73 m.

To tune the U-tanks with the natural roll oscillations (u
0
"2p/¹

0
"0)728 rad/s), the

location, the dimensions and the shape of the reservoirs have to be appropriately chosen.
This is a typical ship design problem [11,12], which cannot be considered explicitly.
However, according to engineering experience, it is convenient to install the tanks in the
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central part of the vessel slightly forward of the middle frame by "lling them with fresh/salt
water. As a result, the solution obtained [13] indicates, for the liquid ballast in reservoirs,
the mass displacement m"28)8 t and the centre of gravity above keel at KG

B
"1)56 m,

which corresponds to l
0
"KG!KG

B
"2)13 m.

In the worst navigation condition, which corresponds to a regular beam sea with
synchronous waves (wavelength j"116 m), the exciting moment intensity is M

W
"

163 kNm for unitary wave height H
W
"1)0 m. Moreover, for this type of ship, the roll

damping usually varies between 5 and 10 per cent of the critical damping, while the tank
damping can be properly adjusted [14] over a wide range of values by means of #ow
regulation in the connecting water/air canal.

In the analogy with System I, the previous ship}tank system corresponds to k"m/M"

0)031, a"l
0
/l"2)9 and e"M

W
/Iu2

0
"0)024.

3.2. SYSTEM II

Tension leg platforms (TLP) can be considered as one of the most promising o!shore
#oating systems intended for oil exploitation in deep-water scenarios. The TLP displays
large amplitude motions mainly due to wave loads which increase considerably by
increasing the severity of sea conditions. In particular, large heave amplitudes appear as one
of the most deleterious e!ects to the structural safety and integrity of the vessel, mainly for
the critical components: tethers and raisers together with their links and connections. In
more recent designs [8], the passive/active control of heave motion is made feasible by
means of reaction masses counteracting the movements of the #oating hull. Besides
minimizing stress levels and related fatigue problems, the TLP heave motion control allows
both the production performance and service life of the whole system to be improved.
Examples of engineering conceptions for active, semi-active and passive control of #oating
structures may be found in literature [15,16].

The active/passive control of TLP heave motion consists of several tuned mass dampers
installed within the vertical columns of the hull. The dampers are able to move in the
vertical direction and their total mass must be feasible to install, with values between 0)2
and 1 per cent of the total mass [8]. In particular, suitable tuning of the dampers could
allow their use also for the control of roll and/or pitch motion during installation or
de-commissioning operations, when the platform is freely #oating without any in#uence
from the mooring lines.

A TLP design with four circular columns of 21)0 m diameter and the following main
characteristics is considered: breadth in longitudinal and transverse directions ¸]B"

86)0 m]86)0 m, draft ¹"28)0 m, mass displacement M"0)348]105 t, centre of gravity
above baseline at KG"34)8 m. The hydrostatic and hydrodynamic computations give the
metacenter above baseline at KM"53)6 m and the moment of inertia about central
longitudinal axis (added moment of inertia included) I"0)434]108 t m2. For the natural
period of rolling without tethers one obtains ¹

0
"16)4 s (natural frequency u

0
"

0)383 rad/s). The corresponding physical pendulum has the same mass, same moment of
inertia and reduced length l"GM"18)8 m.

A suitable mass for passive motion control equals m"348 t. Since the absorbers are
assumed to be distributed among the four columns with their centre of gravity above
baseline at KG

B
"3)00 m, this corresponds to l

0
"KG!KG

B
"31)8 m.

To obtain the excitation term, a synchronous regular wave (wavelength j"420 m)
broadside to the platform can be considered. For unitary wave height H

W
"1)0 m this

corresponds to an exciting moment intensity of M
W
"0)432]105 kNm.
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In the analogy with System II, the previous TLP}damper system corresponds to
k"m/M"0)010, a"l

0
/l"1)69 and e"M

W
/Iu2

0
"0)0068. In this case, the roll damping

usually varies between 10 and 30 per cent of the critical damping, while the damping of the
absorbers can be changed substantially by proper regulation.

4. RESULTS

Due to the wide variation of system parameters in di!erent "elds of engineering
applications, two hypothetical systems will be considered here. However, their parameters
will be chosen to be close to those in the previous examples.

In all the cases presented the values e"0)02,k"0)01, i
0
"0)05 and i"0)02 are the

same for both systems. The results of the analytical and numerical investigations are
presented in "gures showing the response amplitudes R(g) and r(g) for di!erent values of
Q and a or i marked directly in the "gures. To investigate the sensitivity to parameter
changes, a fairly large interval of values has been considered. The actual restrictions depend
on the particular problem under consideration.

4.1. SYSTEM I

The "rst objective has been to analyze the in#uence of the absorber position with respect
to the pendulum, expressed by the parameter a"l

0
/l. Figure 3 shows the dependence of the

oscillation amplitudes R and r, given by equations (8) and (7), on excitation frequency g for
Q"1 (the absorber is exactly tuned to the natural frequency of the basic subsystem). It can
be seen that for a"0, i.e., when the absorber is located at the centre of gravity of the
pendulum subsystem, the absorber practically does not in#uence its vibration amplitude.
For aO0 both the R(g) and r(g) curves have a double-peak form, and the distance between
peaks grows by increasing the absolute value of a. The greater the distance of the absorber
equilibrium position from the centre of gravity of the basic subsystem the better is the
quenching e!ect. It can be shown that for higher values of k the distance between peaks is
increasing, while the oscillation amplitudes of the basic system near g"1 decrease. Similar
results are also obtained when a(0, i.e., for the equilibrium position of the absorber above
the centre of gravity of the pendulum.
Figure 3. Oscillation amplitudes R and r versus excitation frequency g for System I in case Q"1, e"0)02,
k"0)01, i

0
"0)05, i"0)02, and a"0, 1, 2.
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The e!ect of the absorber damping is shown in Figure 4 for a"2 and three values of i,
i.e., i"0)02, 0)10 and 0)20. It can be seen that when g is very close to 1, the smaller the value
of i, the better the quenching e$ciency. When the interval of excitation frequencies is
greater, only a certain level of damping has a favourable e!ect on the basic subsystem.
Another in#uence is shown in Figures 5 and 6 and where the oscillation amplitudes R and
r are shown to be dependent on g for two values of Q not exactly tuned in resonance, i.e.,
Q"0)9 and 1)1. At g"Q the amplitude R is substantially reduced but the quenching e!ect
at resonance is not signi"cant.

4.2. SYSTEM II

The results are presented by showing the dependence of the oscillation amplitudes R, r
and the constant displacement w

0
on excitation frequency g, as obtained from equations

(19) and (18). The in#uence of the absorber position, determined by the parameter a, is
considered in Figure 7 for Q"2 (the absorber is exactly tuned into the internal resonance).
Figure 5. Oscillation amplitudes R and r versus excitation frequency g for System I in case Q"0)9, e"0)02,
k"0)01, i

0
"0)05, i"0)02, and a"0, 1, 2.

Figure 4. Oscillation amplitudes R and r versus excitation frequency g for System I in case Q"1, e"0)02,
k"0)01, i

0
"0)05, a"2, and i"0)02, 0)10, 0)20.



Figure 6. Oscillation amplitudes R and r versus excitation frequency g for System I in case Q"1)1, e"0)02,
k"0)01, i

0
"0)05, i"0)02, and a"0, 1, 2.

Figure 7. Oscillation amplitudes R, r and constant displacement w
0

versus excitation frequency g for System II
in case Q"2, e"0)02, k"0)01, i

0
"0)05, i"0)02, and a"0, 1, 2.
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It can be seen that the e!ect of a di!ers from that of the previous system because the
absorber yields only slight quenching ability for the basic subsystem vibration. Moreover, it
follows that the e!ect of non-linear coupling terms asymmetry is negligible because w

0
is

very small. The double-peak form can be seen for R(g) curves only, while r(g) curves present
a single maximum. The quenching diminishes for a(0 and becomes zero for a"!1, i.e.,
for the absorber located in the suspension point.

The important e!ect of the absorber damping is shown in Figure 8 for a"2 and three
values of i, i.e., i"0)02, 0)10 and 0)20. The e!ect of the absorber detuning can be seen in
Figures 9 and 10, for Q"1)95 and 2)05 respectively.

4.3. VALIDATION

The results of analytical analysis have been supplemented by direct numerical solution of
di!erential equations (3) and (13), without neglecting the third and higher order terms.



Figure 8. Oscillation amplitudes R, r and constant displacement w
0

versus excitation frequency g for System II
in case Q"2, e"0)02, k"0)01, i

0
"0)05, a"2, and i"0)02, 0)10, 0)20.

Figure 9. Oscillation amplitudes R, r and constant displacement w
0

versus excitation frequency g for System II
in case Q"1)95, e"0)02, k"0)01, i

0
"0)05, i"0)02, and a"0, 1, 2.

Figure 10. Oscillation amplitudes R, r and constant displacement w
0

versus excitation frequency g for System II
in case Q"2)05, e"0)02, k"0)01, i

0
"0)05, i"0)02, and a"0, 1, 2.
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Although in systems characterized by non-linear coupling, a non-periodic or even chaotic
response of the harmonic excitation can occur (for autoparametric systems see, e.g.,
reference [5]), for the time being only periodic or quasi-periodic vibrations have been found
by numerical solution of the di!erential equations of motion.

Thus, after the transient had died out, the extreme values (maxima and minima) of the
oscillation amplitudes of u and w, denoted as [u] and [w], were recorded and stored for
further consideration. Figures 11 and 12 show the numerically obtained extrema (dots)
during steady state vibration together with the analytically predicted amplitudes (solid
lines) obtained from equations (4) and (14) respectively. The e!ect of detuning from the
internal resonance has been explicitly considered for the case a"1 and the values of
parameters Q"0)9, 1)1 (System I) and Q"1)95, 2)05 (System II).

For System I the oscillations of both subsystems are symmetric with respect to the initial
equilibrium position, while for System II the oscillations of the pendulum are symmetric
and those of the dynamic absorber asymmetric. The agreement between analytical
Figure 12. Extreme values [u] and [w] of oscillation amplitudes versus excitation frequency g for System II in
case e"0)02, k"0)01, i

0
"0)05, i"0)02, a"1, and Q"1)95, 2)05. Comparison between analytical

predictions (solid lines) and numerical simulation (dots).

Figure 11. Extreme values [u] and [w] of oscillation amplitudes versus excitation frequency g for System I in
case e"0)02, k"0)01, i

0
"0)05, i"0)02, a"1, and Q"0)9, 1)1. Comparison between analytical predictions

(solid lines) and numerical simulation (dots).
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predictions and numerical simulation is fairly good for both systems, even if the theoretical
maxima are slightly underpredicted and shifted towards higher frequencies. Such a result is
mainly related to the fact that, for both systems, analytical solutions neglect terms of order
three and higher. The soft character of the pendulum, which becomes signi"cant for
oscillation amplitudes of 15}203 (0)25}0)30 rad), is certainly the factor most responsible for
limitations of the theory.

5. CONCLUSIONS

In both systems considered, the e!ect of changing the position of the absorber with
respect to the basic system has been examined. For System I the absorber has practically no
e!ect on the behaviour when it is situated at the centre of gravity of the basic subsystem, but
its e$ciency is increased when displaced far from the centre of gravity. For System II the
absorber has a zero or slight quenching e!ect when it is situated in the suspension point or
close to it respectively.

Both systems di!er as far as the optimal tuning is concerned. In particular, for System I it
occurs in the main resonance, while for System II the absorber natural frequency should be
double the resonance frequency of the basic subsystem. Vibration quenching ability is
higher for System I; hence System II can be used only for a slightly damped system when the
absorber can be correctly tuned. Moreover, it was found that the quenching e$ciency
increases for more intensive excitations and for higher mass ratios.

For the application of the absorbers considered the character of excitation is also
important. When the excitation is harmonic with constant frequency and when the absorber
can be correctly tuned then a small damping of the absorber is convenient for both systems.
When the excitation is periodic with changing frequency or stochastic it is necessary to tune
the absorber in resonance, i.e., the natural frequency of the absorber should be equal
(System I) or double (System II) the natural frequency of the basic subsystem. In this case
a certain level of absorber damping is convenient for System I.

ACKNOWLEDGMENT

This work has been partly supported by contract no. 101/98/0972 of the Grant Agency of
the Czech Republic and by the Italian Ministry of University and Scienti"c and
Technological Research (MURST).

REFERENCES

1. J. P. DEN HARTOG 1947 Mechanical Vibrations. New York: McGraw-Hill.
2. A. TONDL 1997 Proceedings of the Conference on Engineering Mechanics '97, Svratka, Vol. 2,

211}214. Tuned pendulum type vibration absorber (in Czech).
3. M. CARTMELL 1990 Introduction to ¸inear, Parametric and Nonlinear Vibrations. London:

Chapman & Hall.
4. A. TONDL, V. KOTEK and C. KRATOCHVIDL 1996 Proceedings of the EUROMECH* 2nd European

Nonlinear Oscillation Conference, Prague, Vol. 1, 467}470. Analysis of an autoparametric system.
5. A. TONDL 1997 ZAMM 77, 407}418. To the analysis of autoparametric systems.
6. A. TONDL, V. KOTEK and C. KRATOCHVIDL 1997 Proceedings Kolokvium Dynamika strojus , Institute

of Termomechanics, Czech Academy of Sciences, Prague, 155}160. Autoparametric pendulum
absorber at rotation (in Czech).

7. J. VASTA, J. A. GIDDINGS, A. TAPLIN and J. J. STILWELL 1961 Transactions SNAME 69, 411}460.
Roll stabilization by means of passive tanks.



624 A. TONDL AND R. NABERGOJ
8. R. M. ALVES and R. C. BATISTA 1999 Proceedings of the 9th International Owshore and Polar
Engineering Conference, Brest, Vol. 1, 332}338. Active/Passive control of heave motion of ¹¸P
type o!shore platform.

9. A. TONDL 1998 Acta Technica C[ SAV 43, 205}215. Dynamic absorber for an externally excited
system having the pendulum form.

10. A. TONDL 1998 Acta Technica C[ SAV 43, 301}309. Vibration quenching of an externally excited
system by means of dynamic absorber.

11. R. BHATTACHARRYA 1976 Dynamics of Marine Vehicles. New York: John Wiley & Sons.
12. G. J. GOODRICH 1969 Transactions RINA 111, 81}95. Development and design of passive roll

stabilisers.
13. S. N. BLAGOVESHCHENSKY 1962 Theory of Ship Motions. New York: Dover Publications.
14. B. A. LEVISON 1976 Transactions RINA 118, 31}45. Optimum design of passive roll stabiliser

tanks.
15. D. HROVAT, P. BARAK and M. RABINS 1983 Journal of Engineering Mechanics 109, 691}705.

Active tuned mass dampers for structural control.
16. S. SIRLIN, C. PALIOV, R. W. LONGMAN, M. SHINOZUKA and E. SAMARAS 1986 Journal of

Engineering Mechanics 112, 947}965. Active control of #oating structures.


	1. INTRODUCTION
	2. DIFFERENTIAL EQUATIONS OF MOTION, BASIC ANALYSIS
	Figure 1
	Figure 2

	3. ENGINEERING APPLICATIONS
	4. RESULTS
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

	5. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

