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Several methods have been developed recently to identify moving forces on a beam. The
results from all of them exhibit #uctuations at the beginning and end of the time history and
they are natural outcomes of the ill-conditioned inverse problem. Accuracy of the identi"ed
forces also depends on the parameters of the beam}force system which have not been
systematically studied. This paper employs Tikhonov regularization technique to provide
bounds to the ill-conditioned results in the identi"cation problem. The calculation of the
optimal regularization parameter is discussed. The improved algorithm is then used to study
the e!ect of di!erent parameters on the identi"cation results through single-force and
multi-forces identi"cation. Both the Timoshenko beam theory and the Euler}Bernoulli
beam theory are included in the study for a comparison. Laboratory results on two moving
forces identi"cation are also presented for illustration. Timoshenko beam model is
found better than the Euler}Bernoulli beam model in the identi"cation, and the limits of
applications of the moving force identi"cation method are also reported.

( 2000 Academic Press
1. INTRODUCTION

The vehicle/bridge interaction forces are important to bridge design as they contribute to
the live load component in the bridge design code. Direct measurement of the forces using
instrumented vehicles are expensive and are subjected to bias [1, 2] while results
from computation simulations are subjected to modelling errors [3}5]. Inclusion of the
in#uencing parameters in the model for simulation would make it computationally
expensive. Systems have been developed for weigh-in-motion of the vehicles [6, 7] but they
all measure only the static axle loads. A technique to determine the vehicular loads from the
vibration responses of the bridge deck is required such that the di!erent parameters of the
bridge and vehicle system are accounted for in the measured responses, and the cost
involved would be much less than that by direct measurement.

There are generally four approaches to determine the forces from the structural dynamic
responses. The time domain approach [8] models the structure and forces with a set of
second order di!erential equations. The forces are represented as step functions in a small
time interval. These equations of motion are then expressed in the model co-ordinates, and
these uncoupled equations are solved by deconvolution in the time domain. The forces are
then identi"ed using the modal superposition principle. Zhu and Law [9] also identify
a group of moving forces in the time domain. The bridge deck is modelled as a multi-span
continuous Timoshenko beam with non-uniform cross-section, and the forces are modelled
022-460X/00/290661#19 $35.00/0 ( 2000 Academic Press
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662 S. S. LAW AND X. Q. ZHU
as a group of moving loads. They are identi"ed using the modal superposition and
optimization technique. The frequency and time domains approach [10] performs Fourier
transformation on the equations of motion, which are expressed in modal co-ordinates. The
Fourier transforms of the responses and the forces are related in the frequency domain, and
the time histories of the forces are found directly by the least-squares method. The modal
approach [11] identi"es the forces completely in the modal co-ordinates. Measured
displacements are converted into modal displacements with an assumed shape function.
The modal velocities and accelerations are then obtained by numerical means. The forces
are then identi"ed by solving the uncoupled equations of motion in modal co-ordinates.
Law and Fang [12] also reported a state estimation approach in which the state-space
formulation of the dynamic system is solved using dynamic programming with
minimization of the errors between the measured and the reconstructed responses from the
identi"ed moving forces.

All the above works are based on an Euler}Bernoulli beam model which is not
representative of most bridge decks with deep cross-sections. This paper studies the moving
force identi"cation with a Timishenko beam model and compares the result with that from
an Euler}Bernoulli beam model. The solution for the forces is obtained using the Tikhonov
[13] regularization method. Two methods to determine the optimal regularization
parameter of the solution are discussed. Some factors which may pose limits to the
application of the method are studied, which are namely, the number of sensors, vibration
modal truncation, sampling frequency, spacing of forces, excitation frequency, and the
measurement noise level. Computation simulations and laboratory tests results are
presented to illustrate the comparison, and the limits of application of the method
are reported.

2. MULTI-SPAN BEAM UNDER MOVING LOADS

Lee [14] and Zheng et al. [15] have studied the vibration behaviour of a multi-span
continuous bridge modelled as a multi-span non-uniform continuous Euler}Bernoulli beam
under a set of moving loads using di!erent assumed mode shapes. Henchi and Fafard [16]
used the same Euler}Bernoulli beam and "nite element transfer matrix approach in a
similar study. Wang and Lin [17] have studied the vibration of a T-frame bridge deck using
Timoshenko beam model. In the present work, the vibration behaviour of a multi-span
non-uniform Timoshenko beam subjected to a set of moving loads is analyzed basing on
Hamilton principle with the intermediate point constraints represented by very sti! linear
springs. The loads can take up any initial position on the beam.

Figure 1 shows a continuous beam with (Q!1) intermediate point supports under N
f

moving loads. The beam is constrained at these supports. The loads P
1

(l"1, 2,2, N
f
) are

moving as a group at a prescribed velocity l (t) along the axial direction of the beam from
left to right. The load locations at time t are described as xL

l
(t) ( l"1, 2,2,N

f
).

Expressing the transverse displacement y (x, t) and angular rotation t (x, t) of a beam
cross-section in modal co-ordinates

y(x, t)"
n
+
i/I

q
i
(t)>

i
(x),

t (x, t)"
n
+
i/I

q
i
(t)/

i
(x) Mi"1, 2,2, nN ,

(1)

where M>
i
(x), /

i
(x), i"1, 2,2, nN are the assumed vibration modes that satisfy the

boundary conditions and Mq
i
(t) , i"1, 2,2, nN are the generalized co-ordinates. The
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Figure 1. A continuous beam with intermediate point supports under a system of moving forces.

STUDY ON BEAM MODELS 663
equations of motion can be written as shown in equation (2) based on the Hamilton
principle [9]. This equation of motion should be representative of most highway bridges
where the e!ect of deep cross-section has been accounted for:

MqK (t)#CqR (t)#Kq(t)"F (t) , (2)

where

M"Mm
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ij
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, i"1, 2,2, n; j"1, 2,2, nN , (3)
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where G is the shear modulus of the beam material and A(x) is the cross-sectional area, o is
the density of material of the beam, E is the Young's modulus, I(x) is the moment of inertia
of the beam cross-section, c(x) is the radius of gyration of the beam cross-section, k is
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664 S. S. LAW AND X. Q. ZHU
the sti!ness of the point constraints, i is the shear coe$cient, x
i
(i"0, 1, 2,2,Q) are

coordinates of the intermediate point supports and end supports, qR
i
(t) and /@

i
(x) denote the

"rst derivatives of q
i
(t) and /

i
(x), m

ij
is the generalized mass, f

i
(t) is the generalized force,

and k
ij

is the generalized sti!ness.
In Euler}Bernoulli beam theory, equation (4) can be written in a similar way as [14, 15]
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Since the assumed vibration modes have to satisfy the boundary conditions, the normal
modes of a simply supported uniform beam proposed by Huang [18] are used in the present
work

3. THEORY OF MOVING FORCE IDENTIFICATION

The transverse displacement y(x
s
, t) at measuring location x

s
and at time t is expressed in

modal co-ordinates,

y(x
s
, t)"
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+
i/1
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)q

i
(t) (s"1, 2,2,N

d
) , (6)

where N
d
is the number of measuring points, and >

i
(x

s
) is the assumed mode at location x

s
.

Writing equation (6) in matrix form,
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, (7)

where MyN
Nd

]1
is the lateral displacements at N

d
measuring points. The least-squares

solution of equation (6) is
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. (8)

The velocity and acceleration of the beam responses can then be obtained by numerical
means from equations (7) and (8). If the central di!erence method is used to calculate the
velocity and acceleration [19], it will induce a very large error. The following orthogonal
polynomial [20] is adopted to model the displacement so as to avoid this error:
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and y
k
(t) is the displacement at the kth measuring point. The velocity and acceleration are

then approximated by the "rst and second derivatives of the orthogonal polynomial in
equation (10) to have
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where [A]
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N]1
, [¹Q ]

N]1
, [¹G ]

N]1
are the coe$cient matrix of the polynomial, the

orthogonal polynomial variable matrix, the "rst and the second derivatives of the
orthogonal polynomial variable matrix respectively. N is the order of the orthogonal
polynomial The coe$cient matrix of [A] can then be obtained by the least-squares method
from equation (11) as
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We substitute matrix [A] back into equation (11) to get MyR N and MyK N. Again substituting MyN,
MyR N and MyK N into equation (8) and its derivatives, we get MqN, MqR N and MqK N, and equation (2)
becomes
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The generalized force vector MFN can also be obtained from the last equation in equation (4)
as
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666 S. S. LAW AND X. Q. ZHU
The moving forces can then be calculated by least-squares method from equation (14) as

MPN
Nf

]1
"([B]T

n]Nf
[B]

n]Nf
)~1[B]T

n]Nf
)MFN

n]1
. (16)

But since the identi"ed force MPN is not a continuous function of the generalized forces
MFN, solution to equation (15) is ill-conditioned with large #uctuations at the beginning and
end of the time history [21]. A regularization method developed by Tikhonov [13] is used
to provide bounds to the solution. The Tikhonov regularization method is based on the
radical idea that minimizes the deviations of [B]MPN from the unknown vector MFN in
equation (14) for a stable solution by means of an auxiliary non-negative parameter. This is
equivalent to imposing certain constraints in the form of added penalty terms with
adjustable weighting (regularization) parameters to the solution. One form of the Tikhonov
function is written as follows:

J(MPN, j)"E[B]MPN!MFNE2#jEMPNE2 , (17)

where j is the non-negative regularization parameter. The solution of equation (16) can be
obtained by minimizing the Tikhonov function in the damped least-squares method as [22]
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Nf

]1
"([B]T

n]Nf
[B]

n]Nf
#jI )~1[B]T

n]Nf
MFN

n]1
, (18)

where I is the identity matrix, and a singular-value decomposition is used in the pseudo-
inverse calculation.

4. REGULARIZATION PARAMETER j

The main di$culty of applying the Tikhnov regularization lies in the method to "nd the
optimal regularization parameter j. Two methods to "nd the optimal regularization
parameter are presented in this paper. The use of either method depends on the availability
of the true force. If the true forces are known, the true force MPN(True) is compared with the
identi"ed values MPN(identify), and an error curve, the S-curve [23] can be plotted for di!erent
values of j as shown in Figure 2. The error of identi"cation in the force time history is

error"
EMPN(identify)!MPN(True)E

EMPN (True)E
]100% (19)

and E ' E is the norm of a matrix. It is noted from Figure 2 that the optimal value of
j corresponds to the smallest error.

In the more practical case when MPN(True) is unknown as in experiment, the L-curve
proposed by Hansen [24] is used to determine the optimal j value. The L-curve is a plot of
the seminorm of the solution against the residual norm. The norm of residuals E of the
forces is calculated as

E"E[B]MPN(identify)!MFNE (20)

and for the "rst order regularization proposed by Busby and Trujillo [25], the seminorm of
the estimated forces is

EI"EMPN(identify)
j`1

!MPN(identify)
j

E , (21)
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Figure 2. Typical S-curve (} } 1% noise; *5% noise; ... 10% noise).

STUDY ON BEAM MODELS 667
where MPN(identify)
j

, MPN(identify)
j`1

are the identi"ed forces with j
j
and j

j
#Dj. Typical L-curves

are plotted in Figure 3 for di!erent noise levels in the measured data, and they all exhibit a
corner in each L-curve. The value of j that corresponds to the point immediately to the
right of the corner is the optimal value.

5. SIMULATION STUDIES

Both Timoshenko beam model and Euler}Bernoulli beam model are used in the
simulation studies for a comparison of their usefulness in the force identi"cation problem.
The errors in the simulating results are calculated from equation (19). The moving forces are
identi"ed using the damped least-squares method [13] from equation (18), and the optimal
regularization parameter j is calculated by the L-curve method. The e!ects of di!erent
in#uencing parameters of the dynamic system on the identi"cation results are studied in the
following two examples. They are the number of sensors, vibration modal truncation,
sampling frequency, spacing of forces, excitation frequency, and the measurement noise
level. The road surface roughness is an important factor a!ecting the accuracy of the
identi"cation in the form of high-frequency noise in the result. This factor will be considered
in a separate report including a vehicle model in the identi"cation of vehicle axle loads.

Example 1 (Single moving force identi"cation on a single-span beam). The following
point load is moving on top of a single-span simply supported beam:

f (t)"40000[1#0)1 sin(10nt)#0)05 sin(40nt )]N. (22)

The parameters of the beam are as follows: EI"1)274916]1011 Nm, o"7700 kgm~3,
oA"12 000 kg/m, ¸"40 m, G"77)6]109 N m2. The moving speed is constant at 40 m/s
and the initial position of the force is at the left end of the beam. The shear coe$cient i is
JSV 20002867



Figure 3. Typical L-curve ( } } 1% noise; *5% noise; ... 10% noise).

668 S. S. LAW AND X. Q. ZHU
5
6
. The "rst three natural frequencies of the beam are 3)2, 12)8 and 28)8 Hz. The damping

ratios for these three modes are all equal to 0)02. White noise is added to the calculated
displacements to simulate the polluted measurement as

y"y
calculated

(1#Ep *N
oise

),

where y is the measured response used for the identi"cation, y
calculated

is the calculated
response, E

P
is the noise level and N

oise
is a standard normal distribution vector (with zero

mean value and unit standard deviation).
The "rst three modes are used in the calculation. Measured strains at 1/4L, 1/2L and 3/4L

are used in the identi"cation. The sampling frequency is 100 Hz. This example is used for
Studies 1}5 describe below.

Study 1: ¹he optimal regularization parameter: Table 1 shows the optimal value of j and
the corresponding errors for the two beam models. Since the true force is known, the
optimal regularization parameter j is determined from both the S-curve and L-curve
methods, and they are the same for both beam models. The optimal value j increases as the
noise level increases, and yet the identi"ed error and the norm are relatively stable. This
result seems to indicate that the identi"ed error is not sensitive to the noise level in the
measurement. However, this result is based on a limited study, and the noise e!ect will be
further studied below.

Study 2: E+ect of number of sensors: The number of sensors is varied, and they are evenly
distributed on the beam. Table 2 shows that the error in the identi"ed forces has
a signi"cant reduction when the number of sensors is equal to or larger than the number of
vibration modes used (which is three in this case) in the identi"cation. This observation is
consistent with the normal practice in vibration measurement of having one sensor for each
vibration mode to be detected. The use of more sensors will not increase signi"cantly the
information collected for a particular set of modes to be monitored. Hence, the number of
JSV 20002867



TABLE 1

¹he optimal regularization parameter and error under di+erent
noise levels

Error type
Noise Optimal

level (%) j Error Norm

1 0)37 13)65 2)83]1011
5 0)54 13)50 2)29]1011

10 1)05 17)80 2)16]1011

TABLE 2

Error of identi,cation with di+erent numbers of sensors

Number of sensors
Beam Noise
model level 1 2 3 4 5 6

T 1% 105)6 23)4 13)7 13)7 13)7 13)7
5% 103)5 22)9 13)5 13)5 13)5 13)5

10% 103)5 26)0 17)8 17)8 17)8 17)8

E 1% 140)5 84)1 13)2 13)2 13)2 13)2
5% 140)0 84)1 12)5 12)5 12)5 12)5

10% 139)4 84)1 14)1 14)1 14)1 14)1

Note: T*Timoshenko beam; E*Euler}Benoulli beam.

STUDY ON BEAM MODELS 669
sensors for the identi"cation is recommended to be at least equal to the number of vibration
modes in the study.

Study 3: E+ect of sampling frequency: Table 3 shows the relation between the sampling
frequency and the error in the identi"cation with 5% noise level. The optimal j is relatively
stable indicating consistent quality in the identi"ed results. The error remains relatively
stable as the sampling frequency increases for both beam models. Therefore, the sampling
frequency need not be very high in practice, and it may be taken as larger than two times the
maximum frequency of interest to be consistent with the requirement in digital signal
analysis. This recommendation means that the moving force identi"cation method can use
a relatively low sampling rate to be computationally e$cient.

Study 4: E+ect of modal truncation: Table 4 gives the errors in the identi"ed force with
di!erent numbers of vibration modes when 5% noise level is included. The number of
measuring points is taken equal to the number of vibration modes, and they are evenly
located on the beam. The sampling frequency is two times the highest frequency of interest
as suggested above. For a beam}force combination such as the one we have, the maximum
natural frequency of the beam considered is larger than the highest frequency of interest or
the exciting frequency of the moving force. The e!ect of higher modes is not included due to
the low sampling rate used. As a result of this, the error in the identi"ed force remains
relatively the same and it does not depend on the number of vibration modes used. It is
therefore recommended to determine the number of vibration modes from the highest
frequency of interest.
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TABLE 3

Error in identi,cation with di+erent sampling frequencies

Sampling frequency (Hz)
Beam
model 100 200 300 400 500 600 700 800 900 1000

T Error (%) 12)49 18)84 16)60 16)74 18)21 12)62 13)60 14)32 16)26 17)58
j 0)002 0)022 0)022 0)023 0)024 0)024 0)019 0)017 0)020 0)028

E Error (%) 13)50 25)53 23)78 22)83 25)17 16)69 19)57 21)83 18)99 25)71
j 0)54 3)98 3)18 2)66 3)82 1)63 1)91 2)24 1)97 4)32

Note: T*Timoshenko beam; E*Euler}Benoulli beam.

TABLE 4

Error of identi,cation with di+erent numbers of vibration modes

Number of modes
Beam
model 1 2 3 4 5 6 7 8 9 10

T Error (%) 16)5 14)8 13)5 22)3 23)1 17)2 18)9 20)0 19)2 15)5
j 0)43 0)57 0)54 3)1 4)3 2)2 3)0 3)8 4)2 2)2

E Error (%) 17)0 15)3 12)5 14)8 12)6 9)0 9)3 8)6 8)5 6)6
j 0)003 0)006 0)002 0)020 0)003 0)014 0)013 0)003 0)012 0)006

Note: T*Timoshenko beam; E*Euler}Benoulli beam.

670 S. S. LAW AND X. Q. ZHU
Study 5: E+ect of exciting frequency: The major exciting frequency of the force in
equation (22) is varied from 0 to 50 Hz. Figure 4 shows the error of the identi"ed force for
each of the frequencies with 5% noise level. The error in the identi"ed force increases when
the exciting frequency of the moving force approaches the natural frequency of the
beam}force system. The natural frequency of the beam}force system is smaller than that for
the beam alone due to the existence of the force acting on top. The error around the third
natural frequency identi"ed by the Euler}Bernoulli beam model is larger than that by the
Timoshenko beam model, but it is the opposite around the "rst natural frequency. The
Timoshenko beam model in general gives larger error than the Euler}Bernoulli beam model
over the whole range of frequencies studied.

Example 2 (Two moving forces identi"cation on a two-span continuous beam). The
following forces are crossing a two-span continuous beam:

f
1
(t)"20 000[1#0)1 sin(10nt)#0)05 sin(40nt)]N,

f
2
(t)"20 000[1!0)1 sin(10nt)#0)05 sin(50nt )]N.

Note that there is an opposite component in the forces representing the pitching motion of
a vehicle. The parameters of the beam are the same as in Example 1 except that the two
beam span lengths are each 20 m. The sti!ness of the intermediate support is 1016 N/m. The
moving speed of the forces is again constant at 40 m/s and the initial position of the "rst
force is at the left end of the beam. Five per cent noise is included in the measured responses.
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Figure 4. Error in identi"ed force with di!erent exciting frequencies: } } using Euler}Bernoulli beam model;
* using Timoshenko beam model.

STUDY ON BEAM MODELS 671
The "rst three modes are used in the identi"cation. The measured displacements at 1/8L,
1/4L and 3/4L are used in the calculation. The sampling frequency is 200 Hz. This example
is used for the Studies 6 and 7 described below.

Study 6: ¹wo moving forces identi,cation: Figures 5 and 6 show the identi"ed forces
using the Timoshenko beam theory and the Euler}Bernoulli beam theory. The curves are
obtained after regularization, and they exhibit large discrepancies with the true forces at the
beginning and end of the curves. Improvement to the results can be made by dividing
the time history into smaller time segments. And di!erent regularization parameters are
used in each of these segments as done by Choi and Chang [25]. The identi"ed results from
the Timoshenko beam model and the Euler}Bernoulli beam model have no signi"cant
di!erences and they are close to each other throughout the time histories. It is also noted
that the identi"ed forces follow the main trend of the true forces except for some
high-frequency components which are due to the 5% noise introduced in the analysis.

Study 7: E+ect of distance between two forces: When two forces are close together, their
e!ect on the dynamic response of a beam may not be easily di!erentiated, and the resolution
of the two forces in the force identi"cation may be reduced. Figure 7 shows the plot of errors
of identi"cation against the distance between the two moving forces at 5% noise level. The
"gure shows that the error increases monotonically as the distance between two moving
forces increases with a smaller value at a shorter distance. This is contrary to the usual belief
of having a larger error at a smaller spacing. Hence the moving force identi"cation method
can be used to identify two moving forces at a close spacing. The errors from the Timoshenko
beam model and the Euler}Bernoulli beam model are similar with the former being slightly
larger than the latter. Three peaks in the error curves are identi"ed at 1)25, 2)5 and 3)75 Hz
which are themselves harmonics. However their existence cannot be explained in this study.
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Figure 5. The identi"ed "rst force with 5% noise:* true force; } } force from Timoshenko beam model; ... force
from Euler}Bernoulli beam model.

Figure 6. The identi"ed second force with 5% noise: * true force; } } force from Timoshenko beam model;
... force from Euler}Bernoulli beam model.

672 S. S. LAW AND X. Q. ZHU
6. LABORATORY EXPERIMENT WITH TWO MOVING FORCES

The experimental set-up is shown diagrammatically in Figure 8. The main beam,
3678 mm long with a 100 mm]25 mm uniform cross-section, is simply supported.
A U-shaped aluminum section is glued to the upper surface of the beams as a direction
guide for the car. The model car is pulled along the guide by a string wound around the
drive wheel of an electric motor. Seven photoelectric sensors are mounted on the beams to
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Figure 7. E!ect if spacing of two forces on error in identi"cation (with 5% noise). (a) Error curve of the "rst force
identi"cation. (b) Error curve for the second force identi"cation: * from Timoshenko beam model; -- from
Euler}Bernoulli beam model.
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measure and monitor the moving speed of the car. They are located on the beam at roughly
equal spacing of 0)776 m to check on the uniformity of the speed. Seven strain gauges are
evenly located on the beam at one-eighth span spacing to measure the responses of the
beam. A Data Translation DT2829 eight-channel dynamic A/D board is used for data
collection in the experiment. The measured frequencies of the model car and the main beam
are shown in Table 5. The sampling frequency is 2 kHz, and the data record time duration is
6 s. The model car has two axles at a space of 0)557 m and it runs on four rubber wheels. The
mass of the whole car is 16)6 Kg.

The "rst three modes are used in the identi"cation. Correlation coe$cients are calculated
between the measured strain and the strain reconstructed from the identi"ed forces for 12
combinations of measured strains, and they are shown in Table 6. The Euler beam model
gives slightly poorer correlation in all the cases than the Timoshenko beam model. There
are two cases where the correlation is less than 0)3 while the latter model can still identify
good results with a correlation above 0)7. However, the correlation coe$cients vary with
di!erent combinations of measured information. Those derived from using more than three
sensors are not much better than those from using three sensors. This con"rms the result
from Study 2.

The optimal regularization parameter j is obtained from a modi"ed plot of the L-curve
by separately plotting the norm of the error and the seminorm of the solution against
the parameter, and the intersection of the two curves gives the optimal value. The plot for
the Timoshenko beam model and the Euler}Bernoulli beam model is shown in Figure 9,
and both models give the same optimal value.
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Figure 8. Diagrammatic drawing of experimental set-up.

TABLE 5

Natural frequencies of the model car and main beam

Mode Model car (Hz) Main beam (Hz)

1 7)82 3)67
2 9)77 16)83
3 11)72 37)83
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Figures 10 and 11 show the identifying forces from strains at 1/4L, 1/2L and 3/4L. Only
the results from the Timoshenko beam model with and without regularization are shown.
Fluctuations in the time histories are found around 0)0 s, 0)5 s, 3)0 s and 3)6 s in the curves
without regularization. These moments correspond to the entry of the "rst and second axles
on the main beam and the exit of the "rst and second axles from the main beam, when the
forcing system switches from single-force excitation to two-force excitation or vice versa.
Such large #uctuations may also be caused by the gaps between the beam ends at the entry
and exit which induce impulsive forces on the main beam. The #uctuations in the curves
disappear after regularization, and the regularization has no e!ect on the time histories
between these moments. These observations indicate that the regularization procedure
only provides bounds to the ill-conditioned solutions without any smoothing e!ect.
Errors in the curves in the form of high-frequency components has to be treated by some
other means.
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TABLE 6

Correlation coe.cient between reconstructed and measured strains

Timoshenko Euler}Benoulli
Sensor combinations beam model beam model

1/8s, 1/2s, 3/4s 0)939 0)900
1/4s, 1/2s, 3/4s 0)939 0)926
1/8s, 1/2s, 7/8s 0)943 0)897
1/8s, 1/4s, 1/2s 0)919 0)280
1/8s, 1/4s, 5/8s 0)901 0)564
1/8s, 1/4s, 7/8s 0)894 0)620
5/8s, 3/4s, 7/8s 0)729 0)278
1/8s, 1/4s, 3/4s, 5/8s 0)929 0)878
1/8s, 1/4s, 3/4s, 7/8s 0)893 0)657
1/8s, 1/4s, 1/2s, 3/4s, 7/8s 0)946 0)917
1/8s, 1/4s, 1/2s, 5/8s, 3/4s, 7/8s 0)941 0)909
1/8s, 1/4s, 5/8s, 7/8s 0)924 0)821

Note: 1/8s*mesured strain at 1/8 span.

Figure 9. The modi"ed L-curve; * Timoshenko beam model; - - Euler}Bernoulli beam model.
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Figure 12 shows the reconstructed strains from the identi"ed forces obtained from the
Timoshenko beam model and the measured strain at 3

8
span. The reconstructed strain varies

around the curve of measured strain with some high-frequency components which are due
to the measurement noise.

The two identi"ed forces are added together and the resultant is shown in Figure 13. The
curve is higher than the static curve in the "rst half of the time history and it is lower than
the static curve in the second half. This arises from the de#ection of the beam under its own
weight. The model car accelerates downwards in the "rst half of the beam and it decelerates
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Figure 10. The "rst identi"ed force from experiment using Timoshenko beam model:* static force; ..... without
regularization; } } with regularization.

Figure 11. The second identi"ed force from experiment using Timoshenko beam model: * static force;
..... without regularization; } } with regularization.
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upwards in the second half of the beam. The di!erences from the static curve are due to
these acceleration forces. The resultant force obtained from regularization is close to the
static weight from the car, and is a good indication of the accuracy of the moving force
identi"cation method in identifying the resultant force of a system of moving forces.

7. CONCLUSIONS

A moving force identi"cation method has been improved with a regularization procedure
applied to the identi"ed results. The ill-conditioned identi"ed forces at the beginning and
JSV 20002867



Figure 12. The measured and reconstructed strain at 3/8 span from experiment: *measured; ..... without
regularization; } } with regularization.

Figure 13. The identi"ed resultant force from experiment: * static force; ..... without regularization; } } with
regularization.
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end of the time history are signi"cantly improved. The regularization procedure does not
have any smoothing e!ect on the results. The Timoshenko beam model gives better results
in general than the Euler}Bernoulli beam model.

Limits on the application of this force identi"cation method are studied, and the
following recommendations are reported: The number of modes required in the
identi"cation depends entirely on the highest frequency of interest. The sampling frequency
may be taken as two times the highest frequency of interest which may be the maximum
exciting frequency of the moving force or the natural frequency of the beam. The number of
sensors is recommended to be at least equal to the number of vibration modes in the
analysis. The error in the identi"ed forces becomes large when the exciting frequency of the
moving force comes close to the natural frequency of the beam}force system. The error of
identi"cation is not sensitive to the distance between the two moving forces. Therefore, two
forces moving at a close spacing can be resolved by this method.
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APPENDIX A: NOMENCLATURE

A(x) area of cross-section
E norm of residuals
EI seminorm of estimated forces
EI(x) #exural sti!ness of beam
F generalized force matrix
G shear modulus
K generalized sti!ness matrix
¸ span length of beam
M bending moment
M generalized mass matrix
P
i
(t) ith moving load

MPN(est)
i

estimated force with j
j

c
ij

generalized damping
f
i
(t) ith generalized force

k sti!ness of point constraint
k
ij

generalized sti!ness
m

ij
generalized mass

q
i
(t) ith generalized co-ordinate

l(t) speed of moving load
x
i

initial position of ith moving load
x
l

location of measurement location
>
i
(x

s
), /

i
(x) assumed displacement mode shapes

y(x, t) displacement function of beam
d(t) Dirac delta function
e(x

s
, t) measured strain at location x

si shear coe$cient
j regularization parameter
c(x) radius of gyration of cross-section
t(x, t) angle of rotation of cross-section
E ' E norm of a vector of matrix
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