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This paper describes the implementation of an independent two-channel controller based
on absolute velocity feedback and its performance in improving the isolation from base
vibration of a mounted rigid equipment structure characterized by two-degrees of freedom.
A single-channel controller is also investigated. If the base structure were rigid, a collocated
control strategy based on feedback of the equipment absolute velocity reduces the vibration
transmission by skyhook damping. In this study, the vibrating base is #exible so that no
rigid ground is available to react the secondary forces o!. The direct velocity feedback
(DVFB) control implemented here is shown to be very stable, however, so that high control
gains could be applied. E!ective damping ratios of up to 600% in the modes of the
suspended system could be introduced by the two control channels. The passive isolation
performance is thus dramatically improved by the two-channel controller: the heave mode is
reduced by up to 40 dB, whereas the amplitude of the pitching mode is attenuated up to
26 dB. The experimental results also show a global improvement in the vibration caused by
the resonances of the base plate over the frequency range of control [0}200 Hz]. The control
e!ect decreases with frequency as a consequence of the increasing e$ciency of the passive
isolation. It is also shown that if the feedback gains are equal for the two control channels,
the control e!ect is the same as adding equal damping terms to the two modal responses of
the mounted equipment. Finally, the control is shown to be robust to changes in the plate
support dynamics, since adding masses at various positions on the base plate did not
destabilize the system.
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1. INTRODUCTION

Isolating a piece of equipment from the vibration of a base structure is a very common
problem in the "eld of mechanical engineering. Typically the base vibration is seismic, with
an unpredictable waveform and broadband spectrum. Very little can often be done to
reduce the base vibration since it is either of high impedance or characterized by complex
dynamics and a large number of degrees of freedom. The isolation of any vibration-sensitive
equipment from base vibration is therefore usually performed on the transmission paths.
Passive isolators are thus widely used to decouple an equipment from a vibrating base
structure. However, passive systems for the isolation of equipment from base vibration
involve an inherent compromise between good high-frequency isolation, which requires low
values of isolator damping, and limited excitation of the rigid-body modes, which requires
high values of isolator damping. Soft mountings are generally used since they provide low
resonance frequencies of the mounted system and thus reduce the frequency band of
vibration ampli"cation. However, if the isolator mounting frequency is too low, there are
potentially problems with static stability. Passive isolators thus provide an e$cient way of
022-460X/00/290681#24 $35.00/0 ( 2000 Academic Press



Figure 1. Mechanical e!ect of absolute velocity feedback control on a single-degree-of-freedom system on rigid
base: (a) physical control; (b) mechanical equivalence.
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reducing vibration transmission, but they are subject to various trade-o!s when excitations
with a large frequency range are involved.

Passive isolation performance can be enhanced by coupling active system to the existing
mounting design [1]. This can be achieved over a broad frequency band by feedback
control strategies, amongst which velocity feedback is one of the most popular since it
allows damping to be added in the controlled system. It is thus well known that
a single-channel active control system in which a secondary force acts in proportion of the
absolute velocity of the mounted equipment, can give good damping in a lumped
mass}spring}damper system without compromising the high-frequency isolation [2]. For
a secondary force reacting between the mass and the vibrating rigid base, the control has the
equivalent e!ect of a passive damper connecting the mass to an inertial ground as shown in
Figure 1. Such a control strategy is thus called skyhook damping.

The transmissibility function with skyhook damping can be written as in equation (1) [3].
The mass motion is then signi"cantly reduced at the resonance frequency by the control
without compromising high-frequency performance, as shown in Figure 2, where the
modulus of the transmissibility function is plotted for the addition of given amount of extra
passive damping or extra active (or inertial) damping:
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The trade-o! between damping low-frequency resonances and achieving good

high-frequency isolation may thus be overcome by skyhook damping. This was investigated
by Schubert [4], who designed a six-channel skyhook damper, which strongly attenuated
the vibration of a suspended mass. Skyhook damping implementation was possible using
reactive actuators in this case since no base dynamics were taken into account in the
frequency range of control, so that an inertial ground was available, as illustrated in
Figure 1. Schubert also had a rather complicated controller to give a stable control loop



Figure 2. Modulus of the transmissibility for a single-degree-of-freedom system with passive damping,
f
pass

"0)1 and no additional damping (00); or with additional passive damping to give, f
pass

"0)7 (- - - -) or with
additional skyhook damping, f

act
"0)6 (}}).
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whereas, in this study, only constant gain feedback is implemented so that the controller
remains as simple as possible. The single- and two-channel controllers studied in this paper
generate secondary forces acting in parallel with the passive isolation (Figure 3). Such
a combination of passive and active isolations is often referred to in the literature as a soft
mount. Beard et al. [5] have discussed the advantages of using hard mounts instead of soft
mounts, where the secondary actuator is combined in series with the passive isolator.
However, the e!ectiveness of such a mounting design was shown to be dependent upon the
high sti!ness of the PZT stack used as a secondary actuator. The use of such actuation,
characterized by a small de#ection capacity, worked well for the small-amplitude motion of
the supporting structure considered by those authors. In the study presented here, however,
the base vibration can be of the order of millimeters. A soft mount strategy is therefore
investigated, in which actuators with a long throw are required, such as electrodynamic
shakers, since the active isolation directly connects the equipment to the vibrating base, as
shown in Figure 3.

The e!ect of skyhook damping, as illustrated in Figure 2, has previously been investigated
for a in"nite impedance base [3, 5] or for a base without signi"cant mobility [4], which
is una!ected by the reacting secondary forces. The objective of this study is to investigate
the e!ect of the base structure dynamics on the formulation of direct velocity feedback
(DVFB) control. The base structure is said to be &&#exible'' if it has signi"cant dynamics in
the range of control e$ciency, i.e. usually if its "rst modes lie close to the rigid-body
resonances of the mounted equipment. In the case of a reactive implementation of the
control actuators, the secondary forces are generated by reacting o! the base structure. The
secondary actuators thus create an addition excitation of the base structure which is
transmitted through to the equipment via the mounting system. Because of this mechanical
feedback, the classical model of perfect skyhook damping is not valid and the stability
of DVFB control, as discussed by Balas [6], has to be reconsidered. In this study,



Figure 3. Photograph of the active isolator system (a) and simpli"ed schematic (b).
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close attention was therefore paid to the assessment of the system stability before any
control implementation.

2. ISOLATION SYSTEM DYNAMICS

2.1. EXPERIMENTAL ISOLATION SYSTEM

The experimental isolation system consists of a rigid piece of equipment mounted on
a vibrating plate through two passive/active mounts. The equipment to be isolated and the
passive and the active isolators are together referred to as the active isolator system. The
active isolator system consists of the two passive/active mounts symmetrically set
underneath the equipment structure as shown in Figure 3. The equipment structure is
composed of a thick aluminium plate (200 mm]100 mm]18 mm) and the two control
shakers which are rigidly connected to it. This assembly behaves as a rigid body in the
frequency range of interest [0}200 Hz]. The passive part of the mounts consists of
a moulded ring of rubber mounted between two aluminium discs. The top disc is rigidly
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connected to the equipment structure while the bottom disc is bonded to the vibrating base
plate. A thin steel rod inside each ring of rubber transmits the axial force generated by the
control shaker to the bottom disc of the mount. The control forces therefore act in parallel
with the passive isolation. The control shakers are electromechanical devices (Ling type
V101). Each actuator can deliver a maximum force of 8)9 N peak and can provide
a maximum peak-to-peak displacement of 2)5 mm. The force generated is proportional to
the product of the instantaneous current in the coil and the magnetic #ux density. In the
frequency range of application, the input voltage to the actuator is proportional to the
current in the moving coil since the inductance e!ect is negligible compared to the shaker
electrical resistance. Moreover, in this frequency range, for each shaker, the motional
impedance is negligible compared to the blocked impedance so that the control force is
proportional to the current and thus to the input voltage. The voltage can then be used as
the control quantity and only a standard power ampli"er is required in the control loop.
More details on the active isolator system may be found in references [7, 8].

A steel rectangular plate (500 mm]700 mm]2 mm) clamped along the two long
opposite edges and free at the two others was used as the experimental base structure. The
plate had su$cient static rigidity to support the equipment and could be driven by
a primary shaker to provide a su$cient velocity on the receiver to overcome any
signal-to-noise problems, even though the passive isolation can provide strong vibration
attenuation above the mounted system resonances.

2.2. ISOLATION SYSTEM DYNAMICS

2.2.1. Active isolator system dynamics

The whole system is excited by an out-of-plane force generated by a primary shaker
acting on the base plate. The primary excitation will excite #exural modes of the plate
which, in general, will induce vertical translation and rotation at the base of the mounts.
This will thus mainly excite the heave mode and rocking mode of the mounted equipment
(Figure 4) both of which can be controlled by the two actuators.

Other rigid-body modes of the mass such as the transverse one along xl may be excited by
the rotation of the rubber mount discs, but in practice their amplitude is observed to be
small since the rotational excitation on the plate is not important compared to the axial
plate motion at low frequencies [9]. Finally, since no resonance occurs in the mounts in the
frequency range [0}200 Hz], the active isolator system can be quite accurately modelled at
low frequencies as a two-degrees-of-freedom system with decoupled passive and active
contribution as shown in Figure 5 [8]. In this "gure K and C are the axial sti!ness and
damping constants resulting from one ring of rubber, the steel rod and the shaker
suspension, and f and f are the secondary forces generated by the control shakers.
Figure 4. Excited rigid-body modes of the isolator system considering a rigid receiver. Heave mode (a) and
pitching mode (b).
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TABLE 1

Summary of the passive properties of the experimental mounts and the receiving system

Parameter Value

Total mass of the thick receiving plate and shakers M"2)9 kg
Moment of inertia of the total mounted system I

r
"1)4]10~2 kgm2

Total sti!ness of each mount K"24 000 N/m
Total viscous damping for each mount C"18 N s/m
E!ective heave mode damping ratio f

h
"4)8%

E!ective pitching mode damping ratio f
p
"5)1%

Distance between mounts 2l"134 mm

Note: The damping constant C was calculated from the measured heave mode damping ratio f
h
. The pitching

mode damping ratio, f
p
, was also estimated experimentally under normal conditions of temperature and pressure

Figure 5. Isolator system mechanical model.
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Table 1 lists the main characteristics of the elements of the experimental active isolator
system. The heave resonance frequency f

h
and the pitch resonance frequency f

p
can be

estimated using equations (2) and (3), in which I
r

is the moment of inertia of the total
suspended equipment around the yN -axis, which give 20)5 and 19)8 Hz respectively,

f
h
"

1

2nS
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M
and f

p
"

1

2nS
2Kl2

I
r

. (2, 3)

The response of the rigid-body modes of the experimental equipment were measured by
placing the active isolator system on a rigid base and driving the two control shakers in
phase to excite the heave mode and out of phase to excite the pitching mode. The measured
natural frequency of the heave resonance was found to be slightly lower than that of the
pitch one, 19)1 and 20)7 Hz respectively, but the two frequencies are so close to those
predicted theoretically that the simple analytical model shown in Figure 5 can still be used
to understand the results of the subsequent tests.

2.2.2. Base plate dynamics

The plate was modelled using a modal approach, accounting only for bending motion
and assuming an isotropic thin #at plate with beam mode shapes of equivalent boundary
conditions as de"ned by Warburton [10]. The base plate dynamics were also experi-
mentally investigated by measuring, at di!erent locations, the acceleration responses of the
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plate alone under primary excitation. The measured and calculated natural frequencies are
given in Table 2. The measured natural frequencies are in reasonable agreement with the
predicted ones, except for the lowest modes, since the arrangement used to "x the base plate
does not completely clamp the two longest edges at low frequencies. All the natural
frequencies of the plate are above those of the experimental isolator system, but are
su$ciently close to them that the base plate will have a signi"cant dynamic e!ect on the
system response and cannot be regarded as being rigid over the frequency range of interest.

2.2.3. Coupled system dynamics

The active isolator system was then mounted on the vibrating plate, positioned
so that both the heave and pitch motions of the equipment were excited as shown in
Figure 6.

Figures 7 and 8 show the velocity response at points 1 and 2 (see Figure 5) on the
equipment per unit primary excitation force f

0
, i.e., the passive system response at the two

control locations. This measure of the system response was preferred to transmissibility
since in this experiment the base plate is #exible, which means not only that di!erent
measurement locations on the vibrating plate produce di!erent transmissibilities but also
that the reacting control forces a!ect the plate vibration thus rendering any interpretation
of the controller performance rather di$cult. The "rst two main peaks noticeable in Figures
7 and 8 are related to the rigid-body modes of the mounted equipment. The heave mode is
shifted down to 14)6 Hz whereas the pitch resonance occurs at 19)8 Hz, since the active
isolator system is now coupled to a #exible structure which lowers the e!ective sti!ness of
the system. The overall response drops with increasing frequency as the passive isolation
starts to become more e$cient. As expected, the base plate dynamics appear to have a large
e!ect on the equipment velocity response, which is signi"cantly ampli"ed at the plate
resonances. Also shown in Figures 7 and 8 are the predicted values of the equipment
Figure 6. Photograph of the complete isolation system: active isolator system set on top of the #exible base plate
excited by a primary shaker.



Figure 7. Velocity of the equipment at point 1 per unit primary excitation force without control: measurement
(00) and simulation (} } }).

Figure 8. Velocity of the equipment at point 2 per unit primary excitation force without control: measurement
(00) and simulation (} } }).
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velocity per unit primary force f
0
calculated from a fully coupled simulation of the combined

dynamics of the base plate and active isolator system. The measured and predicted
responses are in reasonable agreement, considering the discrepancies shown in Table 2,
particularly for the low-frequency response. The good matching between experiments and
simulations suggests that the dynamics can be understood using the simple models outlined
above.



TABLE 2

First 9 modes of the base supporting plate

Experimental Calculated
Mode frequency (Hz) frequency (Hz) Mode shape

(2, 0) 32)5 44)8
(2, 1) 41)3 49)0
(2, 2) 58)8 65)4
(2, 3) 91)3 98)8
(3, 0) 99)8 123)3
(3, 1) 105)0 129)2
(3, 2) 128)0 149)8
(2, 4) 139)0 151)8
(3, 3) 166)2 186)0

(m, n): m is the number of nodal lines relative to the CC boundary conditions and n is the number of nodal lines
relative to the FF boundary conditions.
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3. CONTROL PRINCIPLE AND EXPERIMENTAL ARRANGEMENT

The objective of the study was to implement two independent channels of velocity
feedback to give skyhook control using two reactive actuators. The output of the control
sensor associated with each control location is therefore directly fed to the corresponding
secondary actuator, so that two single-input}single-output (SISO) control loops are
implemented as sketched in Figure 9. Decentralized control algorithms have the advantage
of being very simple to implement, with the complexity rising linearly with the number of
channels instead of with the square of the number of channels in a fully coupled controller,
and have also been implemented for the feedforward control of periodic disturbances
[11, 12].

The control sensor at each control point is an accelerometer, B&K type 4375. The
acceleration signal is integrated through a charge ampli"er, B&K type 2635. The resulting
voltage signal, y, which is ideally proportional to the equipment velocity, is ampli"ed by
a constant control gain g

c
using a power ampli"er and fed back to the control shaker. Each

secondary actuator thus applies a secondary force which is only the result of the velocity at
the corresponding control point. However, the control input u

1
does not only induce

a velocity at point 1 but also a response at point 2, and similarly for u
2
, as expressed in the

equation
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where y is the output voltage vector, proportional to the outputs of the accelerometers on
the equipment after integration by the charge ampli"ers, G

ij
is the plant response at point

i for an excitation at point j, G is the plant response matrix including the secondary
actuators and u is the secondary actuator input voltage vector.

The two control locations are mechanically coupled, which is not explicitly taken into
account by the controller. The mechanical coupling was measured by exciting the whole
system with one of the control shakers and measuring the resulting velocity at the control
points on the equipment. Figure 10 shows the measured velocity at point 1 per unit shaker
input voltage when the equipment is excited by the control shaker 1 (u

1
) and when it is



Figure 9. Schematic of the two independent channel control implementation.

Figure 10. Measured velocity of the equipment at point 1 for excitation from the control shaker at point 1 (00)
and from the control shaker at point 2 (} } }).
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excited by the control shaker 2 (u
2
), and Figure 11 shows the same quantities for

point 2. The sensitivity of the sensors has been used to obtain the velocity responses in
Figures 10 and 11 in mechanical unit. These graphs represent, to the sensor sensitivity
factor, the frequency responses of the four elements of the plant response matrix G in
equation (4).

From these measurements, it appears that the coupling between the two control points is
signi"cant at the natural frequencies of the rigid-body modes, since the rigid-body modes
generate the same amplitude of vibration at the two ends of the mounted system. The
coupling is also signi"cant at the plate resonances, but decreases with increasing frequency
as the passive isolators become more e!ective. These measured plant responses were used in
the assessment of the stability of the combined control system.



Figure 11. Measured velocity of the equipment at point 2 for excitation from the control shaker at point
2 (00) and from the control shaker at point 1 (} } }).
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4. FEEDBACK CONTROL PRINCIPLES

Considering the equivalent electrical block diagram of a multichannel feedback control
system (Figure 12), the response of the controlled system can be derived and expressed in the
Laplace form as

y (s)"[I#G (s)H(s)]~1d (s) (5)

where I is the identity matrix, y is the sensor output signal vector of the system under
control, d is the vector of disturbances which is the sensor output signal vector with no
control, G (s) is the transfer function matrix of the plant de"ned by equation (4) and H(s) is
the matrix of feedback gains, which in this case is diagonal.

Instability can be associated with the poles of the system, i.e., the values of s which satisfy
the characteristic equation [13, 14]

det[I#G (s)H(s)]"0. (6)

The general Nyquist criterion states that provided the plant and controller are themselves
stable, the closed-loop system will be stable if the complex locus of the expression

det[I#G ( ju)H ( ju)]"(1#j
1
( ju)) ) (1#j

2
( ju)) (7)

does not encircle the origin as u goes from !R to #R, where j
1
( ju) and j

2
( ju) are the

two eigenvalues of the (2]2) matrix G( ju)H ( ju). This implies that none of the frequency-
dependent eigenvalues of G( ju)H ( ju) must encircle the point (!1, j0) when the frequency
is varied over this range [14]. When an identical control gain g

c
is used in both



Figure 12. Equivalent electrical block diagram of a multichannel feedback control system.
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control channels, the feedback gain matrix is simply

H ( ju)"H"C
g
c

0

0

g
c
D . (8)

The stability assessment thus simpli"es to the study of the Nyquist plot of the eigenvalues of
the plant response matrix G( ju).

For the special case of a single-channel feedback control [13], the transfer function
estimating the attenuation provided by the control is simply

y
i
(s)

d
i
(s)

"

1

1#G
ii
(s)H

ii
(s)

. (9)

If the feedback controller, H(s), is a simple ampli"cation by a constant gain, the
single-channel control stability can be assessed by examining the Nyquist plot of the single
plant response G

ii
( ju).

5. SINGLE-CHANNEL CONTROL

Prior to implementing the two-channel controller, a single-channel DVFB control was
implemented at one end of the the equipment. This was done to evaluate the e!ect of the
control at the other end and to assess the extent to which a system characterized by
two-degrees of freedom could be isolated from a vibrating structure with only a single
secondary force. The results presented in this section refers to a single-channel control
a point 1 only (see Figure 9).

5.1. STABILITY ASSESSMENT

Figure 13 shows the Nyquist plot of the plant response G
11

( ju)"y
1
( ju)/u

1
( ju) for this

case.
The system exhibits very good stability properties since almost the whole polar diagram

lies in the positive real half-plane. It is characterized by two main loops caused by the heave



Figure 13. Nyquist plot of the plant response G
11

for a local control of the equipment at point 1.
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and pitching modes of the mounted equipment. Finally, the base plate resonances lying in
the frequency range [0}200 Hz] are represented by several small circular loops whose
radius decreases as the passive isolation becomes more e$cient with increasing frequency.
They are mainly located in the positive real part half-plane but not fully. Therefore, the
measured plant response does not have a strictly positive real part at all frequencies, and
thus di!ers from the input mobility which would be measured if the actuator only acted at
the control point, without having to react o! the #exible base structure. These mechanical
e!ects are not large, since the absolute value of the phase is never signi"cantly larger than
n/2, and are always associated with small amplitudes as a result of the passive isolation. The
additional phase shift due to the #exible base thus does not appear to cause any noticeable
stability problem or ampli"cation of the equipment motion. A further discussion of the
stability of a single-channel active isolation system with either a reactive or inertial actuator
is provided by Elliott et al. [15].

At very low frequencies however ((2 Hz), the control is a!ected by the frequency
response of the integrator in the charge ampli"er, whose associated lowpass "lter is
responsible for an additional phase shift which tends to n/2 at very low frequencies. This is
not expected to cause instability but will give rise to very low-frequency ampli"cation. This
has to be added, however, to the low-frequency phase shift of the power ampli"er. These
low-frequency phase shifts are the cause of the small response noticed on the upper left side
of the origin in Figure 13, and can give rise to instability if the control gain is very large.

5.2. CONTROL RESULTS

Figure 14 shows the velocity at point 1 on the equipment per unit primary force f
0

measured for three control gains, as listed in Table 3.
It shows that the passive isolation is signi"cantly improved by the controller at point 1.

The vibration of the mass at the location of the control sensor is gradually reduced over the
whole frequency range displayed as the gain is increased. The vibration level is reduced by



Figure 14. Measured velocity of the equipment at point 1 per unit primary force for a single channel control at
point 1. Measurements are shown for the passive system (control o! ) (00) and three values of physical control

TABLE 3

<alues of feedback control gains and the corresponding active damping ratios due to one
control channel

Physical control gain Equivalent active damping ratio Equivalent active damping ratio
g (N/m s) of the heave mode f

hact
of the pitching mode f

pact

55 0)07 0)08
278 0)37 0)40
720 0)96 1)02

2285 3)05 3)29
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up to 40 dB at the heave mode passive resonance frequency. As expected, the e!ect of the
controller gradually decreases with increasing frequency since the control force is
proportional to the control velocity which is strongly attenuated by the passive isolation at
high frequencies. Ampli"cation is, however, noticed at very low frequencies, although this
does not corrupt the overall improvement of the passive isolation. For the highest value of
feedback gain used, however, the system under control becomes very reactive to external
transient excitations in the laboratory because of the low-frequency instability discussed
above in the plant response analysis.

Even if the control is not strictly equivalent to skyhook damping, the "rst component
of the secondary force acting directly on the equipment does have the mechanical e!ect of
a skyhook damper and an equivalent active damping ratio due to one control channel can
be calculated to compare with the passive damping ratios of the heave and pitching modes
of the mounted system, f

h
and f

p
. The values of the physical control gain g (gain relating

the secondary force to the control velocity in units of Ns/m) and the equivalent active
damping ratios associated with the heave mode, f

hact
, are listed in Table 3 when calculated



Figure 15. Measured velocity of the equipment at point 2 per unit primary force for a single channel control at
point 1. Measurement are shown for the passive system (control o! ) (00) for physical control gain of g"55
(00) and g"720 (} } }).
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using

f
hact

"

g

2C
f
h
, (10)

where C is the passive damping constant for a rubber mount and the physical control gain,
g, is calculated from the electrical control gain, g

c
, using the equation

g"g
c
S
sh
S
ca

, (11)

where S
sh

is the sensitivity of one control shaker (equal to 0)91 Nv~1) and S
ca

is
a multiplicative factor applied by the charge ampli"er when it is used as an integrator (equal
to 100). As an example, the maximum physical gain g of 2285 Ns/m corresponds to a control
gain g

c
from the power ampli"er equal to 25. This calculation is meaningful since the

responses of the actuators and sensors were reasonably independent of the frequency. The
equivalent active damping ratio in the pitching mode, f

pact
, is also calculated using equation

(10), but using the passive damping ratio in the pitching mode, f
p
.

Figure 15 shows the e!ect of the feedback loop acting at end 1 on the equipment velocity
at the other end for two of the values of feedback gain listed in Table 3. The controller does
not greatly a!ect the motion of the mass at point 2 in comparison with the improvements
obtained at the control point. It tends, however, to amplify the vibration level in some
frequency bands for the use of high feedback gains, which give rise, for instance, to a 6 dB
increase between about 15 and 35 Hz. No real e!ect of the control is observed above 80 Hz
as expected from the weak mechanical coupling between the control points shown
in Figures 10 and 11. Similar stability properties and performance at the two ends of
the equipment are observed when a single-channel control system is implemented at
point 2 [7].
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6. IMPLEMENTATION OF A TWO-CHANNEL CONTROLLER

6.1. STABILITY ASSESSMENT

The stability of the two-channel control system, as shown in Figure 9, was assessed using
the procedure outlined in section 4. Figures 16 and 17 show the two Nyquist plots for the
frequency-dependent eigenvalues j

1
and j

2
of the plant response matrix G de"ned in

section 3. One should note that, for this special arrangement, the two eigenvalues are
Figure 17. Nyquist representation of the eigenvalue j
2

associated with the pitching motion of the suspended
equipment.

Figure 16. Nyquist representation of the eigenvalue j
1

associated with the heave motion of the suspended
equipment.
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proportional to the amplitudes of the heave and pitch modes of the equipment motion and
thus each of them only has one main loop. The two plots illustrate the stable properties of
the controlled system. Most of the loci lie in the stable right half-plane and strong vibration
reductions were therefore expected. The contour slightly crosses the imaginary axis at
frequencies above the mounted system resonances. This is due to the base plate dynamics, as
discussed in the single-channel control implementation in section 5, but no instability or
signi"cant vibration ampli"cation could arise by the application of a simple control gain.
The main threat to the control stability again comes at low frequencies from the phase shifts
in the electronics of the control loop as for the single channel case above.

6.2. RESULTS

Figures 18 and 19 show the velocities measured at the two control points on the
equipment when both control loops are simultaneously closed for three values of feedback
gain g, as listed in Table 3 with the corresponding e!ective active damping ratios. The same
gains were used for both control channels. As expected from the stability assessment, very
large reductions of the receiver vibration are achieved at the two sensor locations without
stability problems. This shows that the isolation of the equipment from base motion has
been considerably improved over the full frequency range of measurements, except at very
low frequency, below 2 Hz. Above 2 Hz, the larger the feedback gain, the larger the
reduction of the vibration level. Particularly large reductions of the equipment vibration are
observed at the resonances of the two rigid body modes, thus ful"lling the original objective
of this control strategy. The amplitude of the heave resonance drops by up to 40 dB for the
highest feedback gain, whereas the amplitude of the pitching mode at resonance is
attenuated by up to 26 dB since it was originally less excited. The heave resonance is no
longer noticeable after control for the highest values of gain, whereas it was in the previous
single-channel control. The overall mass motion is also strongly attenuated at the plate
Figure 18. Measured velocity of the equipment at point 1 per unit primary force for two channel control.
Measurements are shown for the passive system (control o! ) (00) and three values of physical control gain
(00): 55, 278 and 2285, which give progressively lower values of response.



Figure 19. Measured velocity of the equipment at point 2 per unit primary force for two channel control.
Measurements are shown for the passive system (control o! ) (00) and three values of physical control gain
(00): 55, 278 and 2285, which give progressively lower values of response.
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resonances (by 16 dB for the third plate resonance at 62Hz) which are slightly shifted down
in frequency under the e!ect of the additional active damping. As the passive isolation
performance increases, the control e!ect decreases and only 3}4 dB reductions are obtained
at 200 Hz and no real improvements are observed above this frequency.

Signi"cant ampli"cations of the very low-frequency response of the mass can be noticed
in Figures 18 and 19 at high feedback gains. No instability was encountered for steady
running conditions unless the gain g was increased beyond the range reported in Table 3.
Little low-frequency enhancement was encountered for lower control gains, which can still
give signi"cant attenuation of the the mounted system resonances. For example, a gain g of
278 introduces skyhook dampers with an equivalent damping constant 15 times bigger than
the passive damping constant C (see Table 3) and provides a 27 dB reduction of the
amplitude of the heave mode resonance and almost a 10 dB attenuation of the amplitude of
the pitching mode resonance. The gain margin for the control loop with this feedback gain
is then greater than 20 dB.

The two-channel DVFB controller is thus a very simple and robust control strategy
which can give signi"cant improvements in the isolation performance o!ered by the passive
system. The #exibility of the support did not signi"cantly degrade the isolation e$ciency of
the feedback controller in this case, as it may have been expected. To reinforce this
experimental result, further experiments were carried out on the system by adding a mass of
4)1 kg, which is comparable to the mass of the base plate (5 kg), positioned at "ve di!erent
locations. Although the added mass lowers the "rst base plate resonance frequency close to
the isolator system resonances, the control system appeared, from the plant response
measurements, to remain as stable as in the previous analysis, up to feedback gains of the
same order as for the control system detailed above. Similar reductions could thus be
expected. The control is still limited at low frequencies by the electronics in the control loop
but not by the system dynamics. This demonstrates that the good results shown in Figures 18
and 19 are not only speci"c to the mechanical system considered. A reactive implementation
of DVFB control appears to be robust to change in the base plate dynamics.
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7. CONCLUSIONS

The implementation of a two independent channel DVFB control led to very signi"cant
improvements of the passive isolation capacity of the experimental arrangement detailed
here, since the dynamics of the equipment to be isolated was almost fully de"ned by two
axial degrees of freedom. The main trade-o! in the use of passive mounts for vibration
isolation is overcome since the resonance of the rigid-body modes of the equipment are
almost completely cancelled without degrading the high-frequency performance of the
passive mounts. The control also improves the isolation above the mounted system
resonances up to frequencies where the passive isolation becomes very e$cient whereas
instability could have been expected from the base #exibility. One of the main "ndings of
this study is that no instability or vibration ampli"cation was encountered from potential
re-excitation of the #exible base by the secondary actuators in the frequency range of
analysis. The control is therefore very close to perfect skyhook damping. Moreover, changes
in the dynamics of the base plate did not destabilize the control system, illustrating its
robustness. This suggests that multichannel DVFB control using reactive secondary forces
can be considered for application on other #exible base structures.

These results were achieved for a very simple decentralized control implementation which
did not explicitly account for any coupling between the control channels. If the base had
been rigid, each channel would synthesise a passive skyhook damper at the control points
because the actuator and sensor for each control channel are collocated and the stability of
each control loop is in principle una!ected by the presence of the others. In the practical
problem considered, however, mechanical cross-talk between the channels is induced by the
base plate dynamics and such a statement is no longer valid. Subsequent analysis of the
decentralized control system implemented has revealed that it is exactly equivalent to
a modal control system under the condition of identical feedback gains in the two channels.
This equivalence is presented in detail in Appendix and gives an initial explanation of the
performance of the independent channel controller since the active isolator system was
set on the base plate such that no signi"cant coupling between the heave and pitch
mode could arise from the base #exibility. The two-channel controller is thus similar to
two independent controllers, one for the heave mode and one for the pitch mode.
This conclusion was partly anticipated in section 3 since the two eigenvalues of the plant
response matrix G were noticed to be directly associated with the amplitude of the heave
motion and pitching motion of the equipment. Finally, vibration ampli"cation of the mass
motion was observed at low frequencies because of phase shifts in the transducer
conditioning electronics. This illustrates the di$culty of monitoring low-frequency velocity
with an accelerometer and could cause instability for very high feedback gains. Signi"cant
active damping, equivalent to a viscous damping ratio of nearly 650%, could however be
achieved with control gains below this stability limit. The use of a DC-coupled ampli"er
and appropriate high-pass "lter could partly have removed this limitation. The excellent
overall performance of the control is also partly due to the very #at frequency response of
the transducers.

REFERENCES

1. S. A. COLLINS and A. H. VON FLOTOW 1991 Presented at the 42nd Congress of the International
Astronautical Federation, Montreal, Canada. Paper No. IAF-91-289. Active vibration isolation for
spacecraft.

2. D. KARNOPP, M. J. CROSBY and R. A. HARWOOD 1974 American Society of Mechanical Engineers
Journal of Engineering in Industry 96, 619}626. Vibration control using semi-active force
generators.



700 M. SERRAND AND S. J. ELLIOTT
3. C. R. FULLER, S. J. ELLIOTT and P. A. NELSON 1996 Active Control of <ibration. London:
Academic Press.

4. D. W. SCHUBERT 1991 Proceedings of the Conference on Recent Advances in Active Control of
Sound and <ibration, Blacksburg, <irginia, 448}463. Characteristics of an active vibration
isolation system using absolute velocity feedback and force actuation.

5. A. M. BEARD, A. H. VON FLOTOW and D. W. SCHUBERT 1994 Proceedings of I;¹AM Symposium
on the Active Control of <ibration,;niversity of Bath,;K. A practical product implementation of
an active/passive vibration isolation system.

6. M. J. BALAS 1979 Journal of Guidance and Control 2, 252}253. Direct velocity feedback control of
large space structures.

7. M. SERRAND 1998 M.Sc. thesis, ;niversity of Southampton. Active isolation of base vibration.
8. P. GARDONIO, S. J. ELLIOTT and R. J. PINNINGTON 1996 Institute of Sound and <ibration

Research ¹echnical Memorandum No. 801, ;niversity of Southampton. User manual for the
isolating system with two active mounts constructed at ISVR for the ASPN project "nal
experiment.

9. P. GARDONIO and S. J. ELLIOTT 1999 Proceedings of the active 99 conference, the 1999 Internationl
Symposium on Active Control of Sound and <ibration. Volume 1, page 117}128. Active control of
structural vibration transmission between two plates connected by a set of active mounts.

10. G. B. WARBURTON 1951 Proceedings of the Institute of Mechanical Engineering 168, 371}384. The
vibration of rectangular plates.

11. B. NAYROLES 1987 Journal de meH canique theHorique et appliqueHe (special issue) 6 (suppl.), 23}38.
Functional monotony and diagonal control in synchronous vibration absorption.

12. S. J. ELLIOTT and C. C. BOUCHER 1994 IEEE ¹ransactions on Speech and Audio Processing 2,
521}530. Interaction between multiple feedforward active control systems.

13. G. F. FRANKLIN, J. D. POWELL and A. EMAMI-NAEINI 1994 Feedback Control of Dynamic
Systems. Reading MA: Addison-Wesley, third edition.

14. S. SKOGESTAD and I. POSTLETHWAITE 1996 Multivariable Feedback Control. Chichester: Wiley.
15. S. J. ELLIOTT, M. SERRAND and P. GARDONIO 1999 Journal of American Society of Mechanical

Engineering. Feedback stability limits for active isolation systems with reactive and inertial
actuators (submitted).

16. L. MEIROVITCH 1990 Dynamics and Control of Structures. New York: Wiley.

APPENDIX: RELATION BETWEEN COLLOCATED DECENTRALIZED CONTROL
AND INDEPENDENT MODEL-SPACE CONTROL

A.1. GENERAL CASE

The dynamics of a structure characterized by N modes can be fully identi"ed with
M appropriately positioned sensors provided M*N [16]. The time-dependent modal
co-ordinates a

j
, for j"1 to N, associated with each mode can be expressed in terms of the

sensor signals v
i
, for i"1 to M, using a modal identi"cation matrix A of dimension

(N]M).

a"A ) v. (A1)

Reciprocally, the sensor signal vector can be derived from the modal co-ordinate vector
using a modal reconstruction matrix R of dimension (M]N) such that

v"R )a. (A2)

Similarly, assuming N modal control forces acting on a structure due to P (P*N) point
force actuators distributed over the controlled structure, the physical control forces f

pk
,

k"1 to P, can be expressed in terms of the modal control forces f
ml

, l"1 to N, by a matrix
B of dimension (P]N) such that

f
p
"B ) f

m
. (A3)



Figure A1. Physical equivalent electrical block diagram of a multichannel model feedback control system.
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Reciprocally, the modal force vector f
m

can be derived from the physical force vector f
p

using a modal decomposition matrix D of dimension (N]P) such that

f
m
"D ) f

p
. (A4)

The physical control relating the sensor signal vector v to the physical control force
vector f

p
can be expressed in a matrix form by H

physical
such that

f
p
"H

physical
) v. (A5)

Similarly assuming the implementation of a modal control, we can de"ne a matrix H
modal

relating the modal response component vector a to the modal control force vector f
m
:

f
m
"H

modal
) a. (A6)

The physical control equivalent to the implementation of any modal control can then be
derived using equations (A1), (A3) and (A6) as illustrated in Figure A.1:

H
physical

"B )H
modal

)A. (A7)

Similarly, the modal control equivalent to the implementation of any physical control can
be derived using equations (A2), (A4) and (A5):

H
modal

"D )H
physical

)R. (A8)

For decentralized control, there are an equal number of sensors and actuators so that
M"P. If it is also assumed that there are only as many modes as actuators and sensors
then

N"M"P.
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R and D are now squared matrix of rank N and therefore inversible provided the
N sensors and actuators are properly located at N di!erent positions on the structure.
Therefore,

A"R~1 and B"D~1. (A9)

If each sensor is collocated with a corresponding actuator, it can be easily understood
that the sensed modes and the forced modes are weighted with space-dependent coe$cients
such that

R"

/
1
(x

1
) /

2
(x

1
) 2 /

N
(x

1
)

/
1
(x

2
) /

2
(x

2
) F

F }

/
1
(x

N
) 2 /

N
(x

N
)

"DT, (A10)

where /
j
(x

i
) is the amplitude of the j5) mode at location i de"ned by x

i
. For a decentralized

physical control consisting of identical feedback gains g applied to each channel, the
physical feedback control matrix is

H
physical

"!g ) I (A11)

therefore, using equations (A8) and (A10):

H
modal

"!D ) g ) I )R"!g )D )DT. (A12)

If D is unitary to within a multiplicative factor c as in the two-channel case considered here
and discussed in more detail below, then

DT"c )D~1 (A13)

and so

H
modal

"!g )D ) c )D~1"!g ) c ) I"c )H
physical

. (A14)

This means that a decentralized control system is equivalent to an independent
modal-space control (IMSC) with modal feedback gains gc under the following four
conditions:

f equal number of sensor/actuator pairs as modes characterizing the system behaviour,
f collocation of sensors and actuators,
f equal feedback gains g,
f sensors/actuators located on the structure such that D is unitary to within a multiplicative

factor.

In order for the last condition, i.e., equation (A13), to be satis"ed then one requires

N
+
i/1

/2
n
(x

i
)"c

n
"c for all n (A15)
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and

N
+
i/1

/
n
(x

i
)/

m
(x

i
)"0 for all nOm. (A16)

Equation (A15) is just a normalization condition and equation (A16) is a statement of the
orthogonality of the modes, when evaluated at the transducer positions x

i
. Decentralized

control can also be equivalent to IMSC without satisfying equation (A15). The c
n
values are

then di!erent from each other and an equal gain g in each independent control loop is
equivalent to a modal control with di!erent gains for each mode (in this case D )DT is
diagonal but not equal to I).

A.2. THE SPECIAL CASE OF THE TWO-CHANNEL CONTROLLER

For the special case of two-channel control described in this paper, the system to be
isolated is a simple rigid body characterized by two axial degrees of freedom and therefore
by two rigid-body modes in the frequency range of analysis: the heave mode and the pitch
mode. From the symmetry of the isolation system, the heave and the pitching motions are
entirely decoupled. The velocity wR

h
associated with the heave motion, which is the motion of

the equipment centre of gravity, can then be expressed as

wR
h
"

(wR
1
#wR

2
)

2
, (A17)

whereas the amplitude of the velocity wR
p

resulting from the pitching oscillations at the
sensor locations is

wR
p
"

(wR
1
!wR

2
)

2
, (A18)

where wR
1

and wR
2

are the velocities monitored by ideal control sensors on the mounted
equipment at the vertical of the two active mounts, points 1 and 2 respectively (Figure 9).

The dynamics of the equipment can then be expressed in terms of modal quantities from
the measured velocities using the matrix A,

G
wR
h

wR
p
H"

1
2

1
2

1
2

!1
2

) G
wR

1
wR

2
H"AG

wR
1

wR
2
H (A19)

so that

G
wR
1

wR
2
H"C

1

1

1

!1D )G
wR
h

wR
p
H"RG

wR
h

wR
p
H, (A20)

where A"R~1 and A and R are de"ned in equations (A1) and (A2).
Also, the heave and pitching control voltage signals u

h
and u

p
generated by a modal

controller can be expressed in terms of the control voltages u
1

and u
2

input to the control
shakers (Figure A.2). Assuming the two shakers have the same sensitivity,

G
u
h

u
p
H"C

1

1

1

!1D )G
u
1

u
2
H"DG

u
1

u
2
H, (A21)



Figure A2. Physical equivalent electrical block diagram of a modal feedback control of two-degree-of-freedom
system.
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so that

G
u
1

u
2
H"

1
2

1
2

1
2

!1
2
G
u
h

u
p
H"BG

u
h

u
p
H, (A22)

where B"D~1; B and D are de"ned in equations (A3) and (A4).
Because the actuators and sensors are collocated, R"DT. Also in this case, it can be

noticed that

DT"2B"2D~1 (A23)

and so equation (A13) is satis"ed. The independent control implemented experimentally is
therefore equivalent to a modal control.
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