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In this paper an initial-boundary value problem for the vertical displacement of a weakly
non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends
of the beam is studied. The initial-boundary value problem can be regarded as a simple
model describing oscillations of flexible structures like suspension bridges or iced overhead
transmission lines. Using a two-time-scales perturbation method an approximation of the
solution of the initial-boundary value problem is constructed. Interactions between different
oscillation modes of the beam are studied. It is shown that for certain external excitations,
depending on the phase of an oscillation mode, the amplitude of specific oscillation modes
changes.
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1. INTRODUCTION

Flexible structures, like tall buildings, suspension bridges or iced overhead transmission
lines with bending stiffness, are subjected to oscillations due to different causes. Simple
models which describe these oscillations can involve non-linear second and fourth order
partial differential equations (PDEs), as can be seen, for example, in references [1] or [2]. In
many cases, perturbation methods can be used to construct approximations for solutions of
this type of second or fourth order equations. Initial-boundary value problems for second
order PDEs have been considered for a long time, for instance, in references [3-9]. These
problems have been studied in references [2, 10-15], using a two-time-scales perturbation
method or a Galerkin-averaging method to construct the approximations. For fourth order
PDEs the analysis is more complex. In a number of papers [1, 16-18], approximations for
solutions of initial-boundary value problems for fourth order weakly non-linear PDEs are
constructed using perturbation methods. In most cases, the solutions are approximated by
a single-mode representation, without justification as to whether truncation to one mode is
valid. In this paper, approximations are constructed using a two-time-scales perturbation
method. The interaction between the different oscillation modes is studied and
a justification is given in which cases mode truncation is valid. For fourth order strongly
non-linear PDEs numerical finite element methods can be used, as is done for example in
reference [19].

In this paper, we will consider the following initial-boundary value problem, which
describes, up to ((¢), the vertical displacement of an elastic beam with a linear spring force
and a constant gravity force acting on it, and with an external force F(t) acting on the ends
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of the beam in horizontal direction:

2 ks

Wi + Wopex + p2W = a(F(t) + f wﬁdx)wxx, O<x<mt>0, 1)
T Jo

w(0,1) =w(m,t) =0, t=0, )

Wix(0,8) = wii(m, 1) =0, >0, 3)

W(X, 0) = WO(X)a Wt(x7 0) =W (x)’ 0 <x< T, (4)

where F(t) = u(n,t) — u(0,¢) and ¢ a small dimensionless parameter. For the derivation of
this problem we refer to section 2.

In this paper, formal approximations, i.e., functions that satisfy the differential equation
and the initial and boundary values up to some order in ¢, will be constructed for the
initial-boundary value problem (1)—(4), using a Fourier-mode expansion and a two-time-
scales perturbation method. The interaction (energy exchange) between the different
oscillation modes will be considered for the cases F(t) = 0 (no external forcing, that is, the
ends of the beams are fixed in horizontal direction, i.e., the case of free vibrations) and
F(t) = Ccos(wt) (external forcing). It will be shown that in the case F(t) = 0 the amplitudes
of the different modes are constant and the only interaction between the modes occurs in the
phases of the different oscillations modes (for example, mode n causes a phase shift of the
phases of all other modes m # n). No internal resonances occur. In this paper, we mean by
internal resonance that there is an energy transfer from one oscillation mode to another
oscillation mode. So by no internal resonance we mean no energy transfer occurs between
the different oscillation modes (up to ((g) on a time-scale of order ¢~ '). The case
F(t) = Ccos(wt) is more complicated. It will be shown that for most values of w the analysis
is similar to the case F(t) = 0. The influence of F(t) in that case is of (’(¢) on a time-scale of
order ¢~ !, and extra terms appear in the @ (g)-approximation. However, for specific values of
o, ie., o ~ 2w, where wy is an eigenfrequency of the linearized system (¢ = 0), the
influence of F(t) is of (1) on a time-scale of order ¢~ . The amplitude of mode k is no longer
constant, but the amplitudes of all other modes remain constant. The mode interactions
remain restricted to phase shifts of the phases of the different oscillation modes. Similar
mode interactions have been studied for example in references [11, 12, 20, 21], but to our
knowledge these mode interactions for weakly non-linear beam equations have not yet been
studied thoroughly. The analysis presented in this paper hold for all p2-values, which is
different from the analysis in references [11] or [12], where mode interactions and internal
resonances occur for specific p2-values.

The outline of the paper is as follows. In section 2, the initial-boundary value problem
(1)-(4) will be derived. In section 3, we apply a two-time-scales perturbation method to the
initial-boundary value problem (1)-(4). We show that for most values of w the amplitudes of
the different oscillation modes remain constant. For specific wm-values the oscillation of
specific modes changes and the amplitudes of certain modes are no longer constant. We
construct a formal approximation of ((g) for solutions of the initial-boundary value
problem for the cases F(t) = 0, F(1) = Ccos(wt) with w # 2w, + ex and F(t) = C cos(wt)
with w = 2w, + ex, where o € R is a detuning parameter. In section 4, the mode interactions
between the different oscillation modes will be studied in detail for the three cases
mentioned above. In Section 5, some conclusions and general remarks will be given.
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2. A MATHEMATICAL FORMULATION OF THE PROBLEM

To derive the equations of motion for an elastic beam we will follow part of the analysis
given in reference [22]. We consider an elastic beam of length [, simply supported in
a vertical direction. An external force will be applied at the ends of the beam such that the
ends of the beam can move in horizontal direction only. Oscillations are possible due to the
strain of the beam. The x-axis is defined to be the horizontal axis. The z-axis is defined to be
the vertical axis. The y-axis is perpendicular to the (x, z)-plane. We introduce the following
symbols: u is the mass of the beam per unit length, p the mass density of the beam, A the
area of the cross-section Q of the beam perpendicular to the x-axis (so u = pA), E the
elasticity modulus (Young’s modulus), I the axial moment of inertia of the cross-section.
The inertial axes of the cross-section Q are the y- and z-axes, so I = HQ z2dy dz. We assume
that the beam can move in the x- and z-directions only. The vertical displacement of the
beam from rest is w = w(x, t), the horizontal displacement of the beam is u = u(x,t). The
curvature of the beam in the (x,z)-plane can be approximated by w,, as follows. From
Figure 1 we can see that the radius # of the curvature is given by #4 ¢ =~ 4s, where A¢ and
As are defined in Figure 1. Furthermore, tan 4 =~ Aw/Ax and 4s ~ /(4x)* + (4w)*. For
Ax — 0 this gives us Z = (1 + w?)3?/w,,. Assuming that w, is small with respect to 1, we
can approximate the curvature, which is equal to 1/%, by w,.. Using this, the strain ¢, due
to “pure” bending of a line-element of the beam at a distance z from the line of centroids (the
X-axis) is given by

(# —z)Adp — Ao z
o —— =
= RAQ R

Furthermore, the strain ¢, due to stretching of the line of centroids of a line-element of the
beam can be approximated by u, + % wi as follows. From Figure 2 and the definition of
strain due to stretching, which can be found in any standard textbook on mechanics (see, for
example, reference [23]) we have the following expression for ¢,q:

. JAX + Au)? + (Aw)? — Ax
x0 = .

Ax

w(x+4x)

Figure 1. The bending of a line-element Ax.



204 G. J. BOERTJENS AND W. T. VAN HORSSEN

w w
Aw

T
0
u [
i
'

Ax
Au

Figure 2. The stretching of a line-element Ax.

For Ax — 0 this gives us eyo = \/1 + 2u, + uZ + w? — 1. By assuming that u? is small with
respect to u,, and by expanding the square root as a Taylor series, we have e, X u, + 3 W3.
The total strain of a line-element of the beam at a distance z from the x-axis is given by
Ex = Ex0 + Exx = Uy + 3W2 — zw,,. It is shown in reference [22] that, using Hooke’s Law,
the work performed to deflect the beam from its initial position, is

1 1 1 2 1 1
A (t)==EA Uy +=w2 | dx +<EI | (wy)?dx. (5)
254, 2 2,

The kinetic energy of the beam is given by

610 = 3 1 J NUERTLR ©)

Using equations (5) and (6) the Hamiltonian integral is
t;
F =) = 70 = | (0 - o)
t

1 t, 1 1 2
= ZJ j {EA[ux + 2w§:| + EI(Wyy)? — u[ 1 + wf]}dxdt. 7
4

0

Using Hamilton’s Principle, which states that the variation of # is equal to 0, the Euler
equations for this problem are

0 1
puy — EA % |:ux + P Wazc:| =0, @®)
8 1,
Wy + Elw, oo — EA a Wy | Uy + E Wx = 0. (9)

The system given by equations (8)-(9) can be simplified by the following assumption,
introduced by Kirchhoff (see reference [24]): the velocity of the beam in x-direction, u;, is
small compared to w, and <can be neglected in equation (7), so
F =3[0 [o{EATu, +3w21* + EI(w,,)* — u[w?]} dxdt. The system given by equations
(8)-(9) can now be simplified to

d 1,

1
Wy + EIw, oo — EAW,, |:ux + 3 w§:| =0. (11
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Figure 3. A simple model of a suspension bridge.

From equation (10) we get u, + 3 w2 = ¢, is a function of ¢ only. Integrating &, with
respect to x from O to [ gives us [o(uc +3w?)dx =e,l which means
u(l,t) — u(0,6) + 4 [owidx = eyl = (u, + 2w2) 1 Substituting this into equation (11) gives
us the following equation for the vertical displacement w:

1

EA 1
Wy + EIW,yn — T [u(l, 1) — u(0,1) + 3 J w2 dx} Wy, = 0. (12)

0

If other external forces are considered, the right-hand side of equation (12) becomes
non-zero.

In reference [ 1] a survey of literature on oscillations of suspension bridges is given. Using
a similar analysis, we will derive simplified model for non-linear oscillations in suspension
bridges, where the vertical displacement of an elastic beam is given by equation (12). We
model the suspension bridge as a beam of length [. In this paper, the stays of the bridges are
modelled as two-sided springs, as sketched in Figure 3. In reference [12], the stays of the
bridge are modelled as two-sided springs with a small non-linearity (ew?). A next step would
be to model the springs using w* and w~, as is done, for example, in reference [1]. The
torsional vibration of the beam is not taken into account (that is, is considered to be small
compared to the vertical vibration). We introduce the following symbols: «, the spring
constant of the stays of the bridge, and W, the weight of the bridge per unit length, which we
consider to be constant, i.e., W = ug, with g the gravitational acceleration. The equation
describing the vertical displacement of the beam then is

EA I
UWy + Elwxxxx + Kw= —ug + T |:M(l, t) - U(O, t) + 5 J\ WJZC dx:| Wix- (13)
0

Equation (13) will be simplified by eliminating the term — pg using w = W + (ug/x)s(x),
where s(x) satisfies the following time-independent linear equation with boundary
conditions:

sP(x) + —s(x) = — 0<x<l,

K
E 5
sO) =s()=0, s@0)=s2()=0.

It can be shown that with B = (x/4EI)Y*, s(x)= cos( fx)(cosh(Bx)— 1 + (sin(pl)sin

(Bx)cosh(fx) — (sinh(pl)cos(fx)sinh(fx))/(cos(pl) + cosh(pl)). The term (ug/x)s(x)
represents the deflection of the beam in static state due to gravity.
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Using the dimensionless variables

_ T i n\* (EI ”Zt 41\
w, x—lx, =7 r R u_nA nu,

equation (13) becomes

w =

SN

4K
o+ Weees + (= ) — W
it + XXXX + <n> EI

AA[(1A _ _ 2 (" 1
=222 2 ) — a0,1) + 2| w2ds ) + - (14)
I11\41 T Jo K

with

_ 2 (" l
H = <a(n,t) —u(0,7) + J w,%d>6>s<2) < »z)
T Jo Y
41 (7 l l l
+U Wes® ( x)dx(wﬁ +“gs<2>< x>:|
| Jo T K A T
2w L o\ aelo 2L oL,
+7r;cA[L<S . dx wx—_g—i-KAs . .

Assuming that the area A of the cross-section is small compared to the length [, we put
& = A/l, with £ a small parameter. We assume w, and therefore w, to be of (0(¢). Furthermore,
we assume that the deflection of the beam in a static state due to gravity, (ug/x)s, is small
with respect to the vertical displacement w, which is of order &. This means we assume ug/x
is O(&"), with n > 1, since s(x) is of order 1, as can be seen from the expression for s which
was given above (as well as sV (x) and s@(x)). Since # = (1), equation (14) becomes

K

Wit + Weges + W _14 [52<a(n, t)—u(0,7) + 2[ widx)wxx + 6?(5'”)}

4171 T Jo
withm > 2 and p*w = (I/n)* k/EI. Setting ¢ = 4(A4/1)&2, we can now introduce the following
initial-boundary value problem, which describes, up to (¢"), n > 1, the vertical
displacement of an elastic beam with a linear spring force and a constant gravity force
acting on it, and with an external force F (t) acting on the ends of the beam in horizontal
direction:

2 T
wn—i-wxxxx—i-pzw:s(F(t)—i-—J W,chx>wxx, O<x<m t>0, (15)
T Jo
w(0,t) =w(rn,t) =0, t=0, (16)
Wr(0,0) = we(m,1) =0, =0, (17)

w(x,0) = wy(x), wi(x,0) = wi(x), 0<x<m, (18)
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where F(t) = u(n,t) — u(0,t) and ¢ a small dimensionless parameter. In this paper, we are
interested in an harmonic excitation of the ends of the beam in horizontal direction, which
means we take F(t) = Ccos(wt), with C a constant # 0 which represents the amplitude of
the external excitation and w the frequency of the external excitation. Since we consider
u, small compared to w;, it can be shown that o must be of ¢(1). Furthermore, @ can be
taken positive without loss of generality. Furthermore, ¢ and p are constants with 0 < e« 1
and p > 0, w = w(x, t) is the vertical displacement of the beam, x is the co-ordinate along the
beam, wq(x) is the initial displacement of the beam in vertical direction and w,(x) is the
initial velocity of the beam in vertical direction. All functions are assumed to be sufficiently
smooth. The first two terms on the left-hand side of equation (15) are the linear part of the
beam equation, p>w represents the linear restoring force of the spring, (fgwﬁdx)wxx is due
to the strain of the beam and F(t)w,, is due to an external force acting on the ends of the
beam in horizontal direction. The boundary conditions describe a simply supported beam.
As we showed above, the initial-boundary value problem (15)—(18) can be considered as
a simple model for non-linear oscillations in suspension bridges. In the next section,
a formal approximation of the solution of (15)-(18) will be constructed.

3. THE CONSTRUCTION OF FORMAL APPROXIMATIONS—GENERAL CASE

In this and the next section, we construct a formal approximation of the solution of the
initial-boundary value problem (15)—(18). When straightforward e-expansions are used to
approximate solutions, secular terms can occur in the approximations. To avoid these
secular terms we use a two-time-scales perturbation method.

The boundary conditions imply that w can be written as a Fourier sine-series in x:
w(x,t) =Y qn(t)sin(mx). Substituting this series in equation (15), we obtain the
following system of equations:

o0

S (G + (K* + p?)q)sin(kx) = — e( 5 (F(r) Ly m%i)kzqksm(kx)).

k=1

Using orthogonality properties of the sine functions on [0, ] it can be shown easily that the
equation for each g, is

g+ (n* + p*) g, = — 8<F(t) + Y mzqﬁ.>n2qn (19)
m=1

for n=1,2,3,..., with F(t) = Ccos(wt) and where g, must satisfy the following initial
conditions:

q,(0) = 2J wo(x)sin(nx)dx, ¢,(0) = 2[ wy (x)sin(nx)dx.
T Jo T Jo
As stated above, terms that give rise to secular terms may occur on the right-hand side of
equation (19). To eliminate these terms we introduce two time-scales, t, = t and t; = &t, and
assume that ¢, can be expanded in a formal power series in ¢ that is,
4n() = qu.o(to, t1) + eqn.1(to,t1) + €@ 2(to,t1) + ---. We substitute this into equation (19)
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and collect equal powers in ¢. The ¢(e°)-problem becomes

2

A2 qn,O + W% qn,O = 07 > 0’ (20)
ot ’
2 " .
4n0(0,0) = > f o (x)sin () dx, 1)
T Jo
0 2 (" .
O 4o0.0)=2 f iy (x)sin (1) dx (22)
5t0 T Jo

forn=1,2,3,..., with , = . /n* + p%. The general solution for equations (20)—~(22) is
qn,0(to,t1) = Ay 0(ty)cos(w, to) + By o(ty)sin(w, to), (23)

where A4, o, B, o satisfy the following initial conditions:

1 0
A1,0(0) = ¢,,0(0,0), B, 0(0) = —— 4n.0(0,0).
Cl)n,_ 51?0
Next, we consider the ¢(e!)-problem
02 52 w
G_t(z) qn,1 + wri,Qn,l =—2 qu,o - <C cos(wty) + 2—:1 mzqrzn,o> n*qy. 0, (24)
0,00=0 d 0,0) = g (0,0) (25)
qn,l s — Y 6[0 qn,l b - 6[1 qn,O )

forn=1,2,3,.... We substitute equation (23) into equation (24) and get

2

d
W qn, 1 + wr%,,qn, 1= 2wn,,<
0

An o . dBn 0
— sin(w, tg) — — cos(w, t
g Sin(@n,to) = =g cos (o, to)

— <C cos(wtg) + Y, m* jm> n*(A,, o cos(w, to) + By osin(w, to)) (26)
m=1

with
Im=5(An 0+ B o) + 5(450 — Brzn,O)COS(zwm,,to) + A, 0Bm,osIn (2w, to).

Since cos(w,, t) and sin(w, to) are homogeneous solutions of ¢, 1, we want the coefficients
of cos(w, to) and sin(w, to) on the right-hand side of equation (26) to be equal to zero
(elimination of secular terms). This gives us equations that 4, o and B, o have to satisfy. In
appendix A we show that for specific values of w, the term C cos(wt,) gives rise to secular
terms. This means that for specific values of w, i.e., = 2w, + O(e) (k = 1,2,3, ...), extra
terms appear in the equations for 4, o and B o (for n # k the equations remain the same).
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For F(t) = 0 it can be seen easily from equation (A2) (see Appendix A) that the equations
for 4, ¢ and B, o are

dd,, 1n 3
i 0 Z_ B, [5 n*(Aro+ Bio)+ Y m*(Ano+ Bﬁ.,o)}, (27)
1 m+#n
dB,o 1n 3
g 0 Z_ Ano [5 n2(A20+ B2o)+ Y m2(A2 o+ Bfn,o)] (28)
1 m#n

forn=1,2,3, .... From equations (27) and (28) we see that if 4, ((0) = B, o(0) = 0 then
Vit >0A4,0(t1) = B, o(ty) =0. So, if we start with zero initial energy in the nth mode, there
will be no energy present up to ((¢) on a time-scale of order ¢~ !. We say the coupling
between the modes is of @(¢). This allows truncation to those modes that have non-zero
initial energy. In this case, there is an interaction between all modes with non-zero initial
energy, but this interaction does not give rise to internal resonances. It will be shown in
section 4.1 that all modes oscillate with a constant amplitude and a linearly changing phase,
depending on the initial amplitudes of the oscillation modes. We will discuss equations (27)
and (28) in more detail in section 4.1.

For F(t) = Ccos(wt) with w # 2w, + ea, it can be seen easily from equation (A2) that the
equations for A4, o and B, , are the same as for the case F(t) = 0, i.e. the equations are given
by equations (27) and (28). The only influence F(t) has is of ¢(¢) on time-scale of order ¢! in
the homogeneous solution for ¢, ; as is shown at the end of this section.

For F(t) = Ccos(wt) with @ = 2wy, + ex, where aeR of (1), it can be seen from
equation (A2) that the equations for 4; ¢ and B, o are

dA4 1 k?
k0 *7Bk,0 kz(Ak0+BkO )+ Z An o+ Bro)
dt, 4w mak
1 k? .
——— C(Ay. osin(aty) + By gcos(aty)), (29)
4wy,

dB lk2 3
k0 = |:k2(Ak0+BkO+Z *(Am0 + B, o)j|

dr, _4co_kp et
1 k? .
_— = C(Ak ()COS(OCtl) Bk’osln((xtl)). (30)
4 wy,

For n # k equations (27) and (28) still hold. We see that for F(t) = Ccos(wt) with
o = 2wy, + eo the influence of F(t) is of ¢(1) on a time-scale of order ¢~ ! and extra terms
appear in the equations for A4, o, By o. We see that if 4, ((0) = B, ¢(0) = 0 then for all
t; > 04, o(t1) = B,.o(t;) = 0, which holds for all n. So, if we start with zero initial energy in
the nth mode, there will be no energy present up to @(¢) on a time-scale of order ¢~ . We say
the coupling between the modes is of ¢'(¢g). This again allows truncation to those modes that
have non-zero initial energy. In this case, there is an interaction between all modes with
non-zero initial energy and this interaction does not give rise to internal resonances. It will
be shown in section 4.2.2 that for all modes n # k the oscillation has a constant amplitude
and a linearly changing phase, depending on the initial values of the oscillation modes.
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Mode k, however, oscillates with changing amplitude and phase, due to the influence of F(t).
We will discuss equation (29) and (30) in more detail in section 4.2.2.

When A4, , and B, , have been determined, and thus ¢, o, we have constructed an
approximation v of the exact solution w of the initial-boundary value problem (15)-(18):

v(x,1;€) Z (@n.0(tos11) + &qn,1(to, 1)) sin (nx) 1)

with g, o(to,t1) = A o(t1) cOs(wy,to) + By o(ty)sin(w, to) and g, 1(to,11) = =g (to, 1) +
Ay, 1(t1) cos(my to) + B, 1(t1)sin(w,, to), with g™ an 1nh0m0geneous solution of equation
(26). A,.1(t;) and B, {(t;) can be constructed such that secular term in the (¢?)
approximation are eliminated. Since we are interested in the /(1) and ((¢) approximations,
we consider A4, ; and B, ; to be constant functions which depend on the initial values for
d..1 Which are given in equation (25). From equation (A2) in Appendix A it can be shown
elementarily that, for w # 2wy, + e, g™ is of the following form:

gy = D1 cos(3m, to) + Dysin(3w, to) + Y, E 1 mcos((2w,, — o, )to)

m#n

+ Y Es wsin(Q,, — o, )t) + Y, Fi mcos(Q2w,, + w,)to)

m#n m#n

+ Y Fypsin((Ro,, + o,)to)

m#n
+ G Ccos((w — w, )to) + G, Csin((w — w, ) to), (32)

where Dy, D5, Ey s E2 s Fim> Fo.m» G1, G, can be determined easily as functions of 4, ¢,
B, 0> Am.0> Bm,o- For o = 2w + ea, g™ is given by equation (32) with G; = G, = 0. The
approximation v given by equation (31) satisfies equations (15)-(18) up to order ¢ In
reference [12] an asymptotic theory for a similar problem has been presented. This
asymptotic theory implies that approximations v as constructed above are ()
approximations of the exact solution on a time-scale of order ¢~ '.

In the next section, we discuss the behavior of the solutions for A4, ¢, B, o for three
different cases: F(t) = 0, F(t) = C cos(wt,) with o # 2w, + ex and F(t) = Ccos(wt,) with
o = 2wy, + eo, with o = 0 and o # 0 (detuning).

4. MODAL INTERACTIONS

4.1. THE CASE F(1)=0

In the previous section, equations (27) and (28) were given for A4, , and B, ,. We
introduce polar co-ordinates to transform these equations

An,O = rn COS((,{)”), Bn,O = rn Sin(d)n) (33)

with the amplitude r, = r,(t;) and the phase of the oscillation ¢, = ¢,(t;). We get the
following equations for r,, ¢, forn =1,2,3,...:

: 1 n?[3
iy =0, ¢n=—4£[ 240Y m2 cf,,} (34, 35)

m#n
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where the dot represents differentiation with respect to t;. The solution for equations (34)
and (35) is

1n’[3 ,, 22
Ty = Ci,n» ¢n = 40 5” Cin+ Z M*Cy m |1 + Co,ns
n, m#n

for n=1,2,3,..., where ¢, ,, ¢, , are constants of integration determined by the initial
values 4, (0) and B, o(0). In the phase space (r,, ¢,) we have the orbits given by r, = ¢y,
and ¢, < 0. In this case, the interaction between the oscillation modes is restricted to
interaction between the phases of the modes. This interaction depends on the initial values.
This means the following: if we increase the initial amplitude of mode n, then due to the
interaction with for instance mode m the frequency of mode m becomes higher, and mode
m then has a shorter period. There are no internal resonances and no oscillation modes with
initial energy zero are excited (as was for instance the case in references [11] or [12]).

4.2. THE CASE F(¢) = C cos(wt,) WITH C # 0

In appendix A it is shown that only for specific values of w extra interactions occur
between the different oscillation modes. These values are o = 2w, withk =1, 2,3,... . We
therefore consider the following cases separately.

4.2.1. The case o # 2wy, + &

As stated in the previous section, the equations for 4, o, B, o for all n, are equal to the
equations for the case F(t) =0. There is no extra interaction between the different
oscillation modes due to the external force F(t).

4.2.2. The case w = 2wy, + &

In the previous section equations (29) and (30) were given for A, o and By . For 4, o,
B, .o, n # k equations (27) and (28) hold. We transform these equations using equation (33)
and get the following equations for the oscillation modes k and n( # k):

1 k?

o= —=—r1,Csin(2¢; + aty), (36)
4wk,,
. 1 k2 3 2.2 2.2
o= =g |3+ T mir 4 Coos2y + o) . (37)
(/Ukn 2 m#k
=0, n#k (38)
P A (39)
.= G, 2n Iy m#nm Fuls 1 .

We start our analysis of equations (36)—(39) by assuming that there is initial energy
present in mode k only, which means the initial conditions are such that initially the system
oscillates in one mode only (mode k). That is w(x, 0) = ¢,(0) sin kx, w,(x, 0) = ¢,(0) sin kx and
so 1,(0) =0 Vn # k. Furthermore, we introduce { = 2¢, + at;. This means we get the
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TABLE 1

Critical points for C >0

o-range No. of critical Critical points Behaviour
points
k2
< -——0C 0 — —
* 2(/01("
k2
o=——-C 1 (0, n) A higher order singularity
2(,0;("
kz k2 _
——C<a<—C 3 0, ) A saddle
2wk,, 260;("
(0, ) A saddle
7k, ) A centre
k2
o=—-0C 2 0, 0) A higher order singularity
20Jk
7k, ) A centre
k2
o>—C 2 (P, 0) A saddle
wk"
7k, ™) A centre

following equations for r, and y:

2 4 2

1k . 3k 1k
o= — -~ p Csin@),  Y=o—o =5 Ceos). (40, 41)
4 wk,, 4 wk,, 2 Wy

P

We consider the cases C > 0 and C < 0 separately. We start with C > 0. The critical
points of equations (40) and (41) are given in Table 1, where ¥, are solutions
of  cos(y) = Q2w /k*C)a  and  where 7 = \/4a)kp/3k4(oc + (k*/204,)C), P =
\/4cokp/3k4 (o« — (k*/2wy,) C). The system is 2n-periodic in , so we consider y € [0,21]. We
see that it makes a difference (different bifurcation from critical value) whether
o approaches the critical value 2w, from above or below, i.e., a different behaviour for
o <0 and o > 0. For C < 0 the analysis is similar, where  is shifted with a factor =.

The behaviour of solutions of equations (40) and (41) in the (7, ) phase space is given in
Fig. 4, for — 10 < o < 10. These phase spaces have been constructed using a numerical
integration method. For the sake of convenience, we have taken p> =0,k =1, C =1, (ie.,
wy, = 1). A similar behaviour is obtained for p> >0,k #1and C # 1. It can be shown that
the larger C becomes, the larger the range of o in which interaction occurs.

It should be noted that a first integral can be obtained for equations (40) and (41):

I 2w 3k*

COS(2¢k+at1)=yr—£+k2Ca—Rrk,

where y is a constant of integration depending on 4, ((0), By o(0), k%, ay,, C.
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Figure 4. Phase space for — 10 < o < 10, with r, (horizontal) from 0 to 2-5 and s (vertical) from 0 to 27.

Next, we consider the case with initial energy present in two modes, m and k, which

means the initial conditions are such that the system initially oscillates in two modes only
(modes m and k). That is, w(x, 0) = g,(0)sin kx + ¢,,(0) sinmx, w,(x,0) = ¢,(0)sinkx +
d,,(0)sinmx and so r,(0) =0 Vn # k, m. We have the following equations (see equations
(36)-(39)):

2

|k
Fo= — X CsinQey + aty), (42)
4 wk,,
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. 3 k* 1 k? 1 k?
= —~—1F ———m*rp, — ~— Ccos(2¢y + aty), (43)
8(,{)kp 4wk,, 4(,0kp
. 3 m* 1 m?
Fn=0, =gz 2 g2 (44, 45)
8 w,, 4 w,,

From equation (44) we can see that r,, = ¢,, with ¢,, a constant. Furthermore, ¢,, does not
appear in the equations for r, ¢, so we can analyze the behaviour of solutions of equations
(42)-(45) in the (r, ) phase space (with yy = 2¢, + at{). The analysis is similar to the
analysis for one mode. The only difference is an extra constant term in the equation for ,
— i(kz/wkp) m?cZ, which means a phase shift for 1, which depends on the initial values of
mode m. We will not discuss these equations in more detail.

For initial energy present in more than two modes a similar analysis holds. The
behaviour of solutions can again be analyzed in the (r, ) phase space.

5. CONCLUSIONS

In this paper, we consider an initial-boundary value problem for the vertical
displacement of a weakly non-linear elastic beam with an external force acting in horizontal
direction on the ends of the beam. We have constructed formal approximations of order
¢ and considered the interaction between different oscillation modes. The analysis presented
in this paper holds for all pe R. In references [ 11, 12] it has been shown that certain values
of p? can cause internal resonances. We have shown that in this case this does not occur. We
showed that for all cases mode interactions occur only between modes with non-zero initial
energy (up to ((¢)). That is, no modes with zero initial energy are excited up to ((¢). We then
say the coupling between the modes is of (/(¢) and truncation is allowed to those modes with
non-zero initial energy.

We considered the case with no external forcing (F(t) = 0) and the case with external
forcing (F(t) = Ccos(wt)). For F(t)=0 and Ccos(wt) for most w-values, the mode
interaction between the modes with non-zero initial energy is restricted to an interaction
between the different phases: phase shifts occur due to the interaction. The amplitudes of the
oscillating modes remain constant and depend on the initial values only.

We showed that for specific values of w, ie., @ = 2w, special interactions occur. The
mode interactions between the different oscillation modes is still restricted to an interaction
between the different phases but the amplitude of mode k is no longer constant: the
amplitude of mode k now oscillates around an equilibrium state. This also holds for
» = 2wy, + e where o is a detuning parameter. The detuning is considered in section 4.2.2.
It has been shown how the system detunes from the case w = 2w, to the case
® # 2wy, + €0

In this paper, we considered an harmonic external force of the form F(t) = C cos(wt). This
analysis can be extended to a more general form of F(t), where F is a T-periodic force,
F(t)=04/2 + Y, (a,cos(v,t) + b,sin(v,t)) with v, =2znn/T. This has been discussed in
reference [23] for elastic beams or strings. In reference [23], truncation to one or two
oscillation modes is applied, without giving a justification. We have shown that in the cases
discussed in this paper truncation is valid up to ((¢). As can be seen in references [11, 12],
truncation to one or two oscillation modes is not valid for all cases. For some cases
discussed in those papers mode interactions occur and more modes have to be taken into
account. In a way similar to the methods in references [11, 12] the problem with a more



ge
th

WEAKLY NON-LINEAR ELASTIC BEAM 215

neral form of F(t) can be studied. The analysis will essentially be the same (depending on
e function F); however, the equations will become a bit more complicated. A justification

can be given whether truncation is allowed in those cases. This elementary and
straightforward analysis is beyond the scope of this paper.
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APPENDIX A. THE DETERMINATION AND ELIMINATION OF SECULAR TERMS

In section 3 we obtained the following equation for each ¢,:
4n + (1’14 + pz)qn = — 8<F(t) + Z kzq,%>n2qn
k=1

forn=1,2,3,.... To avoid secular terms in ¢,(t) a two-time-scales perturbation method
was introduced and gq,(t) was expanded in q,(t) = ¢, o(to,t1) + €qn, 1(to,t1) + -+, Where
to =t and et. It has been shown that ¢, ; has to satisfy

02 d
W qn,l + wrzl,,qn, 1= 2&)”"(
0

An,O

de,

. dB,
sin(w,, to) — m 0 cos(w,, to )>
1

- <Ccos(wt0) + > m? jm>n2 (4,008 (@, to) + B, osin(w, o))
m=1

(A1)
with

Im="%Amo+ Bao)+3(4m0— Ban,o)COS(zwmﬁo) + A, 0 Bm,osin (2w, to)
and , =, /n* + p?. The equations for the functions 4, o and B, , will now be determined

such that no secular terms occur in g, ;. The right-hand side of equation (A1) can be
expanded using geometric formula’s and becomes

Bn,O

dety

An,O

rodty

2w,

sin (v, 1) — 20, cos (@, to)

1
3 n*[3A4,.0(Az7 o + Ba.o) cos(wy,to) + 3B,.0(4n0 + Bio) sin(w,, to)
+ A, 0(A7 o —3Bro) cos(3w, to) + B, (3470 — B; o) sin (3w, to)]

1
- > n’m? ! [(2B..0Am,0Bm.0 — Auo(Bm.o — Am.0)) cos(2w,, — w, )to)

m#£n
— (By,0(Am,0 — Bao) — 24,0 A0 Bu.o) sin((2w,, — w, )to)
+ (An0(Am.0 — Bro) — 2Byo A0 Bm.o) cos (2w, + w, )to)
+ (2A44,0 Am,0Bm,o + Buo (Am,0 — Bn, 0))sin (2w, + , )to)

+24,,0(A5 0 + BVZn,O)COS(wn"to) + 2B,.0(Am,0 + Bao) sin(w,, to)]
> 1 .
—n 5 C [An,OCOS((w - wn,,)to) - Bn,OSIH((w - wnp)to)

+ Ay 0co8((@ + w, )to) + B, o sin((w + w, )to)]. (A2)
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As stated in section 3, cos(w,, to) and sin(w, to) are homogeneous solutions of g, ;. We
want the coefficients of cos(w, to) and sin(w, to) in equation (A2) to be equal to zero in
order to eliminate secular terms. This gives us equations for 4, o and B, ,. From equation
(A2) it can be seen that we have to consider two cases for w: w # 2w, and o = 2w, , as is
done in sections 3 and 4 respectively. When the secular terms on the right-hand side of
equation (A1) have been eliminated, the remaining terms are the inhomogeneous part of the
equation for ¢, ; and an inhomogeneous solution for g, ; can be determined easily. This is
discussed further at the end of section 3.
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