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This paper is concerned with the free vibration of skew sandwich plates composed of an
orthotropic core and laminated facings. The p-Ritz method has been adopted for the
analysis. The Ritz functions are formed from the product of mathematically complete
polynomials and boundary equations raised to appropriate integer powers depending on the
boundary conditions. The boundary equations ensure the satisfaction of the geometric
boundary conditions a priori and facilitate the handling of any type of boundary conditions.
For generality, better accuracy and ease in imposition of geometric boundary condition for
the oblique edges, the Ritz formulation was non-dimensionalized and cast in the skew
co-ordinates system. Since no vibration solutions are available for such skew sandwich
plates, the validity, convergence and accuracy of the Ritz formulation were established by
comparing with other researchers’ vibration frequencies for various subset plate problems
involving rectangular sandwich plates and skew laminated plates. The paper features
extensive generic vibration frequencies of these skew sandwich plates for various aspect
ratios and boundary conditions, lamination designs of facings, material properties of core
and facings.

© 2000 Academic Press

1. INTRODUCTION

Sandwich plates have wide applications in modern engineering applications, especially in
the aerospace industry. This is because they have the combination features of lightweight,
high stiffness, high structural efficiency and durability.

In this paper, we consider the class of sandwich plates with laminated facings. The
flexural and vibration of such sandwich plates have been studied by Monforton and
Ibrahim [1, 2], Ibrahim et al. [3] and Kanematu and Hirano [4]. So far, investigations on
such plates have been confined to the rectangular planform. The present vibration study
extends these earlier works to skew sandwich plates, a planform that include the rectangular
shape at the limiting value of the skew angle. For the vibration analysis, the p-Ritz method
[5] has been adopted. The p-Ritz functions are formed by the product of mathematically,
complete polynomials and boundary equations (that define the plate edges) raised to
appropriate integer powers depending on the edge constraints. In addition to ensuring the
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satisfaction of the geometric boundary conditions (that is crucial for convergence of the
upper-bound Ritz results to the correct results), the boundary equations enable the Ritz
method to be automated for skew plates with any combination of boundary conditions via
the adjustment of the integer powers. For generality and better accuracy, the Ritz
formulation is cast in a non-dimensional form and in the skew co-ordinates system. The
skew co-ordinates system allows easy implementation of the geometric boundary
conditions along the oblique edges which would otherwise be cumbersome if the
rectangular Cartesian co-ordinates system was used [6].

Since there are no vibration solutions in the open literature for these skew sandwich
plates with laminated facings, the Ritz results will be verified by solutions of subset plate
problems that include the rectangular sandwich plates and skew laminated plates. The finite
element software ABAQUS [7] is also employed to check some sample vibration solutions
of the skew sandwich plates.

After establishing the correctness of the Ritz formulation and software, we generate
extensive and generic vibration frequencies of such skew plates for various design
parameters such as aspect ratios, boundary conditions, lamination designs of
facings, material properties of core and facings. The effects of these design parameters on
the natural frequencies of skew sandwich plates are also investigated and discussed.
It is worth noting that the p-Ritz method presented herein for vibration analysis of
skew sandwich plates with laminated facings can also be used for the analysis of (a)
skew isotropic plates, (b) skew orthotropic plates, (c) skew laminated plates and (d)
other kinds of skew sandwich plates. The vast amount of vibration results given
herein should be helpful to engineers and should be useful as reference solutions for
researchers.

2. p-RITZ METHOD FOR VIBRATION ANALYSIS

2.1. ENERGY FUNCTIONALS

Consider a skew sandwich plate of length a, oblique width b and skew angle ff as shown in
Figure 1. The orthotropic core (of shear moduli G, Gj) of the plate is sandwiched
symmetrically on each surface by N layers of laminated facings. The thickness of the core is
denoted by t, the thickness of each of the facing by ¢, and the total thickness by
h =t, + 2t;. Assuming the deformation of the plate’s cross-section to be as shown in
Figure 2, the displacement fields of the plate in the rectangular co-ordinates system can be
written as

U = = 2t =V g, = — 2 (y — V) (1a, b)
Vo= 2t S By v == 2 (B — ) (1c. d)
U, = — lem Ve = — leys Wp =W, = Wo, (le_g)

where u,y , v, and ug,, v, are the displacements in the upper and lower facings, respectively,
Y, and ¢, the rotations of the core and facing in the xz plane, respectively (see Figure 2),
Y, and ¢, the rotations in the yz plane, w, the transverse displacement at mid-plane
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Figure 1. Co-ordinates system and dimensions of skew sandwich plate.
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Figure 2. Deformation of cross-section of sandwich plate.

z =0, and the subscripts / and ¢ denote quantities belonging to the facings and core
respectively.

When dealing with skew plates, it is expedient to use skew co-ordinates (X, y) instead of
the rectangular co-ordinates (x, y) because the geometric boundary conditions of the
oblique edges can be easily implemented in the p-Ritz method. From simple geometry, the
relationships between these two co-ordinates systems are given by

X=x—ytanf, j=ysecf (2)

in which f is the skew angle as shown in Figure 1.
By adopting the skew co-ordinates system and the following non-dimensional
terms,

E=21, =21 3)
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the strain energy functionals for the facings U, and the core U, of the sandwich plate can be
expressed as

ab cos 1 1 Dy Dy, Dys 12 Ay A A
U =Pt b DTG0l dm s |)
“het sym Dge sym Aes
Ell El2 BlG A A
b B B | Kol 220 )0 )
_ sym Ass
sym Bgs
D. v.D. 0
abcospt. (1 ! KGO ,
U.= ¢ I s x AT c DC 0 AT déd
N N 1l [ R L0 ez
sym. D.
2
(4b)
where the strain vectors are given by
~ 2cos f ds
a 0¢
2sin ftan f 0. 2tan f0¢ps 2tan fo¢; 2sec f ¢y
T y y
={(— — — - 5
e} e @t b wm ' a o b ol O
dsin 9. 206, 2,
a 0 b oy a0
2cos ff 0P
a o0&
2sin ftan f 0P, 2tan f 0P, 2tan foP;, 2sec f 0P
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ol a0 b n a4 &b | (55
4sin ff 0Py N 200, 209,
a 0& bong a ¢
2t 0 2 0
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T a 4 b 0On
{o}" = ; (50)
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Yssin B — v, — e =
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in which ® = ¢ — y, K, is the shear correction factor and 4;; = A}; + A}, D;; = D}; + D3,
B;; = Bi; — B}, where A}, B}, Dj(n=1,2) are the extensional, coupling and bending
stiffnesses of the two laminated facings respectively.

The kinetic energy functionals for the facings T, and for the core T, are given by

b 1l 2+,
T, = M wzj J J [u} + U} + W%] dz dé dy, (7a)
4 —“1J-1Jes2
b 1 1 t./2
I.— Lgosﬁ o? J J f [ + o7 + w3] dz dé dy, (7b)
-1J-1 —t./2

where w is the angular frequency of the plate, and p,, p. are the mass densities of the facings
and the core respectively.
The Lagrangian of the sandwich plate is thus given by

m=T,+T. —U —U. 8)

2.2. GOVERNING EIGENVALUE EQUATION

To solve the plate problem at hand, the p-Ritz method is used where the Ritz functions (in
skew co-ordinates) for approximating the displacement fields are taken as

WED L
u(é ) (t + 2tf) q;o i;() Cr Xk (67 7])’ (93)
bEM=Y Y QAdED  HED=Y Y agEn  Obo
bEN= Y Y RACH. wED= Y Y ad@n.  0dd

0i

q 0 q=01i

where p is the degree set of the complete polynomial space, (¢, d, ...,g) are the unknown
coefficients, and the subscript k is given by

(@+1@+2)

k = (10)

The adopted functions y; are

= & DAE M) 24 E ), 21 E i), 1 {(E i), x5 (E )]s (11)

where the basic functions y; are formed by the boundary equations raised to appropriate
powers as shown below:

M A i = ( [ GGV, T &[] )
(12

and §; =(C+ 1D, G=0+1),G=(E —1),and {4 = (7 —1).
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The powers y; in equation (12) depend on the supporting edge condition and are given as
follows:

2= 0 free (F), (13a)
J 1 simply supported (S) or clamped (C),

i _ 0 free (F) or simply supported (S) in y direction, (13b)
Vi 1 simply supported (S) in x direction or clamped (C),

._ )0 free (F) or simply supported (S) in x direction, (130)
= simply supported (S) in y direction or clamped (C),

o = 0 free (F) or simply supported (S) in y direction, (13d)
J 1 simply supported (S) in x direction or clamped (C),

e )0 free (F) or simply supported (S) in x direction, (13¢)
i 1 simply supported (S) in y direction or clamped (C).

Applying the Ritz method,

<6H oIl oIl oIl oIl

————— = <0,0,0,0,0 14
aCk’ ade aek’ af;c’ agk> < b 2 b b >7 ( )

where k=1,2, ...,(p + 1)(p + 2)/2. The substitution of equations (4), (7) and (8) into
equation (14) yields the following governing eigenvalue equation:

(K] — @*[M]) {0} = {0} (15)

in which Q = wa/p./E 1 x 10? is the frequency parameter, [K], [M] are the stiffness and
mass matrices, respectively, and their elements are given in Appendix A. The eigenvalue
problem may be solved using any standard eigenvalue solver for the natural frequencies. We
have adopted the RSG subroutine of EISPACK [8] as the eigenvalue solver.

3. NUMERICAL RESULTS

3.1. CONVERGENCE AND COMPARISON STUDIES

3.1.1. Rhombic laminated plates

Consider a 45° rhombic, laminated plate composed of five symmetric cross-ply layers
with all its four edges clamped. This plate example was treated earlier by Wang [9], who
also used the Ritz method but employed B-splines as the Ritz functions. The total thickness
of the equal-thickness laminates is taken as h/a = 0-1. The material properties for each
lamina are identical and are taken as E;,/E,, = 400, G,,/E,, =06, G,3/E,, =05,
v,3 = 0-25. This subset plate problem can be readily handled by the general Ritz
formulation through setting the core thickness of the sandwich plate to be negligible (say
t/h =10719).
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TABLE 1

Frequency parameters Q = (wb*/n*h)/p/E,» of CCCC 45° rhombic cross-ply
(90°/0°/90°/0°/90°) laminates

Polynomial Mode sequence number
degree

p 1 2 3 4 5 6 7 8
4 3-4940 49180 63925 6-5433 84678 9-7206 9-9977 11-9561
6 3-4779 4-7583 6-0181 64152 7-7897 81136 9-3619  9-6883
8 34752 4-7407 59603 6-3833 7-2794 8:0206 86187 9-5193

10 3-4744 47395 59551 6-3767 7-1972 7-9992 84414  9-4387

12 34741 47394 59547 6-3752 7-1902 7-9960 84184  9-3952

14 34738 47393 59546 6-3747 7-1898 7-9957 84167  9-3880

Wang [9] 3-4738 47393 59554 6-3750 7-1961 8-:0031 8:4468  9-4414

Table 1 shows a typical convergence study of the first eight frequency parameters
Q = (wl*/n*h)/p/E,, with respect to the degree of polynomial functions. The results
display a monotonic and rapid convergence. It can be seen that a polynomial degree of 12
will suffice in yielding accurate vibration results for all purposes. Further, the converged
results check out with those obtained by Wang [9].

3.1.2. Skew sandwich plates

Next, convergence studies are conducted for simply supported skew plates with two
symmetric cross-ply layers of facing, i.e., (0°/90°/core/90°/0°), an aspect ratio of a/b =2,
skew angles f = 0 and 30°, and thickness-to-width ratio h/b = 0-05, the core thickness to
total thickness ratio t./h is 0-8. In order to compare with Ibrahim et al. [3] results, the
material properties for the core and facings are taken to be

— =400, —=10 =025 =03, —= —= — =0.6818.
s s Vi2 s Va3 s EC 62799 Ec 6279’ e

(16)

The first four frequency parameters Q = wa./p./E;; x 10? obtained by the p-Ritz method
are presented in Table 2 for different degrees of polynomial space p. It can be seen that
arelatively lower degree of polynomial (p = 8) will suffice for converged results in the case of
the rectangular plate (f = 0°), as compared to a higher polynomial degree (p = 12) required
for the skew plate with f = 30°. The tabulated results are found to compare well with the
Fourier series solutions obtained by Ibrahim et al. [3]. The results are also in good
agreement with the finite element results given by the software ABAQUS [7] (where we use
the composite thick shell element S§R and a uniform mesh size of 16 x 8 mesh having a total
number of degrees of freedom equal to 2598). It is worth noting that the p-Ritz method
(using a polynomial degree p = 12 for all the Ritz functions that amounts to a total of 455
degrees of freedom) gave more accurate results than the finite element method. In addition
to the use of a lesser number of degrees of freedom, the p-Ritz method has a faster rate of
convergence with respect to increasing number of degrees of freedom when compared to
ABAQUS.
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TABLE 2

Convergence and comparison studies of skew sandwich SSSS plates

Mode sequence number

B P 1 2 3 4
0° Present study 4 12424 16:725 26-832 34-180
6 12-420 16:696 23-880 32164
8 12-420 16:696 23747 31767
10 12-420 16:696 23745 31755

Ibrahim et al. [3] 12418 16705 23773 —
ABAQUS (8 x 16 mesh) 12-456 16742 23773 31-742
30° Present study 4 15965 20-418 32:713 41-486
8 15782 20-029 26-886 34-467
10 15-767 20-007 26-823 34-:346
12 15-758 19-992 26-805 34-331
ABAQUS (8 x 16 mesh) 15773 20-084 26915 34-388

Based on the foregoing convergence and comparison studies, it can be concluded that the
p-Ritz method gives very accurate vibration results for the considered skew plates. Below,
we use the method to generate new sets of vibration frequencies of skew sandwich plates
with laminated facings and we shall also investigate the effects of various design parameters
on the frequencies.

3.2. EFFECT OF PLATE THICKNESS AND MATERIAL PROPERTIES

To investigate the effects of core thickness and the total plate thickness on the frequency
parameter €, the simply supported rhombic sandwich plates with orthotropic core and
cross-ply layers for the facings (0°/90°/core/90°/0°) are adopted. The plate skew angle
p = 30° and the total thickness to length ratio h/a is taken to be 0-001, 0-005, 0-01, 0-05 and
0-1. Two different material properties for the core and facings are selected:

Type 1: g—; = 40-0, %Z =10, v, =025 v,3=03, % = %,
(17a)
% - % % — 06818,
Type 2: E—Zz%, g—:j = %, vip =028, v,3 =034, % = %,
(17b)
% - % % — 15.659.

Although both sandwich plate designs have facings that are relatively stiffer than the core,
the Type 1 sandwich plate has a much heavier core than Type 2 sandwich plate. Note that
Type 1 has a glass fiber honeycomb core (which is the same as that defined in equation (16))
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Figure 3. Effect of core thickness on fundamental frequency ; of rhombic sandwich SSSS plates. Core
thickness to total plate thickness ratio ty/h: (a) heavy core; (b) light core.

while Type 2 has an aluminum honeycomb core. By considering these two material types,
one may examine the vibration behavior of sandwich plates with a heavy core (Type 1)
against their counterparts with a lighter core (Type 2).

Figures 3(a) and 3(b) show both the effects of varying core thickness (t./h) and total plate
thickness (h/b) on the fundamental frequency of vibration. The vibration behavior is rather
different for the two kinds of sandwich plates. It can be observed from Figure 3(a) that the
plate with a heavier core (Type 1 material) has fundamental frequency parameters
decreasing (for all plate thickness to length ratios h/b) with increasing core thickness. This
trend may be explained by the fact that as the core thickness increases, the sandwich plate
becomes heavier and more flexible; thus lowering its stiffness against vibration. On the other
hand, with a lighter core (Type 2 material), the plate’s fundamental frequency parameter, for
thick plates (h/b = 0-05 and 0-1), will first decrease and later increase as the core thickness
ratio (t./h) increases as shown in Figure 3(b). This is due to the fact that for thick plates, as
the core thickness increases, the plate becomes less stiff leading to a lowering of the
frequency value but at the same time the plate is also getting lighter which causes the
frequency value to increase. Thus, there is a trade-off between plate rigidities and mass
effects on the natural frequencies for this case. However, for relatively thin plates
(h/b < 0-01), the frequency parameter increases monotonically with increasing core
thickness ratio because the effect of decreasing flexural rigidity has been overshadowed by
the effect of decreasing mass density.

3.3. EFFECT OF BOUNDARY CONDITIONS

To study the effect of boundary conditions on the vibration frequencies, six combinations
of free, simply supported and clamped edge boundary conditions, designated as SSSS,
SCSC, CCCC, FSFS, FCFC, and CFFF, are considered as shown in Figure 4. The letters F,
S and C denote free, simply supported and clamped edges respectively. The skew sandwich
plates analyzed here have an aspect ratio a/b of 1 and thickness-to-width ratios h/b = 0-1
and 0-001. The orthotropic core of the plate is sandwiched by two symmetric cross-ply
facings (0°/90°/core/90°/0°). Their material properties are defined in equation (16) and the
core thickness to total thickness ratio t,/h = 0-8. The influences of boundary conditions on
the fundamental frequency are shown in Figures 5(a) and 5(b). It can be seen that the
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Figure 4. Skew plates with various boundary conditions.
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Figure 5. Effect of boundary conditions on fundamental frequency parameter 2, of rhombic sandwich plates.
Skew angle f3: (a) h/b = 0-001; (b) h/b = 0-1.

fundamental frequency increases with greater geometric constraint been imposed at the four
edges in the following sequence: CFFF, FSFS, FCFC (SSSS and FCFC may swap places
depending on the plate thickness), SCSC and CCCC. Among these edge conditions, the 45°
CCCC plate has the highest fundamental frequency which is about 5-12 times higher than
its CFFF counterpart depending on the plate thickness. It can also be observed that as the
skew angle decreases, the frequency parameter decreases for all plates, especially for the case
of CCCC plates. For thick plates (h/b = 0-1), the fundamental frequency of SSSS boundary
condition is higher than that of FCFC condition. On the other hand, when the plate is very
thin (h/b = 0-001), the fundamental frequency of FCFC plate is higher than that of SSSS
plate except when the skew angle is greater than 45°. It appears that for thick plates, the
simply supported constraint is more effective than having two clamped oblique sides while
free on the other two parallel sides.

3.4. EFFECT OF SKEW ANGLE

To investigate the effect of skew angle on the frequencies, we consider simply supported,
skew (rhombic) sandwich plates with one-layer facings. The core may be made of an
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Figure 7. Effect of skew angle on frequency parameter  of skew sandwich SSSS plates with orthotropic core
[a/b =1, h/b =01, t./t; =8, (0/core/0)]. -~ p=30%----- p=15—p=0°

isotropic material or an orthotropic material. The first four frequencies of such skew
sandwich plates are presented in Figures 6 and 7 for plates with isotropic core and
orthotropic core respectively.

Since the results in Figure 6 are based on sandwich plates with an isotropic core, the
frequency curves for square sandwich plates (f = 0°) are symmetric with respect to
fibre angle 6 = 45°. Interestingly, the frequency curves for skew sandwich plates with skew
angles f = 15° and 30° become symmetric with respect to 8 = 37-5° and 30° respectively. It
means that for such rhombic sandwich plates with isotropic core, the frequencies for both
cases are the same when the orientation of the fibre is parallel to either skew coordinates
axis.
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It can be observed in Figure 7 that the frequency parameter generally increases with
increasing values of skew angle for a given facing fibre orientation, except for some cases of
fibre orientations. For example, the frequency for a sandwich plate with a skew angle
p = 15° is lower than for a rectangular sandwich plate when the fibre angle 0 is in the range
of 55°-70°. For a fixed skew angle, the fundamental frequency parameter Q is found to
increase with increasing facing fibre angles 6. This is because the orthotropic core
considered here is stiffer in the y direction than in the x direction. The maximum value of
frequency for the second mode is apparently in the neighborhood of 6 = 30°, whilst for the
third mode the corresponding value for 0 is between 60° and 75°. For the fourth mode, the
maximum frequency occurs when 0 is between 30° and 45°. Based on the foregoing

observations, it can be concluded that the vibration frequencies are significantly affected by
the skew angle.

3.5. EFFECT OF FIBRE ORIENTATION

Figures 8-11 show the effect of fibre orientation on the frequency parameter @ for simply
supported rhombic sandwich plates. The plates considered have an aspect ratio a/b = 1-0,
total thickness to length ratio h/b = 0-1 and thickness of core to total thickness ratio
t./h = 0-8. In Figures 9 and 10, the facing comprises of four symmetric angle-ply layers, i.e.,
(01/6,/0/0,/core/0,/0,/0,/0,) with 8, —0; = 30°. In Figures 10 and 11, the facing
considered have two angle-ply layers, i.e., (8/ —6/core/ — 0/0).

The core considered in Figure 8 is assumed to be isotropic. It can be seen that for the case
of f = 0° the natural frequencies are the same when the fibre angle 0, of the first facing
layer takes the value of 0 and 90°. For the fundamental frequency €, the fibre orientation
has negligible effect for square plates. However, the fibre orientation has a more
pronounced effect on other frequencies and skew plates.

The core of sandwich plate in Figure 9 is assumed to be an orthotropic core. It can be
seen that the fibre orientation has a greater effect on the fundamental frequency Q; and on
the third frequency Q5 when compared to its effect on the second and fourth frequencies.
When the fibre angle of the first facing layer 6, is less than 60° the frequency curves for

20

Frequency parameter Q
Frequency parameter

10 . (b Mode 3.4
. . . . 1 L L L L L
0 15 30 45 60 75 90 80 15 30 45 60 75 90
Fibre angle 6, Fibre angle 0,

Figure 8. Effect of fibre orientation on frequency parameter 2 of skew sandwich SSSS plates with isotropic core
[a/b=1, h/b=01, t/t, =8, (01/02/01/02/core/02/01/02/01), 02 — 01 = 30°]. ----- p=30% ----- p=15%
— p =0
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Figure 10. Effect of fibre orientation on frequency parameter Q of skew sandwich SSSS plates with isotropic
core [a/b =1, h/b =01, t/t; = 8, (/— 0/core/—0/0)]. -+ p=30%----- p=15—p=0°

Q, and Q5 vary significantly. When 0, is greater than 60°, the curves are rather flat, i.e., the
frequencies do not vary much with respect to the fibre angle.

In Figure 10, we present results for simply supported skew sandwich plates composed of
an isotropic core and two symmetric angle-ply layers of facing. It can be observed that the
frequency curves for square plates are symmetric with respect to 0 = 45°, and the frequency
has its peak value at § = 45°. The maximum values of frequency parameters Q,, 2, and
Q, appear at 6 =45° for skew plates. However, the maximum values of frequency
parameters 5 appear to be around 6 = 30° and 60°. For skew sandwich plates (f = 15 and

30°), the frequency curves of Q;, Q, and Q, become nearly symmetric with respect to
0 =45°.



330

C. M. WANG ET AL.

22 30
y
20 28
0 8 s
26

24

22

Frequency parameter Q
Frequency parameter Q

20

18

| (8 Mode 1,2

(b) Mode 34

8 . - 16
0 15 30 45 60 75 90 0
Fibre angle 0

15 30 45 60 75 90
Fibre angle 6

Figure 11. Effect of fibre orientation on frequency parameter Q of skew sandwich SSSS plates with orthotropic
core [a/b =1, h/b =01, t,/t; =8, (0/—0/core/—0/0)]. ----- p=30%----- p=15%—p=0°

Next we consider an orthotropic core. Referring to Figure 11, the frequency curves of 2,
Q, and 3 reach their peak values around 6 = 45°-60°. In view of the orthotropic core

being stiffer in the y direction, the effect of fibre orientation is found to be more significant
when 0 < 45°.

3.6. TABULATED RESULTS FOR SANDWICH PLATES

As there is a dearth of vibration results for skew sandwich plates with laminated facings,
we present in Tables 3 and 4 the first four frequencies of skew sandwich plates composed of
an orthotropic core and laminated facings with different numbers of symmetric cross-ply
layers N =2,4,8, ie., (0°/90°/.../90°/core/90°/.../90°/0°). The core thickness to total
thickness ratio t.,/h = 0-8. The material properties are defined in equation (16).

In particular, Table 3 gives results for SSSS plates with aspect ratios a/b = 1-0 and 20,
thickness-to-width ratios h/b = 0-05, 0-10 and 0-15 (while keeping a constant oblique length
b) and the skew angles ff = 0°, 15°, 30° and 45°. Table 4 gives the natural frequencies of
CSCS, CCCC, FSFS, FCFC and FCFF plates with an aspect ratio a/b = 1-0, and
thickness-to-width ratio b/h = 0-05. These tabulated frequency parameters should be useful
as benchmark solutions for researchers who are developing numerical techniques and
software for solving skew sandwich plate vibration problems.

4. CONCLUDING REMARKS

The p-Ritz formulation, cast in a non-dimensional form and in the skew co-ordinates
system, has been successfully developed and coded for the free vibration analysis of skew
sandwich plates composed of an orthotropic core and laminated facings. Using a set of Ritz
functions involving polynomial functions and boundary equations raised to appropriate
powers that depend on the boundary conditions, the p-Ritz method is made automated for
the analysis of such sandwich plates with any combination of edge conditions. Owing to the



FREE VIBRATION OF SKEW SANDWICH PLATES

TABLE 3

Frequency parameters Q of skew sandwich SSSS plates

331

Skew Number of Mode sequence number
angle f facing
a/b h/b (deg) layers 1 2 3 4
2 8029 14-858 16984 21-111
0 4 8068 14:693 17-401 21-321
8 8086 14-597 17-595 21-408
2 8470 15190 18-000 21-007
15 4 8:526 15-085 18-407 21-082
0-05 8 8551 15014 18-599 21-079
2 9-982 16:544 21-159 21910
30 4 10-094 16:547 21-628 21-997
8 10-145 16-525 21-843 21-998
2 13-232 19-563 24-655 27-496
45 4 13-460 19-708 24-841 28189
8 13-562 19-749 24-884 28-490
2 10-555 16-830 19-648 23-616
0 4 10-660 16-859 20-233 24-079
8 10-704 16-823 20-476 24-240
2 11-010 17-231 20-586 23-184
15 4 11-136 17312 21-193 23-578
1-0 0-10 8 11-188 17-299 21441 23-660
2 12-521 18-655 23-600 24-005
30 4 12715 18-857 24-340 24-471
8 12-796 18-896 24-580 24-627
2 15672 21-746 26-831 29777
45 4 16017 22-149 27-497 30-936
8 16-158 22266 27-676 31-348
2 11-414 17-552 20-426 24-436
0 4 11-579 17-842 21-216 25229
8 11-642 17-876 21-505 25-469
2 11-857 17-952 21-365 24-024
15 4 12-:049 18-296 22210 24-903
0-15 8 12-121 18:354 22-512 25117
2 13-331 19-373 24-413 24-872
30 4 13-610 19-862 25-501 25-878
8 13-715 19-978 25-863 26-125
2 16:427 22:512 27-809 30:774
45 4 16914 23281 29-137 32:564
8 17-:090 23491 29-474 33107
2 12-063 16-058 22:473 29-715
0 4 12-350 16-136 22318 29-386
8 12-489 16:172 22230 29-194
2 12767 16-748 23-107 30212
15 4 13-075 16:855 22-989 29-942
0-05 8 13225 16:904 22918 29777
2 15196 19-127 25-325 32:145
30 4 15-579 19-328 25-316 32:009
8 15763 19-421 25296 31-906
2 20-572 24-357 30230 36:644
45 4 21120 24-750 30435 36:730
8 21-379 24-931 30-515 36:731




332 C. M. WANG ET AL.

TaABLE 3
Continued
Skew Number of Mode sequence number
angle f8 facing
a/b h/b (deg) layers 1 2 3 4
2 16-984 21-111 26981 33-661
0 4 17-401 21-321 27-041 33718
8 17-595 21-408 27-027 33645
2 17-746 21-849 27-683 34259
15 4 18-192 22-095 27785 34374
2:0 0-10 8 18-:399 22-198 27791 34-329
2 20-310 24-322 30-041 36387
30 4 20-852 24-683 30-276 36:656
8 21-101 24-836 30-340 36679
2 25779 29-575 35056 41-126
45 4 26-537 30182 35:566 41-686
8 26-875 30-437 35-743 41-830
2 18-815 22-828 28-493 35-104
0 4 19-315 23-158 28-805 35-684
8 19-537 23284 28-865 35752
2 19-556 23-555 29-194 35:709
15 4 20-091 23928 29-559 36349
0-15 8 20-327 24071 29:639 36445
2 22-045 25984 31-547 37-858
30 4 22-700 26-499 32:077 38:679
8 22981 26:696 32223 38:850
2 27-373 31-155 36:563 42-672
45 4 28310 31990 37456 43-879
8 28:694 32:304 37733 44-189
TABLE 4

Frequency parameters Q of skew sandwich plates with various boundary conditions
(a/b =10, h/b = 0-05)

Skew Number of Mode sequence number
Boundary angle f8 facing

condition (deg) layers 1 2 3 4
2 9-098 15441 17-442 21-516
0 4 9-150 15450 17-861 21-840
8 9-155 15-387 18-046 21-945
2 9-487 15722 18-452 21-418
15 4 9-553 15771 18-874 21-646
SCSC 8 9-566 15-734 19-056 21-683
2 10-880 17010 21-589 22-308
30 4 10-999 17-148 22-088 22-540
8 11-037 17-163 22295 22-581
2 14-002 20-106 25-181 27-925
45 4 14-251 20-405 25-539 28-682
8 14-346 20-494 25632 28-983
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TABLE 4
Continued
Skew Number of Mode sequence number
Boundary angle f§ facing
condition (deg) layers 1 2 3 4
2 10-930 16-498 18:650 22:483
0 4 11-112 16-594 19-255 22969
8 11-171 16-569 19-485 23-117
2 11-342 16-830 19-591 22413
15 4 11-543 16:969 20-209 22765
CCccC 8 11-610 16:967 20-441 22:826
2 12-762 18-:201 22-571 23-429
30 4 13-029 18-444 23294 23-802
8 13-122 18-490 23-557 23-874
2 15-850 21424 26481 28732
45 4 16-274 21-869 27-031 29773
8 16:424 21993 27-166 30-134
2 5-376 5902 13-477 13-849
0 4 5254 5-800 13-214 13-755
8 5-190 5748 13-066 13-624
2 5-449 6317 13-522 13-736
15 4 5327 6-240 13-475 13-509
FSFS 8 5263 6:198 13-328 13-469
2 5727 7-534 14-262 14-711
30 4 5-608 7-530 14-247 14-477
8 5-544 7-514 14-205 14-339
2 6-310 9-065 15-533 16-839
45 4 6-209 9-089 15-470 16-744
8 6-150 9-061 15-386 16:658
2 7-004 7-266 14-135 14-362
0 4 6929 7-206 14-067 14-560
8 6-865 7-151 13-959 14465
2 7-120 7-580 14-034 14-409
15 4 7-046 7-531 14-127 14-346
FCFC 8 6-984 7-482 14-121 14-244
2 7-701 8:622 14756 15-602
30 4 7-648 8609 14-837 15-582
8 7-:599 8577 14-832 15-507
2 9-289 10-787 16-818 18-433
45 4 9-313 10-849 16933 18:539
8 9-298 10-851 16-938 18:520
2 2:224 2:869 9-577 10-376
0 4 2:291 2:922 9901 10-669
8 2:322 2:947 10-043 10-796
2 2:014 3-247 9122 10-500
15 4 2:064 3-314 9-367 10-706
CFFF 8 2:087 3-345 9-465 10-775
2 1-816 4110 8:483 11-136
30 4 1-850 4-189 8-621 11-253
8 1-865 4225 8:667 11-280
2 1-818 5415 8470 11-985
45 4 1-839 5-501 8:548 12:016
8 1-848 5-537 8:565 12-:003
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generic presentation of the vibration results, the effects of various design parameters, such as
plate thickness, skew angle, facing fibre orientation, and boundary conditions, on the
natural frequencies may be readily examined.

This paper also features a large amount of new frequency data for such a class of skew
sandwich plates. These data should be useful to engineers and researchers working in the
area of composite plates.
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APPENDIX A

The elements of the stiffness matrix [K] are given by
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