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This paper presents an analytical approach to determining natural frequencies and mode
shapes of non-uniform flexural-shear plates with line translational spring and rotational
spring supports and line masses under action of axial forces. The governing differential
equation for vibration of a non-uniform flexural-shear plate under axial forces is established
first. It is shown that it is possible to separate a flexural-shear plate as two beams for free
vibration analysis, one is a flexural beam, and the other is a shear beam. The natural
frequency of the plate is equal to the square root of the square sum of the two natural
frequencies of the two beams, and the mode shape of the plate is the product of the
corresponding two mode shapes of the two beams. In this paper, power functions and
exponential functions are adopted for describing the distributions of mass and stiffness along
the height of the plate as well as the axial forces acting on the plate. The exact solutions for
free vibrations of non-uniform flexural-shear plates for several cases that are important in
engineering practices are derived. A numerical example shows that the calculated results are
in good agreement with the experimental data and it is convenient to apply the proposed
method to free vibration analysis of elastically restrained flexural-shear plates with varying
cross-section.

© 2000 Academic Press

1. INTRODUCTION

Experimental results on structural dynamic behavior obtained by Wang [1], Li [2], He
et al. [3], Li et al. [4-6], Jeary [7] and others have shown that the flexural deformation is
usually dominant in the total deformation of tall buildings with shear-wall structures in
their horizontal vibrations. Li et al. [4] suggested that for certain cases these shear-wall
buildings can be simplified as cantilever flexural beams or elastically restrained flexural
beams for free vibration analysis. An approach to determining free vibration of flexural
beams with variably distributed mass and stiffness was proposed by Li et al. [5,6].
However, if a shear-wall building has a narrow rectangular plane configuration (narrow
building), e.g., B/L <%, where B and L are width and length of the rectangular plane
respectively, the stiffness of each floor of the building may not be treated as infinitely rigid
[8]. Hence, such a narrow building may not be simplified as a cantilever flexural beam for
free vibration analysis. It was reported by Li et al. [8] that the whole deformation
characteristics of a narrow building with shear walls are similar to those of a flexural-shear
plate, i.e., the shear deformation in the longitudinal direction (the x-axis in Figure 1) is
dominant, and the flexural deformation in the y direction is dominant. This is due to the fact
that the flexural deformation of shear walls is dominant in the lateral deformation of such

0022-460X/00/310063 + 23 $35.00/0 © 2000 Academic Press



64 Q.S. LI

a narrow building. On the other hand, the main connections of shear-wall structures in the
longitudinal direction (the x direction in Figure 1) are floors, and shear deformation of each
floor, in-plane of that floor, is dominant. It is necessary to point out that the displacement
caused by shear deformation and flexural deformation are all in the z direction, i.e., the
displacement is a function of x, y and t. This analytical model of a flexural-shear plate is
adopted in this paper for free vibration analysis of narrow buildings with shear-wall
structures. In general, a tall building with shear-wall structures has variably distributed
mass and stiffness along its height; thus, such a building is treated as a flexural-shear plate
with variably distributed mass and stiffness for vibration analysis.

Exact solutions for free vibration of flexural plates or shear plates with variably
distributed mass and stiffness have been obtained only for certain plate shapes and
boundary conditions. For example, Chopra [9] developed an analytical approach for the
free vibration of a simply supported flexural plate with one change in thickness. Guo et al.
[10] recently found the analytical solutions for the free vibration of a stepped, simply
supported flexural plate with uniform thickness and abrupt thickness changes. Wang [1]
derived the closed-form solutions for the free vibration of cantilever shear plates with
uniformly distributed mass and stiffness. However, it is obvious that the distributions of
mass and stiffness of most narrow buildings are actually not uniform, especially, along the
building height. The concept of shear orthotropic plates was developed and used by Beiner
and Librescu [11]. They have presented an analysis of weight minimization for rectangular
flat panels with fixed flutter speed. To simplify the problem, a structural model that
considers transverse shear deformation only and neglects the bending stiffness of the plate
was adopted in their study. This has the effect of reducing the linear partial differential
equation for this problem from the fourth to the second order. Li et al. [8] found the
closed-form solutions for free vibration of non-uniform shear plates. It should be pointed
out that vibration analysis of flexural plates or shear plates and effect of shear deformation
on flexural plate vibration have been extensively studied in the past. The concept and
analytical model of the flexural-shear plates which are different from those of flexural plates
or shear plates were recently proposed by Li et al. [12]. An exact approach for determining
natural frequencies and mode shapes of flexural-shear plates with uniformly distributed
mass and stiffness was presented by them.

Apart from the several analytical methods for analyzing limited classes of plates, many
approximate and numerical methods have been developed. These include the Ritz method,

Figure 1. A flexural-shear plate.
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the finite strip method (FSM) and the finite element method (FEM). In general, the Ritz
method, can provide accurate solutions; however, it depends on the choice of global
admissible functions. Liew and his co-workers [13-18] have developed efficient Ritz
algorithms for the free vibration of various non-uniform plates having arbitrary boundary
conditions. The first known study on the problem of free vibration of symmetric cross-ply
laminated plates with elastically restrained edges was conducted by Liew et al. [18] using
the Rayleigh-Ritz method. Recently, Cheung and Zhou [19] studied the free vibrations of
tapered rectangular plates with an arbitrary number of intermediate line supports in one or
two directions using the Ritz method. The FSM presented by Cheung [20] has been
developed and applied vibration analysis of various plates over the years. Cheung and
Kong [21] investigated the free vibration of line-supported rectangular plates by applying
the FSM method. Guo et al. [10] studied the free vibration analysis of a stepped flexural
plate by applying FEM and FSE. Compared with FEM, the main advantage of FSE is its
efficiency, in particular for plates with regular geometry.

In this paper, an attempt is made to present an exact approach to determining free
vibrations of non-uniform flexural-shear plates with line translational spring and rotational
spring supports and line masses under the action of axial forces. In order to derive
closed-form solutions for the title problem, the functions for describing the distributions of
mass, stiffness and axial forces are selected as suitable expressions, such as power functions
and exponential functions. All exact solutions derived are expressed in terms of Bessel
functions and trigonometric functions. It is shown through a numerical example that the
selected expressions are suitable for describing the distributions of mass, stiffness and axial
forces for typical multi-story narrow buildings with shear-wall structures. The numerical
example also demonstrates that the calculated results are in good agreement with the
experimental data and it is convenient to apply the proposed method to free vibration
analysis of elastically restrained flexural-shear plates with varying cross-section.

A flexural-shear plate representing a narrow building with shear walls, in general, has
free—free edges in the longitudinal direction and clamped-free or spring—free edges in the
vertical direction. In order to extend practical applications of the methods proposed in this
paper, free vibrations of flexural-shear plates with various boundary conditions, including
classical and non-classical ones, are investigated.

The main purpose of this work is to present exact solutions and an efficient
computational method for the free vibration analysis of elastically restrained flexural-shear
plates with varying cross-section. In the absence of the exact solutions, this problem may be
solved using approximated methods (e.g., the Ritz method) or numerical methods (e.g., the
finite element method and the finite strip method). However, the present exact solutions
could provide adequate insight into the physics of the problem and can be easily
implemented. The availability of the exact solutions will help in examining the accuracy of
the approximate or numerical solutions. Therefore, it is always desirable to obtain the exact
solutions to such problems.

2. THEORY

As discussed above, a flexural-shear plate is a special orthotropic plate which deforms in
one direction (y) by bending only, and in the other direction (x) by shear only.

In order to establish the governing differential equation for vibration of a non-uniform
flexural shear plate under the action of line axial forces (Figure 1), an infinitesimal plate
element is cut from the plate. The size of the element is dx x dy. The dynamic loading acting
on the element is g(x, y, t)dx dy. The inertial force is (i, 0*W /0t* dx dy) and the damping
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force is (— C,, W /0t), where ni,,, W (x, y, t) and C,, are the mass intensity (mass per unit
area), dynamic displacement in the z direction and viscous damping coefficient at point
(x, y) respectively. The element shown in Figure 2 is rotated over an angle of 90°. According
to d’Alembert principle, all forces acting on the element including the inertial force should
satisfy the equilibrium conditions. From Y F, = 0, we have

Qs 00, . ow _ W
ox 0y ot

- mxy W = - q(xa Y, t)a (1)

where Q. and Q, are the transverse shear forces in the x and y directions respectively, given

by
0 o'W ow
Qy=—@<Kya—y2>—Nya—y, 2
ow
0. =K.V ®)
X

where K, and K, are the stiffnesses in the x and y directions respectively, and N, is the axial
force in the y-axis.
By substituting equations (2) and (3) into equation (1), we obtain
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This is the governing differential equation for vibration of a flexural-shear plate considering
the effect of axial force in the y direction. Setting g(x, y, t) = 0 one obtains the governing
differential equation for free vibration of the flexural-shear plate as follows:

o aw\ @[ PW\ o[ W ow 2w
k) - (KT ) - S (N ) -, -, S =0 (5
ax< "ax> ay2< yay2> ay< y ay> ST ©)

Figure 2. An element of the plate.
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In order to solve equation (5) it is assumed that
W(x, y, 1) = Z(x, y)exp(41). (6)

Substituting equation (6) into equation (5) leads to

iKﬁg_iKﬂ_iNaz + m..w?Z =0 (7
ox \© " ox oy*\" 7 oy? oy\" oy M@ =5

We assume that
C,y = 2Cohiy, (8)
and set
w? = — 12Cy + A). ©)

Obviously, if we set Cq =0, then equation (7) becomes the governing equation for
undamped free vibration of a flexural-shear plate, i.e., the governing differential equation of
the damped mode function has the same form with the undamped mode function. This
implies that the damped mode shape is the same as the corresponding undamped mode
shape under the condition given in equation (8).

Solving equation (9) for 4 gives

J=—CotinJ1-&, g=Co (10)

w

where ¢ is the critical damping ratio.
As is well known, the real part of 4 is the damping coefficient, and the imaginary part is
the damped circular natural frequency denoted as oy,

(Ud:kd(}), kd:\/l—éz. (11)

In general, ¢ is in the range from 0-01 to 0-02, 0-02 to 0-04 and 0-03 to 0-06 for steel structures,
reinforced concrete structures and brick masonry structures respectively. Even if & = 0-06,
kq = 0-9982, this means that the damped natural frequency is almost equal to the undamped
one.

It is necessary to point out that the damped mode function is the same as the
corresponding undamped mode function and the damped natural frequency is equal to the
corresponding undamped natural frequency multiplied by the coefficient k,. All the
relationships presented above are obtained subjected to the condition that the viscous
damping coefficient is proportional to the mass intensity.

In order to determine the undamped natural frequencies and mode shapes, the method of
separation of variables is adopted herein:

Z(x,y) = X(x)Y(y). (12)

It is assumed that K, K., ri,,, N, are functions of y as

Ky = Klf(y)’ Kx = KZQD(.VL mxy = Wl(ro(y)’ NY = Nlp(y)’ (13)



68 Q.S. LI

i.e., it is assumed that K, is directly proportional to #i,,. Since the values of K, and i, are
mainly dependent on the dimensions and materials of building floors, this assumption is
reasonable for many narrow buildings. Substituting equations (12) and (13) into equation (7)
one obtains

d2X (x) d? d*Y(y) d dY(y)
Ky =42 o e [Klf(Y)—dyz } Ty [Nl//(y) & } "
X (x) B Y(»o(y) '

Since the left-hand side of this equation is a function of x, and it is not related to y, the
right-hand side is a function of y, and it is not related to x; thus, the entire equation is
satisfied for arbitrary values of x and y only if both sides are equal to a constant. If it is
assumed that the constant is 762, then the following two independent ordinary differential
equations are obtained from equation (4):

K, deﬁ” 42X (x) = 0, (15)
dx
d? d? d d
| Ko s S v Y | memev -0 g
y y y y

where

Q?=w?—0% w=./0*+0Q%. (17)

It is obvious that equations (15) and (16) are two governing equations of vibration mode
shapes of two beams. One is a shear beam in the x direction, K ,, m, Q are the shear stiffness,
mass intensity and circular natural frequency of this shear beam respectively; the boundary
conditions of the shear beam are the same as those of the flexural-shear plate in the
x direction. The other one is a flexural beam, K f (), mo(y), Ny(y) and 0 are the flexural
stiffness, mass intensity, axial force and circular natural frequency of this flexural beam
respectively, the boundary conditions of the flexural beam are the same as those of the
flexural-shear plate in the y direction. The natural frequency of the plate is equal to the
square sum of the two natural frequencies of the two beams. This suggests that free
vibration analysis for a flexural-shear plate can be carried out by analyzing free vibration of
two independent beams, one is a shear beam and the other is a flexural beam, with the same
boundary conditions as those of the flexural-shear plate.

The general solution of equation (15) is easy to find as

Q Q
X(x) =Dysin—x + D, cos— x (18)

L%) 0z

where

Oy = —_. (19)
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The frequency equation and mode shape in the x direction can be determined by the use of
equation (18) and the boundary conditions in the x direction of the flexural-shear plate are
as follows:

1. A flexural-shear plate with free-free (F-F) edges in the x direction. In general, the
boundary conditions in the longitudinal direction of a narrow building belong to this
case, which can be written as

dX(x)
dx

=0 atx=0and x=L. (20)

Using equations (20) and (18) one obtains

Q":M’ k=1,2,... 21)
k
X (x) = sin%. (22)

2. A flexural-shear plate with clamped—clamped (C-C) edges or simply supported edges in
the x direction. The boundary conditions for this case are

X(x)=0 atx=0and L. (23)

Using equations (23) and (18) leads to

Kk
Qk=°‘ZL”, k=1,2, ... (24a)
Kk
X, (x) = sin%x. (24b)

3. A flexural-shear plate with clamped-spring (C-S) edges and a line mass is attached to the
spring edge. If the edge at x = 0 is clamped, then the boundary conditions, X (0) = 0, is
substituted into equation (18), leading to

D2:O.

Since the edge at x = L is a spring-supported one with line mass, the boundary
condition at this edge is

X/(L) = _(auL - meQZ)X(L)a (25)
where
dX(X) KuL my,
X'(L) = = =t 2
( ) dx x:La ayr, K2 s me K2 ( 6)

K,; and my, are the spring stiffness and line mass intensity (mass per unit length)
attached to the plate at edge x = L, respectively.
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Using equations (26) and (18) one obtains the frequency equation as

ta @ L @ (27
n—L=—-——
%2 o2 (dur, — meQZ)

The kth mode shape in the x direction can be written as

Q
Xi(x) = sin =~ (28)
£33

in which Q; is the kth circular natural frequency of the shear beam.

4. A flexural-shear plate with spring—spring (S-S) edges and line masses in the
x direction. If the opposite edges in the x direction of a flexural-shear plate are spring-
supported ones with line masses, then the boundary conditions can be written as

K, m
X'(0) = (a0 = buo @)X 0} tio =% buo = 1 (29)
X/(L) = - (auL - meQZ)X(L)’ (30)

where K, and m, are the spring stiffness and line mass intensity attached to the edge
at x = 0. Using equations (29), (30) and (18) one obtains the frequency equation of the
shear beam as follows:

Q QL — b, Q* QL
2 tan — + (dur, — bz R?) + (awo — bpo@?) [1 + % = b 2L
%) 0o Q 2%)

} =0. (31
Solving this equation one obtains a set of Q, (k=1,2,...). Substituting Q, into
equation (21) one obtains the kth mode shape of the shear beam in the x direction.

It is necessary to point out that equations (21), (24) and (27) can be directly obtained
from equation (31) by letting a4, = 0, a,; = 0 and a,o — 0, a,, = oo as well as a,, > o0
respectively.
The general solution of equation (16) is dependent on the expressions of K, N, and
m,,. Obviously, it is only possible to get the general solution of equation (16) for
several special cases which will be investigated as follows.
Case 1: The functions for describing the distributions of the flexural stiffness, axial force
and mass intensity are power functions

Ky =K (1+py)""% Ny=N1+py)"", g, =m(l + By, (32)
Substituting equation (32) into equation (16) and assuming that

Y (y) = t"J,(0), (332)

t=72.1+ By, (33b)
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A% A
K, <2> +N<2> — 6 = 0. (34)

Solving equation (34) for A gives

one obtains

(35)
Jy=— i, da=— s,
where
Z, =N+ /N2 + 062,
Z,=N,— N2+ 0, (36)
~02
Ne—zgl, eezy?{—l

It can be seen from equation (36) that Z; > 0 and Z, < 0; thus, 1, and 45 are real roots, and
A, and A, are pure imaginary roots.
The general solution of equation (16) for Case 1 can be written as

Y(y) = City "J(t1) + Caty " y(t1) + Csty "Li(t,) + Caty "1, (t2), n = a non-integer
(37)
or
Y(y) = Cyty"Jalty) + Cot{ "Y,(ty) + Cat5"L(t) + Cat; "K,(t), n = an integer, (38)

where J,(+), Y,.(*), L,(-) and K, (-) are Bessel functions of the first, second, third and fourth
kinds, respectively; t; and t, can be determined by substituting A; and A, into
equation (33b).

Case 2: The functions for describing the distributions of the flexural stiffness, axial force
and mass intensity are expressed as

Ky =K1+ By Ny=N1+By)"*?% iy, =m(l + y)". (39)

Substituting equation (39) into equation (16) leads to an Euler’s equation, the general
solution of which can be written as

Y(y) = Cy exp(rin) + C, exp(ran) + C; exp(ran) + C4 exp(ran) (40)
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where

n =In(1 + By),
n+1 n+ 1)?

f2=——5 i\/( 4)+9f Ny,
n+1 (n+ 1)

F3a =" _\/ 1 — 0y — Ny,
1

N, = 5 (N; — n—2), 41

NS
N mo?

N, = , 0j=—F—.

TBK Y BK,

Since 0, = Ny, ry and r, are real roots. If r; and r, are complex values, then

n+1 .
Y(y) = C exp(rin) + C, exp(ron) + exp <— — 17> (D3 cos @y + Dy sin @y), (42)

where

(n+ 1)
T

(p2:0f+Nf— (43)

Case 3: The distributions of flexural stiffness, axial force and mass intensity are given by
K, = K;exp(—by), N, =N exp(—by), my,, =mexp(— by). (44)

Substituting equation (44) into equation (16) one obtains a differential equation with
constant coefficients its general solution is

wcofy) [l ol )

b? b*
+C3cos< Zl—zy>+C4sin< Zl_Zy>:| (45)

where Z, and Z, are given by equation (36).
Case 4: The distribution of flexural stiffness axial force and mass intensity are uniform,
ie.,

K,=K;, N,=N, m,,=nm. (46)
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Equation (16) for this case becomes a differential equation with constant coefficients; its
general solution is easily found as

Y(y)=Cysinayy + Cycos oy + Czsinh o,y + C4 cosh o,y 47)

where

12=f 1 §,>4 1,
’ +@ *

N 16?
=

T2K,’ K.’

(48)

f

The general solution for all the cases discussed above can be expressed in a unified form as
follows:

Y(y) = CiS1(y) + C38:() + C383(p) + CuSa(y), (49)

where S;(y) (i = 1-4) are four independent solutions of equation (16), which can be found
from equations (37), (38), (40), (45) and (47) for one of the four cases discussed previously.

In order to conveniently establish the frequency equation for the title problem, by using
S;(y) (i = 1-4), we construct the following four linearly independent fundamental solutions
Si(y) (i = 1-4) as

S\ [8:10)0 510 Si0) SYO] ' [Si(y)
S20) [ _[52000 S2(0) S3(00 S2(0) | | S2(v) (50)
Ss( | |Ss(0) S5(0) S3(0) SFO) | S|
4] [S4(0) S4(0) Si(0) S4(0) Sa(y)

Obviously, §;(y) (i = 1-4) satisfy the following normalization condition at the origin of
co-ordinate system:

5,00 $i0) S0 SY©O7] [L 0 0 0
5.0 $:0) 830 S30)|_[0 1 0 0 51
540 S50 530 S30)| 7|0 0 1 0
5400 540 Si0 S¢0] [0 0 0 1

The advantage of using the fundamental solutions, S;(y), is that the mode shape functions in
the y direction can be easily expressed by initial parameters as follows:

_ N & M,0) - 1
Y0) = YOS,0)+005:0) ~ 2515500~ g
[0,(0) + N, (0)p(0) — u(O)M, (0)154(y). 52
where
u(y) = KO
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Y (0), ¢(0), M, (0) and Q,(0) are initial displacement, slope, bending moment and shear force
in the y direction at y = 0 respectively. Because two of the four initial parameters are known
for any type of support conditions, it is easy to establish the frequency equation of the
flexural-shear plate in the y direction by use of the fundamental functions. Free vibration of
a flexural-shear plate with classical and non-classical boundary conditions is discussed as
follows.

1. A flexural-shear plate with F-F edges in the y direction. The boundary conditions for
this case are given by

My(0)=0, 0,0)=0, M,H)=0, Q,H)=0. (53)

It can be seen from the above equation that two of the four parameters at the edges y = 0
and y = H are known. By using the boundary conditions at y = 0, we obtain

Y(y) = Y(0)S1(y) + @(0)[S2(y) — Nx(0)S4(»)] (54)
where
_ Ny(y)
N = 25 (55)

2. A flexural-shear plate with C-C edges in the y direction. The boundary conditions can
be written as

Y0)=0, ¢0)=0, YH) =0, ¢(H)=0. (56)
By using the boundary conditions at y = 0 and equation (52) we obtain
Y(y) = [S5(0) + u(0)S4(»)IM,(0) + S4(»)Q,(0). (57)
Then, using the boundary conditions at y = H gives the frequency equation as
SLH)[S5(H) + p(0)S4(H)] — So(H)[S5(H) + u(0)Si(H)] = 0. (58)

3. Aflexural-shear plate with hinged-hinged (H-H) edges in the y direction. The boundary
conditions are given by

Y(0)=0, M,0)=0, Y(H) =0, M,(H) =0. (59)

The boundary conditions at y = 0 are substituted into equation (52), leading to

_ ~ 1
Y(y) = [52(y) — Nx(0)S4(») 19 (0) — .0 S4(y)Q,(0) = 0. (60)

The frequency equation can be established by the use of equation (60) and the boundary
conditions at y = H as follows:

SL(H)[S>(H) — Nk(0)S4(H)] — S4(H) [S5(H) — Nk(0)S5(H)] =0. (61)
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4. Aflexural-shear plate with C—F edges in the y direction. If the edge at y = O is free, Y(y)
is given by equation (54). The frequency equation can be established by using the boundary
conditions at y = H,

Y(H)=0, ¢(H)=0 (62)
as follows:
S1(H)[S5(H) — Ng(0)S4(H)] — S (H)[S%(H) — Ng(0)S4(H)] = 0. (63)

5. A flexural-shear plate with S—F edges in the y direction. 1If the edge at y = 0 is free, then
Y (y) is given by equation (54). If translational spring and rotational spring supports with
a line mass are attached to the edge at y = H, then the boundary conditions can be written
as

M,(H) = K,zo(H),

(64)
Q,(H) = — (Kyy — myuz0*)Y (H)
or
K,(H)Y"(H) + K,z Y'(H) =0, 63)
Y"(H) + u(H)Y"(H) + Ng(H)Y'(H) — (ayg — byy0*)Y (H) =0,
where
KyH _ Myp
ayH:m, byH—m. (66)

K,u, K,g, m,y are the rotational spring stiffness, translational spring stiffness and line mass
intensity attached to the edge at y = H respectively.
The frequency equation can be determined from equations (54) and (65) as follows:

[K,uS'(H) + K,(H)S{(H)]A, — {K,uS2(H) + K,(H)S5(H) — Nk(0)
[K,uS4(H) + K,(H)S3(H)]} A, =0, (67)
where

A, = 85 (H) — Ng(0)SY/(H) + p(H)[S3(H) — Ng(0)S5(H)] + Nx(H)[S5(H) — Ng(0)S4(N)]
— (ayn — byu0?)[S>(H) — Ng(0)S4(H)], (68)
A, = S{(H) + u(H)S{ (H) + Nx(H)S1(H) — (ayn — byu0?)Sy (H).

6. A flexural-shear plate with S-S edges in the y direction. If translational spring and
rotational spring supports with a line mass are attached to the edge at y = 0 and the
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support conditions at the edge y = H are the same as those at the edge y = 0, then the
boundary conditions can be written as

My(o) = - K(pO(p(O)a
Qy(O) = (Ko — myOGZ)Y(O),

(69)
My(H) = K(qu)(H)>
0,(H) = — (K,yg — m,z0*)Y (H)
or
Ky(O)Y//(O) - K(/)OY/(O) = 09
Y"(0) + u(0)Y"(0) + Nk (0)Y'(0) + (ayo — byo0?)Y(0) =0, 70)

K, (H)Y"(H)+ K, ,gY'(H) =0,
Y"(H) + w(H)Y"(H) + Ng(H)Y'(H) + (a,z — byy0*)Y (H) =0,
where K 4, K0, My, are the rotational spring stiffness, translational spring stiffness and line
mass intensity attached to the edge at y =0. K,y, K,y, m,y are the rotational spring

stiffness, translational spring stiffness and line mass intensity attached to the edge at y = H.
The boundary conditions at y = 0 are substituted into equation (52), leading to

Y(y) = Y(0)S14(») + ¢(0)S34(»), (71)

where

gm()’) = §1(Y) — (ayo — by092)§4(J’),

§34(J’) = Cwogs(J’) — (Ng(0) — #0C<po)§4(J’)> (72)
K,
Cpo = Ky(O)'

The frequency equation can be determined from equation (71) and the boundary conditions
at y = H as follows:

[K,(0)S74(0) — K,0S'14(0)]1B, — [K,(0)S54(0) — K,0854(0)]B, = 0, (73)
where

B, = S5.(H) + p(H)S54(H) + Ng(H)S54(H) — (ayn — byn0?)S34(H),

74
Sta(H) + p(H)ST4(H) + Ng(H)S'14(H) — (dyn — byu0?)S14(H). 7

7. A flexural-shear plate with line masses, line translational spring and rotational spring
supports at the (q — 1) intermediate lines (Figure 3). It is assumed that the flexural stiffness,
mass intensity and axial force are described by continuous functions denoted by K,(y),
iy, (¥), Ny(y). The stiffness of the jth line translational spring and that of rotational spring
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Figure 3. A flexural-shear plate with line masses, line spring at the (¢ — 1) intermediate lines.
(Note: the line masses and rotational springs are not shown in Figure 3.)

and the jth line mass intensity are denoted by K;, K,,; and m; respectively, the fundamental
solutions for this case are S;(y), S»(y), S3(y) and S, (y).

The mode shape, Y;(y), of the first segment, y € [0, [, ], is dependent on the boundary
conditions at y = 0; the mode shape, Y;(y), of the ith segment can be written as

i—1 )
Vi) = Vi) + T o oi)Saly — HO — 5
j=1 Dy
i—1 1
_ K. —m:09)Y.(l:
jgl Ky(lz) [( ! " ) J( J)

+ .u(lj)Kq)j(/)j(lj)]S_4(y - IJ)H(y - lj)a ] = 2’ 3) - q, (75)

where H(-) is Heaviside function.
The frequency equation can be determined by the use of Y,(y) and the boundary
conditions at y = [,.

3. NUMERICAL EXAMPLE

Figure 4 shows a sketch of a 20-story building with narrow rectangular plane; the main
structures of the building are shear walls. Based on the field measurement of vibration of
this building [4], it can be treated as a flexural-shear plate for free vibration analysis. The
building foundation is treated as translational springs and rotational springs attached to
the building base. The procedure for determining the natural frequencies and mode shapes
of this narrow building is as follows.

1. Determination of the mass intensity of the flexural-shear plate. The mass intensity (mass
per unit area) of the flexural-shear plate, which represents the building considered, varies in
echelon along the building height (Figure 5).

The distributions of mass in different stories are found as

m; = 6146 x 10° kg,

my =my = m, =ms =4612x10° kg,
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Figure 4. A narrow building: (a) perspective drawing, (b) plane, (c) a transverse shear-wall.
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Figure 5. The distribution of mass intensity.

Mg = M7 = Mg = Mg = Mg = 4-644 x 105 kg,
Myy =My, =Mz =My, =mys = 4626 x 10° kg,

Mig = My7 =Myg = Mg = My = 4630)( 105 kg

The height of the first story is 4 m, and the height of the other floors is 3 m; so, the
equivalent mass for 3 m height of the first story is

6146 x 10° x3 = 4610 x 10° kg.
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It can be seen from the above results that the mass distribution from the first story to the

fifth story is almost uniform, the mass intensity of the plate in this story range is

_ 4612x10°
T 3x5x%x12

Ity = 2562 x 10° kg/m>.

From the sixth story to the 10 story,

4644 % 10°

O Y 2580 x 10® kg/m?.
M= 3 5% 12 x 107 kg/m

From the 11th story to the 15th story,

4626 x10°

i3 =——— =2 10° kg/m?.
13 IS x 12 570 x 10° kg/m

From the 16th story to the 20th story,

_ 4635x10°

iy = 00 X0 5575 %103 kg/m2.
M =3 5% 12 x 107 kg/m

The values of the mass intensity of the four-step plate divided above are shown in Figure 5.
It can be seen from the above results that the variation of the mass intensity of the plate is
relatively small; thus, it is reasonable to assume i as a constant, i.e., i = 2-:572 x 10° kg/m?.

2. Evaluation of the flexural stiffness K,(y). The distribution of shear walls along the
longitudinal direction of the building is uniform and the cross-sectional dimensions of the
shear wall vary in echelon along the building height. The total flexural stiffness of the shear
walls from the first story to the fifth story is found as

El, = 256194 x 10'*> N m?.

The flexural stiffness of the plate in this story range is the value of EI, divided by the length
of the building:

256194 x 102
T sx12

=4-2699 x 10! Nm.

The flexural stiffness of the plate from the sixth story to the 10th story is found as
K,, = 37126 x 10'* Nm.

From the 11th story to the 15th story,
K3, = 3-3806 x 10'! Nm.

From the 16th story to the 20th story,

K4, =29105x 10" Nm
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In order to use the method proposed in this paper to analyze free vibration of the narrow
building, the four-step distribution of the flexural stiffness is treated as a continuous one
given by

K, =29105(1 + By)* x 10",

(76)
B = 34627x 1073,

A comparison between the distribution of the flexural stiffness estimated by equation (76)
and the real one is given in Figure 6.
3. Evaluation of the shear stiffness K .. The shear stiffness of all the floors is

GF = 38718 x 10'° N.

The shear stiffness of the plate is thus a constant that is equal to the value of GF divided by
the story height,

38718 % 10'°

K.=K, = 1-2906 x 101° N/m

4. Evaluation of stiffness for the elastic foundation. It is assumed that the elastic
foundation is treated as translational springs and rotational springs attached to the
building base, as shown in Figure 4(c), which are found as

K,z = 49105 x 10'° N/m?,
K,z = 97038 x 101° N.

5. Evaluation of axial forces. Since the distribution of mass intensity of the plate is
uniform, the distribution of axial force is described by a linear function as

N, = No(1 + By). (77)

(2:9105x10"")
29105x10'"

1 (3-2207 x10"")
33806 x10"

3| (35466 x10")

37126 x10"

3| (38882 x10"")
42699x10" N . m

(42699x10"")

Figure 6. The distribution of flexural stiffness.
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In order to use the method proposed in this paper, f must be equal to the same value as that
given in equation (76). N, is determined from

H 2
No = J (7ig — N, (1 — ;) dy = 48857 x 10° N. (78)
0
6. Determination of the natural frequencies in the x direction. Since the plate, which
represents the 20-storey building considered, has F-F edges in the x direction Q is given by
equation (21), i.e.,

_2240.0636(k — )n
k= 60 :

Letting k = 1, 2, 3, one obtains 2 =0, Q, = 117.2897, Q5 = 234.5794.
7. Determination of the natural frequencies in the y direction. The boundary conditions of
the plate in the y direction can be written as

My(()) = 07
0,(0) =0,
My(H) = K(pH(p(H)7 (79)

Qy(H) = - KyHY(H)

The frequency equation is the same as equation (67) for this case, but b,z = 0. Solving the
frequency equation one obtains

0, = 84531, 0, =584112, 03 = 169-0273.
If the effect of rotation of the foundation on the natural frequencies is not considered, then
0, =85176, 0, =2859241, 03 = 169-9872.

If the effects of rotation of the foundation and the foundation elasticity on the natural
frequencies are not considered, then

0, = 85986, 0,=589972, 0;=170-2991.
If the effects of the foundation elasticity and the axial forces are not considered, then

0, = 86203, 0, =59-0437, 0;=170-3218.
It can be seen from the above results that the foundation of this building can be treated as
clamped end support, and the effect of the axial forces can be ignored.

8. Determination of the natural frequencies of the plate. After 0; and €, are found, the
circular natural frequency, wy, of the plate is given by

wi = /07 + 9,
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TaBLE 1

The circular natural frequencies of the narrow building

011 W21 D12 0322 W31 W32 W13 @323 W33

86203 590437 1176061 1313127 1703218 206-8004 234-7377 241-8962 2898916
[8:6209] [59-0441] [117-6073] [131-3152] [170-3821] [206-8973] [234-8792] [241-9104] [289-9984]
(863)  (5921)  (11769)  (13173)  (170:95)

Note: The data in square brackets are the values calculated by using the uniform four-step model, and the resutls
in parentheses are the measured data.

where wj corresponds to the jth mode shape in the y direction and the kth mode shape in
the x direction.

The calculated values of wj, are listed in Table 1.

The values of w, obtained by using the uniform four-step model shown in Figures 5 and
6 based on the calculation method proposed by Li et al. [12] and the measured values of
j, [4] are presented in Table 1 for comparison purposes.

9. Determination of mode shapes. X,(x) (k =1,2,3,...) are given in equation (25). Y;(y)
can be determined from equation (54) and the boundary conditions. Since the effects of the
axial forces and the elasticity of the foundation can be ignored, the plate has C-F edges in
the y direction, i.e., we have

M,=0, 0,0)=0,

(80)
Y(H) =0, ¢(H)=0.

Using equations (54), (80) and the calculated value of §; one obtains Y;(y) as listed in Table
2. The values of Y;(y) determined by using the uniform four-step model and from the field
measurement [4] are also listed in Table 2 for comparison purposes.

It can be seen from Tables 1 and 2 that the calculated results are almost the same as those
obtained based on the uniform four-step model. This illustrates that a non-uniform
flexural-shear plate can be treated as a uniform multi-step flexural-shear plate for free
vibration analysis and vice versa. It is also shown that all the calculated results are in good
agreement with the measured data, suggesting that the proposed methods in this paper are
applicable to engineering application.

4. CONCLUSIONS

An analytical procedure for determining natural frequencies and mode shapes of non-
uniform flexural-shear plates with line translational spring and rotational spring supports
and line masses under the action of axial forces has been proposed in this paper. It is shown
that a flexural-shear plate is a special orthotropic plate that can be simplified as two beams
for free vibration analysis. One is a shear beam, the other is a flexural beam. The natural
frequency of the flexural-shear plate is equal to the square root of the square sum of the two
natural frequencies of the two beams; the mode shape of the plate is the product of the
corresponding two mode shapes of the two beams. Thus, the analytical procedure for free
vibration of a non-uniform flexural-shear plate can be greately simplified. By selecting
suitable functions, such as power functions and exponential functions, for describing the



TABLE 2

The mode shapes in y direction

Story

no. 0 2 4 6 8 10 12 14 16 18 20

Yi(y) 0 0018 0-056 0-139 0-230 0-336 0-459 0-580 0-723 0-861 1-00
[0] [0-018] [0-056] [0-138] [0-230] [0-337] [0-459] [0-581] [0-724] [0-862] [1-0]
(0) (0-020) (0-057) (0-139) (0-230) (0-338) (0-460) (0-582) (0-724) (0-863) (1-0)

Y,(y) 0 0-092 0-295 0-514 0-684 0-701 0-583 0-317 — 0164 — 0349 - 10
[0] [0-092] [0-295] [0-515] [0-685] [0-701] [0-583] [0-318] [—0165] [—0350] [— 1:0]
(0) (0-093) (0-296) (0-514) (0-686) (0-701) (0-584) (0:319) (— 0165  (—0-350) (— 1-0)

Yi(y) 0 0227 0-606 0-757 0-526 0-181 — 0473 — 0-660 —0-399 0-302 1-0
[0] [0-227] [0-606] [0-756] [0-527] [0-180] [—0473] [—0-661] [— 0-398] [0-303] [1-0]
(0) (0-229) (0-607) (0-758) (0-528) (0-180) (— 0433) (0-662) (— 0-399) (0-304) (1-0)

Note: The data in square brackets are the values calculated by using the uniform four-step model, and the results in parentheses are the measured data.
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distributions of mass, flexural stiffness and axial forces, the exact solutions for the title
problem for four cases that are important in engineering practices are derived. The
numerical example shows that the selected expressions are suitable for describing the
distributions of mass, stiffness and axial forces for typical multi-story narrow buildings with
shear-wall structures. In fact, the four linearly independent fundamental solutions
developed in this paper and satisfying the normalization condition can be easily
constructed. The advantage of using the fundamental solutions is that the mode shape
functions can be expressed by initial parameters and the frequency equation for the title
problem can be conveniently established. In order to extend practical applications of the
methods proposed in this paper, free vibrations of flexural-shear plates with various
boundary conditions, including classical and non-classical ones, are investigated. The
numerical example demonstrates that the effects of elastic foundation and axial forces on
structural dynamic characteristics of common tall buildings (about 20 stories) are not
significant, and it is possible to regard a multi-step flexural-shear plate as a one-step plate
with continuously varying cross-section for free vibration analysis. It is also shown through
the numerical example that the calculated results are in good agreement with the
experimental data and the proposed procedure is an efficient method.
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