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Active and passive implementations of self-sensing readout networks are studied in terms
of system properties such as the poles and the zeros of their transfer functions. The location
of the zeros is shown to be dependent on two non-dimensional parameters related to the
balancing condition of the readout bridge and to the compensation of its losses, while it is
not a!ected by the active or passive implementation of the readout bridge. In the case of
ideal &&loss compensation'' a graphical procedure is employed to describe the migration of
the zeros. Even if the self-sensing arrangement guarantees the colocation of the sensing and
actuating functions, the graphical procedure shows the possibility of non-minimum phase
zero coupls for balancing conditions close to the so-called &&electrical balancing''. The e!ects
of model reduction techniques such as truncation or residualization is then studied, starting
from a model of the system in terms of modal coordinates. Truncation is shown to be better
suited to determine the &&electrical balancing'' condition while residualization gives a better
approximation of the system zeros. The conditions of electrical balancing and loss
compensation are then related to a condition of minimum dependance of the self-sensing
bridge output from the driving electrical input. This property can be practically exploited to
devise an adaptive readout bridge which can automatically reach the balancing conditions
and the loss compensation or to identify the electrical parameters of the piezoelectric
transducer. Experimental tests performed on a beam and a plate structures provided with
self-sensing piezoelectric transducers are used to validate the analytical models.

( 2000 Academic Press
1. INTRODUCTION

In the case of non-dissipative behaviour piezoelectric materials can be considered as
transducers causing a direct and reversible energy transformation from electrical to
mechanical forms. The reversibility can be exploited in the so-called self-sensing
con"gurations with the aim of obtaining information about the mechanical states while
acting upon them.

In principle, the self-sensing operation of a piezoelectric transducer can be obtained by
the simultaneous measurement of the voltage and the current at its electric terminals.
However, in the case when the transducer is voltage driven, part of the current #owing
through is related to the mechanical states. Unfortunately, because of the highly capacitive
nature of the piezoelectric transducer, this part of the current is orders of magnitude
smaller than the total current. This problem can be solved by including the transducer in the
measuring arm of a bridge network [1}3]. The piezoelectric transducer is connected in
series with a current or a charge meter, depending on whether an output related to the
structural displacements or velocities is sought, to form the measuring arm of the bridge.
The reference arm twins the measuring arm except where piezoelectric interaction is
0022-460X/00/310001#23 $35.00/0 ( 2000 Academic Press



2 S. CARABELLI AND A. TONOLI
concerned. The measuring devices included in the bridge can be passive or active. In the "rst
case, a simple resistor or capacitor is placed in series with the piezoelectric and reference
admittances. In the second, active networks based on operational ampli"ers are used [4, 5].

The accurate matching or balancing of the readout network is of great importance in
order to obtain a suitable output signal. Unfortunately, even in the case of a nominally
balanced bridge, the di!erent values of the losses within its arms strongly a!ect the
open-loop transfer function zero [6, 8].

In this paper, some aspects of the passive and active implementation of the balancing
condition, and of the losses compensation of the readout bridge circuits, are analyzed and
experimentally veri"ed on beam and plate test rigs equipped with a single piezoelectric
transducer.

The structural properties of the electromechanical system, including the #exible structure
equipped with piezoelectric transducers connected to their power and signal conditioning
electronics, is studied in terms of zeros and poles location (for an introduction to this
approach see reference [9]). The operation of the piezoelectric transducer in a self-sensing
con"guration, i.e., as actuator and sensor at the same time, guarantees at least the
mechanical colocation of the system (for the problems arising from noncolocation see, for
example reference [10], for the e!ects of sensor and actuator dynamics [11]).

The behaviour of the self-sensing system is studied as a function of two non-dimensional
parameters related to the balancing condition of the readout and to the compensation of its
losses. The balancing parameter is shown to cause a migration of the zeros on the complex
plane similar to that occurring in non-self-sensing and colocated systems when the
sensor}actuator pairs are moved on the structure. On the other hand, the loss
compensation parameter is shown to cause a substantial &&damping'' of the zeros. When the
losses a!ecting the piezoelectric transducer are of resistive nature, the present analysis
shows that a signal related to the mechanical states can only be obtained from the
self-sensing system if both the condition of electrical balancing and loss compensation are
satis"ed.

The analysis developed here shows that a more general colocation condition is obtained
for the electromechanical system when the so-called electrical balancing of the readout
bridge is met: in this case the output of the readout bridge does not depend on the electrical
drive to the transducer but only on the mechanical dynamics.

The practical achievement of the electrical balancing condition is usually a critical issue
that may limit the application of self-sensing transducers. The analysis presented here shows
that such a condition corresponds to a minimum of the system output when excited by
random white noise, i.e., a self-tuning procedure can be used to tune the bridge using its
output only.

2. ELECTROMECHANICAL MODELLING

The equation of motion of a structure including piezoelectric transducers can be
formulated in terms of mechanical displacements and voltages applied to the piezoelectric
electrodes [12]. Assuming the reversibility of piezoelectric interaction and the linearity of
the electromechanical system for the case of a single transducer, the following dynamic
equation can be written:

[M]MxK N#[C]Mx5 N#[K]MxN#[H]v
p
"MFN, (1)

![H]TMxN#C
p
v
p
"q

p
, (2)
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where [M], [C] and [K] are, respectively, the mass, the damping and the short circuit
sti!ness matrices and C

p
is the capacitance of the piezoelectric. Matrix [H] is responsible

for the electromechanical coupling between the voltage v
p

acting on the piezoelectric
transducer and the mechanical displacements MxN. The above-mentioned matrices are
usually obtained using the "nite element method.

From the purely electrical point of view, each piezoelectric may be considered as
a single-port device whose admittance includes the mechanical dynamics. The Laplace
transform of the electric admittance >

p
(s) at the electrodes of the transducer is obtained by

substituting the displacement MxN obtained from equation (1) in the derivative of equation
(2) (in order to deal with currents instead of charges)

>
p
(s)"

I
p
(s)

<
p
(s)

"sC
p
#

1

R
lp

#s[H]T([M]s2#[C]s#[K])~1[H]. (3)

The "rst contribution to the admittance sC
p

takes the purely capacitive nature of the
piezoelectric device into account as if all mechanical degrees of freedom were constrained.
The resistance R

lp
is added in parallel to the piezoelectric capacitance to model the losses

within the device. Conversely, for the unconstrained and voltage-driven system, the measure
of the current includes the information about the mechanical velocities giving way to the
last term of equation (3).

Remark 1. To account for the hysteretic nature of the piezoelectric, the piezoelectric
capacitance may be modelled with a complex term analogous to the standard mechanical
representation of structural damping [6]. The use of a simple resistance in parallel with an
ideal capacitance to model the losses within the piezoelectric allows indications to be drawn
on an analytical basis and is acceptable when operating in a limited frequency range.

Due to the usually small contribution given by the mechanical term to the admittance (3),
the contribution sC

p
#1/R

lp
to the voltage to current response must be physically cancelled

as closely as possible to obtain an admittance primarily related to the mechanical dynamics.
This is usually obtained by including the piezoelectric transducer into a bridge readout
circuit [1, 2, 13]. The reference arm of the bridge must replicate as closely as possible the
purely electrical behaviour of the piezoelectric device, i.e.,

>
r
(s)"sC
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#

1

R
lr

(4)

in its basic version. The choice of the reference capacitance C
r
is usually involved in the

so-called balancing procedure while that of reference loss resistance R
lr

is involved in the
so-called loss compensation procedure. Together, the two procedures allow the e!ective
self-sensing operation of the piezoelectric transducer to be obtained.

2.1. PASSIVE READOUT BRIDGE

In the readout bridge, the current-measuring devices connected in series with
a piezoelectric transducer and the reference capacitor are usually implemented with shunt
resistors as in Figure 1. The transfer function from the input driving voltage <

in
(s) to the

di!erential output <
out

(s) is the following:
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Figure 1. Piezoelectric self-sensing con"guration: passive readout bridge.
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Taking the admittances >
p
(s) (3) and >

r
(s) (4) into account,
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where

n (s)

d (s)
"[H]T([M]s2#[C]s#[K])~1[H] (7)

is the mechanical contribution to the electrical admittance due to the piezoelectric
interaction. The presence of the shunt resistors induces two dynamics in addition to the
mechanical one: a purely electrical dynamic due to the reference arm and an
electromechanically coupled dynamic due to the measuring arm of the bridge.

In order to cancel out the "rst contribution to the numerator of equation (6), the standard
balancing condition and loss compensation for the readout bridge are assumed to be
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(8, 9)

which simpli"es equation (6) to

<
out

(s)

<
in
(s)

"

!sR
p
n(s)

(1#R
r
/R

lr
#sR

r
C

r
) ((1#R

p
/R

lp
#sR

p
C

p
) d(s)#sR

p
n (s))

. (10)

It should be noted that the zero pattern of the transfer function of the balanced bridge is
reduced to that of the mechanical contribution (7) to the piezoelectric admittance (3).

2.2. ACTIVE READOUT BRIDGE

In order to improve the measurement of the current, an alternative solution is to
substitute the shunt resistors with active current to voltage converters (Figure 2). In the



Figure 2. Piezoelectric self-sensing con"guration: active readout bridge.
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electromechanical frequency range, the operational ampli"ers can be assumed to be almost
ideal and the output transfer function of the bridge simpli"es to the following:
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Comparison of equations (6) and (12) shows that the active bridge solution does not
change the zeros pattern but reduces the poles pattern to the purely mechanical one.

Under the aforementioned standard balancing and compensation conditions (8) and (9),
equation (12) reduces to
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(13)

whose overall dynamics do not show any dependence from the readout bridge, at least as
long as the ideal behaviour of the operational ampli"ers may be, practically, assumed. Note
that the ideality assumption for the operational ampli"er leads to a improper transfer
function, as in the case of an ideal derivative action where the causality poles are out of the
frequency range of interest.

3. STRUCTURAL PROPERTIES

In the following, the structural properties of a #exible structure with self-sensing
piezoelectric transducers are studied in terms of poles and zeros patterns. The analysis is
performed in the cases of passive and active readout bridge con"gurations to illustrate their



Figure 3. Beam test rig (the position sensor at the beam tip is used for comparison only).

Figure 4. Plate test rig.
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peculiarities. The kind of bridge con"guration and its balancing condition are usually to be
chosen as design parameters.

The examples reported in the following are related to the experimental test rigs (see
Figures 3 and 4) described in Appendix A when not otherwise indicated.

3.1. POLE STRUCTURE

As the readout bridge is made of two arms in parallel, from equation (6) the poles of the
passive bridge are distinguished in two decoupled sets: a purely electrical one due to the
reference arm of the bridge

A1#
R

r
R

lr

#sR
r
C

rB"0 (14)



Figure 5. Poles of system (beam structure) transfer function with passive readout bridge: short circuit (#) versus
R

p
"10 k) (*)
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and an electromechanical one due to the piezoelectric arm of the bridge that shows
a coupling between the electrical and mechanical dynamics

A1#
R

p
R

lp

#sR
p
C

pB d (s)#sR
p
n (s)"0. (15)

Nevertheless, the contribution of the second term in equation (15) is usually negligible
and results in a slight increase of the real part of the poles of the mechanical structure with
short-circuited piezoelectric (R

p
"0). With reference to Figure 5, it is to be noted that the

natural frequencies of the system are only marginally a!ected (1}2%) because of the light
damping of the structure (model damping(0)001) and the small values of piezoelectric
interaction ([##] matrix).

In the case of an active bridge, it follows from equation (12) that the poles of the system
are not a!ected by the readout circuit. In this case, the underlying assumption is the ideality
of the operational ampli"er in the bandwidth of interest.

3.2. ZERO STRUCTURE

In the following, the dependence of the zeros of the system is studied as a function of the
bridge electrical parameters. By comparison of equations (6) and (12), the zeros of the
transfer function of the piezoelectric transducer do not depend on the kind of the readout
circuit and are given by
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where the dimensionless balancing parameter b and loss compensation parameter g are
de"ned as
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(17, 18)

when modal co-ordinates are adopted as mechanical degrees of freedom, the mechanical
contribution of equation (7) becomes
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where h
i
, f

i
and u

i
are the ith modal electromechanical coupling, damping ratio and natural

frequency respectively. The quadratic form for the modal electromechanical coupling terms
is due to the colocation of sensor and actuator functions.

The substitution of equation (19) into equation (16) leads to the following expression for
the zero equation:
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The system zeros are the intersections of the two following functions on the complex s plane:
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In order to simplify the analysis and to give a straightforward graphical interpretation of
the dependence of the zeros from the balancing parameter b, the following assumptions are
made:

d no modal damping (f
i
"0),

d ideal loss compensation (g"0).

With these assumptions, equation (20) can be simpli"ed into a biquadratic form of s and its
solutions can be assumed either as s"$iu

z
or as s"$u

z
with u

z
3R`.

1. In the case of s"$ju
z
, the zeros are imaginary and conjugate given by
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)
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where the left-hand term is a constant depending on the balancing parameter b and the
right-hand term is the superposition of all modal contributions, as shown in Figure 6.
Since the all residuals h2

i
/u2

i
are positive, the right-hand term function intersects the

u-axis giving way to an interlaced pattern with the natural frequencies. Depending on
the value of balancing parameter b, three di!erent type of intersections are found:

(a) for !R(b(0
~

each zero pair follows a pole couple $ju
i

(the zero-pole
alternating pattern begins with a pole couple),

(b) for 0
`
(b(b*"(1/C

p
) +=

i/1
h2
i
/u2

i
each zero couple follows a pole couple$ju

i
(the zero-pole alternating pattern begins with a pole couple) but the last,

(c) for b*(b(#R each zero couple precedes a pole couple $ju
i
(the zero-pole

alternating pattern begins with a zero couple).



Figure 6. Graphical interpretation of the system zeros. The complex and conjugate zeros are found as
intersections between horizontal lines (corresponding to di!erent values of the balancing parameter b) and the
curve (continuous line) relative to the superposition of modal contributions (dashed lines), i.e., second term of
equations (22). The real and opposite couple of zeros is found as intersection of the horizontal b line and the curve
(dot-dashed line) relative to the second term of equation (23).
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2. In the case of s"$u
z
, the zeros are real and opposite and given by
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i
)
, (23)

the right-hand term is represented by the dot-dashed line of Figure 6. The intersection
occurs only for 0

`
(b(b* .

The overall root locus of the zeros depending on the balancing parameter b is shown in
Figure 7. For b increasing from !R, the zeros are shown to migrate on the imaginary axis
towards, higher frequencies. For the case of electrical balancing condition (b"0), the last
pair of zeros goes to in"nity to re-appear on the real axis to reach the origin for b"b*. For
a further increase of b, the two real and opposite zeros move again on the imaginary axis
tending to the couple of complex conjugate poles of lowest frequency. The other couples of
complex conjugate zeros tend to the &&following'' couple of poles.

Although the reference to the &&last couple of zeros'' is correct only in the case of a discrete
(or discretized) mechanical system, it has been taken as valid also in the case of a continuous
system, characterized by an in"nite number of resonant frequencies. The migration on the
real axis of the &&last couple of zeros'' is needed in this case to preserve the relative order
between numerator and denominator of the system transfer function.

The zeros natural frequency as an explicit function of the balancing parameter b are
reported in Figure 8. This diagram has been obtained by standard numerical computation
from the state-space model of the system and should be compared with the same results
obtained with the graphical procedure shown in Figure 6.

Remark 2. The geometrical colocation of sensors and actuators intrinsic in the self-sensing
con"guration of the piezoelectric transducer leads to a zero pattern that depends only on
the balancing of the readout bridge, i.e., on a purely electrical condition. Note that a couple
of real and opposite zeros are to be expected for b greater than zero.



Figure 7. Zeros locus as a function of balancing parameter b in the case of g"0. (#) indicate zeros under
electrical balancing condition and (*) indicate poles.

Figure 8. Zeros diagram as a function of balancing parameter b in the case of g"0. (s) indicate complex and
conjugate zeros, (*) real and opposite zeros, and (#) zeros under electrical balancing condition. Continuous lines
indicate poles.
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The balancing condition b"b* can be physically characterized using a modal
co-ordinate transformation for the admittance of the piezoelectric of equation (3):
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Taking the mechanical term into account, the overall capacitance of the piezoelectric is
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u2
i

. (25)

This is the value that can be measured with an impedance meter when the piezoelectric
transducer is installed on a mechanical structure. From the de"nition of the balancing
parameter b given in equation (17), condition b"b* implies

R
p
C*

p
"R

r
C

r
, (26)

i.e. the bridge is balanced using C*
p

instead of C
p

as capacitance of the piezoelectric
transducer.

The substantial di!erence shown in Figure 6 between the zero pattern for b"0 and b/
indicates that the mechanical contribution to the piezoelectric capacitance must be
eliminated to determine the electrical balancing condition.

A further physical insight into the signi"cance of the electrical balancing condition b"0
may be reached as follows: in the case of the active bridge and taking the ideality of the
operational ampli"er into account, the voltage on the piezoelectric <

p
is equal to the input

voltage <
in

and the actuator and sensor equations (1) and (2) can be written as

(s2[M]#s[C]#[K])MX (s)N"![H]<
in
(s), (27)

!s[H]TMX(s)N#sC
p
<
in
(s)"I

p
(s). (28)

Together with the corresponding equation for the reference arm

sC
r
<
in
(s)"I

r
(s) (29)

and taking the electrical losses into account, the bridge output becomes
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In the case of electrical balancing condition and ideal loss compensation the output is
purely dependent of the mechanical states (velocities):

<
out

(s)"sR
p
[H]TMX(s)N . (31)

In this case, the input and output in#uence matrices of equations (27) and (31) depend on the
piezoelectric coupling matrix [##] and satisfy the condition of colocation one being the
transpose of the other, apart from a proportional term R

p
.

Remark 3. The migration of zeros is well known to be dependent on the absolute and
relative position of actuator and sensor. In the case of colocated actuator and sensor pairs,
zero couples are guaranteed to be interlaced with pole couples, i.e., moving the actuator and
sensor pair on the structure causes the zero couples to migrate between the pole couples. In
the case of non-colocated actuator and sensor pair, the relative position of actuator and
sensor may cause the migration of the zero couples across the pole couples, i.e., the
interlacing property is no longer guaranteed and several zero imaginary and conjugate
couples may move on the real axis. In the present case of a self-sensing piezoelectric
transducer, the interlacing property is always respected but the zero couple at the highest
frequency (whichever dimension is chosen for the model) can become real depending on the



Figure 9. Zeros locus as a function of balancing parameter b in the case of g:0)12. (#) indicate zeros under
electrical balancing condition and (*) indicate poles.

Figure 10. Zeros diagram as a functions of balancing parameter b in the case of g:0)12. (s) indicate complex
and conjugate zeros, (*) real and opposite zeros, and (#) zeros under electrical balancing condition. Continuous
lines indicate poles.
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balancing condition. The reappearance of this zero couple on the imaginary axis is
responsible for an interlaced condition with zeros at a frequency lower than that of the "rst
pole couple.

The presence of non-compensated electrical losses in the readout bridge deeply in#uence
the zero pattern of the system. The zero couples no longer move on the real or imaginary
axes and their relative damping may become large compared with that of the mechanical
structure. Figures 9 and 10 show the aforementioned behaviour even for a slight
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miscompensation of the losses (g:0)12). The presence of low mechanical damping, as
normally assumed for #exible structures, does not substantially change the picture relative
to the ideal case.

4. EFFECTS OF MODEL REDUCTION TECHNIQUES

In order to reduce the size of the mechanical model, the contribution of the modes
included in the function H

2
(s) of equation (21) can be split in two subsets. A "rst subset

includes the n
r
modes of lower frequency to be retained in the reduction procedure, and

a second subset includes all the neglected modes:
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Truncation is equivalent to the assumption that the high order modes do not contribute to
the system response. This leads to the following approximation:
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If the system is undamped and with ideal loss compensation, the zero structure of the
reduced model can be obtained following the same graphical procedure illustrated for the
complete model. When bP0

~
, the last couple of complex conjugate zeros tend to in"nity

on the imaginary axis. This couple then reappears on the real axis as soon as b becomes
positive.

A further increment of the parameter b lets the couple of real and opposite zeros converge
to the origin for a balancing parameter b*

r
smaller than that of the complete model
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If the migration of the last couple of zeros from the imaginary axis to the real axis at in"nite
frequency is taken as typical of electrical balancing conditions, it follows that truncation is
a reduction procedure suitable to study the balancing of a self-sensing readout bridge
circuit. The condition of electrical balancing of the truncated and the complete models are
in fact the same.

Remark 4. As truncation does not take the contribution at low frequency of the high order
mode into account, function H

2r
(s) can be signi"cantly di!erent than function H

2
(s). Model

reduction by truncation may then be inaccurate for what the evaluation of all couples of
zeros (but the last) is concerned.

To take the contribution of the high order modes into account, residualization assumes
that these modes give a static response. Function H

2
(s) is then approximated as follows:

H
2
(s):H

2r
(s)#H

2n
(s"0)"R

p A
nr
+
i/1

h2
i

(s2#2f
i
u

i
s#u2

i
)
#

=
+

i/nr`1

h2
i

u2
i
B . (35)

The error involved in the approximation of function H
2
(s) by equation (35) is usually

small in the frequency range of interest (u(u
nr
), and the residualization allows an



14 S. CARABELLI AND A. TONOLI
approximation of the system zeros to be obtained better than that obtained from truncation
(equation (33)).

Due to the presence of a constant term in equation (35), the last couple of complex
conjugate zeros go to in"nity on the imaginary axis for a not null value of the balancing
parameter (b

t
):

b
t
"

1

C
p

=
+

i/nr`1

h2
i

u2
i

'0. (36)

The residualized model is then electrically balanced for

b"b
t
'0. (37)

Since all contributions h2
i
/u

i
(residuals) are real and positive, b

t
is between the condition of

electrical balancing of the complete model and the condition of balancing b"b* that takes
the piezoelectric capacitance of equation (25) into account:

0(b
t
(b* . (38)

Starting from b
t
and increasing the balancing parameter b, the last couple of zeros of the

reduced system appear again on the real axis. From this point on the migration of the zeros
as a function of the balancing parameter follows that of the complete system.

Remark 5. From the above considerations it follows that residualization is not well suited
to determine the electrical balancing condition and the range of the balancing parameter
where real and opposite zeros can be found.

5. EXPERIMENTAL RESULTS

In order to validate the electromechanical model of a #exible structure with piezoelectric
transducers (section 2) and its structural properties (section 3), experimental tests have been
performed on the beam and the plate structures whose main characteristics are reported in
Appendix A.

The "rst objective of the experiments was to verify the model accuracy after its reduction
(equation (25) and section 4). In particular, the measured value of the piezoelectric
capacitance (Figure 11) includes the mechanical contribution. The latter can be obtained
from the model and its value must be subtracted from the measured capacitance C*

p
to

obtain the piezoelectric electrical capacitance C
p
to be used to balance the bridge according

to the condition of equation (8). Note that the condition of equation (26) corresponds to the
reappearance of the zeros on the imaginary axis as shown in Figure 8.

Figure 12}14 compare model and experimental transfer functions for the "rst and second
mode of the beam and the fourth mode of the plate. Note that the readout bridge has been
electrically balanced in the frequency range of the corresponding modes, i.e., equations (24)
and (35) have been evaluated about the modal frequencies.

Note that the correspondence of the experimental results with the analytic models is
obtained without the need of the "ne tuning of the model parameters. This enables the
experimental to analytic correspondence to be extended seamlessly for the phenomena
related to the zeros migration (section 3.2), as graphically shown in Figures 15 and 16, and
numerically in Tables 1 and 2.



Figure 11. Measured values of capacitances C
r

(mean 27)45 nF, standard deviation 0)05 nF) and C*
p

(mean
26.79 nF, standard deviation 0)37 nF). From the FE model, the mechanical contribution to C*

p
amounts to 0.65 nF.

Figure 12. First mode of beam structure: model (continuous line) and measured (dots) transfer functions with
electrically balanced active readout bridge.
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6. EQUIVALENT ELECTRICAL BALANCING CONDITIONS

The electrical balancing condition together with the loss compensation are essential to
achieve the ideal colocation of the system and its related system properties, for instance in
terms of stability of the controlled structure (interlacing property and passivity). In the
following, the electrical balancing and loss compensation are related to a condition of
minimum dependence of the self-sensing bridge output on the driving electrical input,
i.e., the output is proportional to the mechanical velocities only. This property can be



Figure 13. Second mode of beam structure: model (continuous line) and measured (dots) transfer functions with
electrically balanced active readout bridge.

Figure 14. Fourth mode of plate structure: model (continuous line) and measured (dots) transfer functions with
electrically balanced active readout bridge.
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practically exploited to tune the readout bridge to achieve electrical balancing and loss
compensation or, equivalently, to identify the electrical parameters of the piezoelectric
transducer.

The second order norm of the output voltage signal <
out

,

E<
out

(t)E
2
"A P

=

0

<2
out

(t) dtB
1@2



Figure 15. Zero migration near second mode of beam structure: model (continuous line) and measured (dots)
transfer functions.

Figure 16. Zero migration near fourth mode of plate structure: model (continuous line) and measured (dots)
transfer functions.
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TABLE 1

Zero migration near second mode of beam structure: model versus experimental values

Balancing condition Zero frequencies Relative error

R
r
(k) ) b g f

n
(Hz) f

n,exp
(Hz) (%)

9)3 !0)0276 0)491 126)0 125)6 0)3
9)4 !0)0171 0)414 127)3 127)2 0)1
9)5 !0)0067 0)338 133)6 133)6 0)0
9)7 0)0143 0)184 117)5 116)4 0)9

TABLE 2

Zero migration near fourth mode of plate structure: model versus experimental values

Balancing condition Zero frequencies Relative error

R
r
(k) ) b g f

n
(Hz) f

n,exp
(Hz) (%)

10)3 !0)0021 0)1044 166)3 166)4 0)1
10)4 0)0076 0)0275 167)2 167)5 0)2
10)5 0)0173 !0)0494 169)4 169)4 0)0
10)6 0)0270 !0)1263 173)7 173)5 0)1
10)7 0)0367 !0)2032 186)3 190)5 2)2
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"A
1

2n P
=

~=

D<
out

( ju) D2duB
1@2

"A
1

2n P
=

~=

S
in
(u) DH

act
( ju) D2 duB

1@2
(39)

is to be minimized when the system (equation (11) is derived by a band-limited signal with
a power spectral density S

in
(u) given by

S
in
(u)"1 for u3(!u

max
, u

max
), (40)

S
in
(u)"0 otherwise,

i.e., the following minimization problem is assumed:

min
b,g

E<
out

(u
max

; b, g)E
2
"min

b,g A
1

2n P
umax

~umax

DH
act

( ju; b, g) D2duB
1@2

. (41)

The minimum of the output norm as a function of the balancing parameter b and of the loss
parameter g is obtained by the following zero gradient conditions:

LE<
out

(u
max

; b, g)E
2

L(b, g)
"0, (42)
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where the partial derivatives relative to b and g are computed as

LE<
out

E
2

L (b , g)
"

1

2E<
out

E
2

1

2n P
umax

~umax

LDH
act

D2
L(b, g)

du

"

1

2E<
out

E
2

1

2n P
umax

~umax
A
LRe2 (H

act
)

L (b, g)
#

LIm2(H
act

)

L (b, g) Bdu . (43)

The real and imaginary parts of system transfer function H
act

are computed for s"ju from
equation (16) in the case of undamped mechanical system

Re(H
act

)"g, Im(H
act

)"uR
p
C

p
b!uR

p

`=
+
i/1

h2
i

m
i
(u2#u2

i
)

(44, 45)

and

L Re2(H
act

)

Lb
"0,

L Im2 (H
act

)

Lb
"2 Im(H

act
)uR

p
C

p
, (46, 47)

LRe2(H
act

)

Lg
"2g,

L Im2 (H
act

)

Lg
"0. (48, 49)

Substituting in equation (43)

LE<
out

E
2

Lb
"

1

2E<
out

E
2

1

nG
2

3
u3

max
(R

p
C

p
)2b!R

p

`=
+
i/1

h2
i

m
i
C
u

i
2

logA
u

i
#u

max
u

i
!u

max
B
2
!2u

maxDH ,

(50)

LE<
out

E
2

Lg
"

1

E<
out

E
2

1

n
gu

max
. (51)

In the limit case where the system input has unlimited bandwidth (u
max

PR), the "rst
partial derivative simpli"es to the purely electrical contribution

LE<
out

E
2

Lb
"

1

2E<
out

E
2

1

n C
2

3
u3

max
(R

p
C

p
)2bD (52)

and the minimum condition is found for b"g"0, i.e., when the readout bridge is
electrically balanced and loss compensated.

6.1. PHYSICAL IMPLEMENTATION

As already mentioned, the correspondence of minimal output signal and electrical
balancing and loss compensation can be expolited to tune the readout bridge. In practice,
a tuning procedure is always necessary to cope with the non-negligible uncertainty and
variability a!ecting the electrical parameters of the piezoelectric transducer.

In the case of manual tuning, a constant amplitude sweep is often adopted to drive the
input. Resistances R

r
and R

lr
are the knobs to be used to make the b and g parameters null.

The tuning procedure can be automized adopting a standard self-tuning scheme based on
the least-mean-squares (LMS) minimization of the bridge output signal (Figure 17).



Figure 17. Piezoelectric self-sensing con"guration: self-tuning readout bridge.
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Remark 6. The order of the "lter to be tuned must be limited to the "rst order to comply
with the model of the electrical contribution of the piezoelectric admittance. In fact, the aim
of the self-tuned arm of the bridge is to get rid of the electrical contribution (direct link) to
the output signal, the mechanical contribution being the desired output of the self-sensing
con"guration of the piezoelectric transducer.

7. CONCLUSIONS

The behaviour of a structure equipped with a single piezoelectric transducer has been
described in terms of its electromechanical admittance. This approach has enabled the study
of di!erent aspects of the use of the piezoelectric devices in a self-sensing context within
a single consistent framework. The active and passive versions of the readout bridge have
been compared, and the resulting system properties have been studied as a function of the
relevant balancing parameters.

It has been shown that the poles structure is di!erent for passive and active readout
bridges and, signi"cantly, does not depend on the bridge parameters for the latter. On
the other hand, the zeros structure is common to both con"gurations and strongly depends
on the bridge parameters and, in particular, on the balancing condition and on the
compensation of the losses. The migration of the zeros as a function of the balancing
parameter has been thoroughly described showing the possibility of non-minimum phase
behaviour of the self-sensing system.

The e!ects of di!erent reduction techniques have been studied and have been shown to be
essential for the correct assessment of the balancing condition.

The extension of the analysis to the case of structures equipped with multiple self-sensing
piezoelectric transducers is currently under study.
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APPENDIX A: TEST RIGS

A.1. BEAM

The beam test set-up of Figure 3 is made of AISI 2024 aluminium alloy, 249mm long,
32 mm wide and 1)6 mm thick. A PCE5 square piezoceramic transducer, 30 mm wide and
0)3 mm thick, is surface bonded 18 mm from the clamped section. A 0)1mm thick kapton
"lm is included in the bonding layer between the aluminium beam and the piezoelectric
transducer to avoid the risk of short circuit between them, regardless of the connection of
the piezoelectric.

With reference to the symbols adopted in equation (24), the main characteristics of the
dynamic model of the beam are reported in Table 3 as a function of the corresponding
mode. The modal natural frequencies u

i
have been measured with the piezoelectric short

circuited. The modal damping factors f
i

and the piezoelectric constants h
i

have been
identi"ed from the transfer functions of the self-sensing transducer obtained from a "nite
element model and the same transfer function measured during experimental tests.

As far as the electrical connection of the piezoelectric transducer is concerned, its upper
electrode is connected to the output of the power ampli"er, and the lower electrode to the
current sensing device, as shown in Figures 1 and 2.

The electrical parameters of the transducer C*
p

and R
lp

measured with an impedance
meter are reported in Table 4 in the frequency range of the "rst and of the second mode. As
the impedance measurement has been performed on the transducer installed on the beam,



TABLE 3

Modal parameters of the beam test rig

Mode no. u
i
(Hz) f

i
(%) h

i
(C/s2V)

1 20)8 0)1 !3)6]10~3
2 122)4 0)3 2)7]10~3
3 332)5 0)2 !2)5]10~3
4 650)3 0)2 1)0]10~1
5 1087 0)2 !6)8]10~2

TABLE 4

Electrical parameters of the piezoelectric and of the other
components of bridge circuit measured with an impedance
meter. A voltage amplitude of 100 m< has been adopted as
excitation of the piezoelectric device and reference

capacitance during the impedance measurement

Frequency range 10}100 Hz 100}350 Hz

C*
p

(nF) 27)5 26)8
R

lp
(M)) 10)9 2)7

R
p

(k)) 10)0 10)0
C

r
(nF) 27)5 27)5

R
lr

(M)) 10)8 2)6
R

r
(k)) 10)1 9)5
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the measured values include both the electrical and mechanical contributions of equation
(25). The values of resistances R

p
, R

r
and R

lr
adopted to balance the bridge in the same

frequency ranges are reported in the same Table 4.

A.2. PLATE

The plate test set-up of Figure 4 is made of AISI 2024 aluminium alloy,
400 mm]450 mm wide and 1 mm thick. The plate is clamped on all its sides to a 45 kg mass
steel base plate which is used as a seismic mass. Four rubber silent blocks are used to
support the base plate on the #oor of the laboratory. Six PCE5 rectangular piezoceramic
transducers 30 mm]20 mm wide and 0)5 mm thick are bonded on the upper surface of the
plate using the same kapton "lm adopted for the beam structure, to isolate the electrode to
the plate that is electrically grounded. The location of the piezoelectric transducers has been
chosen to maximize interaction with the "rst four bending modes of the plate as describe in
reference [14].

Each transducer is connected to a couple of dedicated electric terminals to be driven
individually. These terminals are left electrically #oating to ensure the inclusion of each
transducer in self-sensing bridge readout circuits. The experimental results of Figures 14
and 16 are obtained by the connection of piezoelectric transducers 1, 3, 4, and 6 to the same
electrical node; the connection is made so that transducers 1 and 3 are subject to the same



TABLE 5

Modal parameters of the plate test rig

Mode no. u
i
(Hz) f

i
(%) h

i
(C/s2V)

1 50)4 0)3 0
2 115 0)5 0
3 121 0)4 0
4 165 1)1 2)1]10~2
5 188 1)0 0
6 230 1)0 0

TABLE 6

Electrical parameters of the modal transducer formed by
piezoelectric transducers 1, 3, 4, 6 measured with an
impedance meter. A voltage amplitude of 100 m< has been
adopted as excitation of the piezoelectric device and
reference capacitance during the impedance measurement

Frequency range 100}300 Hz

C*
p

(nF) 46)3
R

lp
(M)) 1)3

R
p

(k)) 10)5
C

r
(nF) 47)0

R
lr

(M)) 1)3
R

r
(k)) 10)6
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electrical "eld relative to their polarization while transducers are connected with reversed
polarity relative to transducers 1 and 3. Transducers 2 and 5 are left open circuited. This
connection of transducers 1, 3, 4, and 6 makes them behave as a single transducer which
approximates to a modal transducer acting on the fourth #exural mode of the plate.

The main characteristics of the dynamic model of the plate are reported in Table 5 as
a function of the corresponding mode. The value of electromechanical model coe$cients
h
i
are obtained from the "nite element model of the plate and are relative to the adopted

connection scheme. Modal coe$cient h
4

has then been identi"ed by comparing the system
transfer function obtained from the "nite element model to the measured one. The reported
natural frequencies and modal dampings have been measured with short-circuited
piezoelectric transducers.

The electrical parameters of the transducer C*
p

and R
lp

measured with an impedance
meter are reported in Table 6 in the frequency range of the fourth mode. Similar to the case
of the beam the measured capacitance value includes both the electrical and mechanical
contributions. The values of resistances R

p
, R

r
and R

lr
adopted to balance the bridge in the

same frequency ranges are reported in Table 6.
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