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In this paper, a number of "nite element models have been developed for comprehensive
modelling of smart structures with segmented piezoelectric sensing and actuating patches.
These include an eight-node solid-shell element for modelling homogeneous and laminated
host structures as well as an eight-node solid-shell and a four-node piezoelectric membrane
elements for modelling surface bonded piezoelectric sensing and actuating patches. To
resolve the locking problems in these elements and improve their accuracy, assumed natural
strain and hybrid stress formulations are employed. Furthermore, piezoelectric patches are
often coated with metallization. The concept of electric nodes is introduced that can
eliminate the burden of constraining the equality of the electric potential for physical nodes
lying on the same metallization. A number of problems are studied by the developed "nite
element models and comparisons with other ad hoc element models are presented.

( 2000 Academic Press
1. INTRODUCTION

A popular form of smart structure contains a system of piezoelectric sensors which convert
the strains of the host structure into electric signals. These signals are fed into
microprocessors which in turn activate a system of piezoelectric actuators so that the
structure response with respect to external excitations can be altered in real time (see Figure
1). The most widely exploited application of the smart structure technology is active
vibration control or active damping. While it is possible to embed the sensors and actuators
inside the host structure, segmenatary surface-bonded sensors and actuators are far more
popular due to their low fabrication cost.

Designing and analyzing practical smart structures inevitably require the use of "nite
element method. For this purpose, there have been a number ad hoc "nite element models
developed [1}10]. Owing to the geometric complexity of the surface-bonded sensors and
actuators which are most conveniently modelled by continuum elements (no rotational
d.o.f.), many of the developed "nite element models are continuum in nature [1, 4, 5, 7, 8].
However, strict considerations of locking de"ciencies are often lacking in the course of
developing these "nite element models. It is unfortunate that solid elements when applied to
plate and shell analyses can be plagued by the largest number of "nite element de"ciencies
which include shear, membrane, trapezoidal, thickness and dilatational lockings. Thus,
solid-to-plate/shell transition elements may have to be adopted whereas excessive aspect
ratios of the solid and transition elements must be avoided. Alternatively, transition
sOn leave from Department of Mechanics, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of
China.
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Figure 1. Con"guration of a smart structure with sensor and actuator.
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elements can be avoided by introducing numerical constraints to tie up the rotations in
plate/shell elements with the translations in the solid elements [8]. This practice is tedious
and also adversely a!ects the condition of the system equation.

We shall start with an eight-node element which possesses the same kinetic d.o.f.s as the
standard eight-node solid element but is applicable to thin plate/shell analyses without
su!ering the afore-mentioned lockings. The element is then generalized for modelling
piezoelectric materials. Noting that the piezoelectric patch is always coated with
metallization which constitutes an equal-potential surface, the concept of electric nodes is
introduced that can e!ectively eliminate the burden of constraining the equality of the
electric potential for the nodes lying on the same metallization. A four-node membrane
piezoelectric element is also developed that can more e$ciently model the piezoelectric
patches (e.g., PVDF) which are very thin compared to the host structures. A number of
popular examples are considered by the new "nite element models to illustrate their
accuracy and e$cacy in smart structure modelling.

2. GEOMETRIC AND KINEMATIC INTERPOLATION

Figure 2 shows an eight-node hexahedral element in which m, g and f are the natural
co-ordinates. Let f be aligned with the transverse direction of the shell, the geometric
interpolation can be expressed as
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Figure 2. A thin eight-node thin hexahedral solid element.
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is the mth order identity matrix
Similarly, the displacement interpolation can be expressed as
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Moreover, U, U`
j

and U~
j

are the displacement vectors with respect to the global
Cartesian co-ordinates, its values at the j` and j~ nodes of the element respectively.

3. ASSUMED NATURAL SHEAR AND THICKNESS STRAINS

In this section, the strain}displacement relation of the element by incorporating
the commonly employed geometric assumptions in shells will be presented. With reference
to the interpolations of X and U, the in"nitesimal covariant or natural strain components
are
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Following the practice in most shell element formulations, the "rst and second order
f-terms are truncated in transverse shear strains (cfm and cfg) and the tangential strains (em, eg
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and cmg) respectively. Thus,
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in which the membrane &&m'' and bending &&b'' strain components can be derived from
equations (1) and (2) as
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As the material properties are often de"ned in a local orthogonal frame x}y}z, it is
necessary to obtain the local physical strains from the covariant ones. It will be assumed as
usual that the z-axis and the x}y plane are parallel to the f-axis and the mid-surface of the
shell respectively. Hence, the relations between the covariant strains and the local physical
strains when approximated by the ones evaluated at the mid-surface are [11]
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in which e
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are the unit vectors along the local x, y and z directions.

Shear locking is due to the excess number of transverse shear strains sampled in the
process of integrating the element sti!ness matrix. An e!ective method of resolving shear
locking is the assumed natural strain (ANS) method in which the natural transverse shear
strains are interpolated from the ones samples along the element edges. These sampled
strains are common to the elements sharing the same edge. Thus, the number of
independent shear strains in the system level can be reduced. Following the standard
interpolations of four-node ANS shell elements, the natural transverse shear strains are
modi"ed to be [12]
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with which the local Cartesian transverse shear strains cJ
zx

and cJ
zy

can be obtained by using
equation (6).

Another locking phenomenon that plagues solid elements in thin shell analysis is the
trapezoidal locking [13]. The strain component leading to the locking is the thickness strain
or, equivalently, the normal strain along the thickness direction [14]. ANS can also be
adopted to overcome the problem by interpolating the natural thickness strains at the
midpoints of the element corners [15], i.e.,
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By consolidating equation (5) to equation (8), the physical strains can be expressed
symbolically as
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where B's are independent of f and qe is the element displacement vector. Assuming that
transverse shear response in uncoupled from the others, the constitutive relation can be
expressed as
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By adopting the usual approximation of the Jacobian determinant

J+J
0
"J D m"g"f"0 , (11)

the ANS element which is free from shear and trapezoidal locking can be formulated via the
following elementwise potential energy functional:
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Though the above ANS element is free from shear and trapezoidal locking, it is plagued
by thickness locking. In other words, a plane strain conditions instead of the expected plane
stress condition will be predicted when the element is loaded by bending moment. The
locking phenomenon can be overcome by modifying the generalized laminate sti!ness C

G
to

C3
G

as given in Appendix A.

4. SOLID-SHELL ELEMENT FOR LAMINATED MATERIALS

To apply hybrid stress (HS) formulation to the above ANS solid-shell element as a means
to improve the latter's in-plane response, the following elementwise modi"ed
Hellinger*Reissner functional can be invoked:
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The following orthogonal constant and non-constant stress modes are chosen in a way
similar to that of Pian's eight-node element [16, 17]:
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Adopting the usual approximation in equation (11), the functional can be simpli"ed to
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By invoking the stationary nature of Pe
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with respect to b's, the functional becomes
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in which the element sti!ness matrix for the HS-ANS element is
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5. SOLID-SHELL ELEMENT FOR HOMOGENEOUS MATERIALS

If the material is homogeneous instead of laminated, the conventional elementwise
Hellinger}Reissner can be employed:
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Analogous to the laminated element, the assumed stress "eld is taken to be
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By substituting equations (9) and (19) into the functional, the latter becomes
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By invoking the stationary nature of Pe
HR

with respect to b's, the following HS-ANS element
sti!ness matrix is obtained:
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where the unde"ned matrices are
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As a matter of fact, the element sti!ness can also be degenerated from equation (17) by
noting that
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for homogeneous materials (see Appendix A).

6. SOLID-SHELL ELEMENT FOR PIEZOELECTRIC PATCHES

Piezoelectric patches used for surfaced-bonded segmentary sensors and actuators are always
coated with metallization such as printed silver ink. Compared to the overall thickness of the
patches, the metallization thickness can be ignored. Hence, the metallization is not separately
modelled in the piezoelectric element models. The presence of metallization induces two
equal-potential surfaces coincident with the top and bottom surfaces of the patches. In this
section, the afore-derived hybrid-HS-ANS solid-shell element will be generalized for modelling
the piezoelectric patches and for taking into account the equipotential surfaces.

For generic piezoelectric solid elements, each node is equipped with three translations
and electric potential as the nodal d.o.f.s. It would be necessary to constrain the equality of
the electric d.o.f.s. of the nodes on the same metallization. To avoid this tedious task, the
electric d.o.f.s are separated from the kinetic nodes with which kinetic d.o.f.s. are associated.
The electric node has two d.o.f.s which are the two electric potentials /
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the upper and lower metallizations. Unlike kinetic nodes, electric nodes have no
co-ordinates. For instance, Figure 3 shows two elements that model the same piezoelectric
patch and they only need two electric d.o.f.s which are grouped under the electric node &&p''.
Under the present ways of arranging the nodal d.o.f.s, their connectivities are [a, c, j, h, b, d,
k, i, p] and [c, f, m, j, d, g, n, k, p]. The "rst eight nodes are kinetic nodes and the last nodes
are electric nodes. The interpolated electric potential is
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With respect to the local Cartesian co-ordinates de"ned in section 3, the electric "eld can
be approximated as
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Figure 3. Solid elements modelling the same piezoelectric patch share the same electric node. Connectivities of
the elements are [a, c, j, h, b, k, i, p] and [c, f, m, j, d, g, n, k, p].
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Within two of the electric "eld components having vanished and the pooling direction
always aligned with the transverse direction, the piezoelectric constructive relation can be
expressed as
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] contains the piezo-strain coe$cients, DE and 3E"3
33

are respectively, the electric displacement and the permittivity coe$cient in the transverse
direction. By changing the object of the equation,
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in which the entries in do"[d
31

d
32

d
36

d
33

] are known as the piezo-stress coe$cients
and 1E"1

33
is the dielectric coe$cient in the transverse direction. To formulate a solid-shell

element for piezoelectric patch, the following elementwise hybrid function is invoked
[18, 19]:
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where Se
Q

is the portion of the element boundary being prescribed with the charge density Q.
By invoking equations (9), (11), (19) and (24), we have
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where the unde"ned terms are
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H is the elementwise electric force vector.

Moreover, A
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and A
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are, respectively, the areas of the upper and lower element
surfaces whereas Q

TOP
and Q

BOTTOM
are, respectively, the prescribed charge densities, if any,

at the upper and lower element surfaces. After condensing b's with the stationary conditions
of Pe with respect to b's, the functional can be expressed as
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in which
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It should be remarked that higher computational e$ciency can be obtained by
block-diagonalizing the #exibility submatrices H's in the context of the admissible matrix
formulation [17].

7. MEMBRANE ELEMENT FOR PIEZOELECTRIC THIN PATCHES

When the thickness of piezoelectric patches is much less than that of the host structure
(e.g., the typical thickness of PVDF thin "lms in 20&100 km), the piezoelectric patches can
be modelled more e$ciently by membrane elements whose bending and transverse shear
sti!ness are negligible and ignored. This section will derive a membrane element by
degenerating the solid-shell element presented in section 6, (see Figure 4). The element has
four kinetic nodes and one electric node. Each of the kinetic nodes is equipped with three
translation d.o.f.s. The geometric and displacement interpolations are
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From equations (5) and (6), the in-plane membrane strain can be expressed as
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and the electric "eld component transverse to the element is
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in which t denotes the thickness. With E
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relation in equation (26) can be simpli"ed as
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Figure 4. Membrane elements modelling the same piezoelectric "lm share the same electric node.
Connectivities for the elements are [a, d, f, d, p] and [b, c, g, f, p].
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where d
/

contains only the "rst three entries of do. The two-dimensional counterpart of the
functional in equation (27) is
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where J"t EX
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,g E. The assumed stress is degenerated from equation (19) is
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With equations (31), (32) and (35) substituted into equation (34), the latter can be written
as
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After condensing b's with the stationary conditions of Pe with respect to b's, the
functional of the present element can also be expressed in the same form as equation (29)
except that
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Lastly, it should be remarked that the membrane element is rank de"cient and can only
be used as an adherent to solid elements.

8. SYSTEM EQUATION AND EIGENANALYSIS

After summing all the elementwise functional Pe and taking the variation of nodal
displacements and electric potential, the system equation can be expressed as
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in which K's are assembled from the element matrices k's, q and U are the system vectors of
nodal displacements and electric potentials, respectively, F
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counterparts of fe
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, fep and fe
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respectively. For dynamic analysis, the inertia and damping

forces can be accounted for in terms of the body force, i.e.,
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in which a and b are the Rayleigh's damping coe$cients, M is the mass matrix assembled
from :<eoNTNdv and o is the mass density. Thus, the system equation can be expanded as
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Natural frequencies and their mode shapes can be obtained by setting the right-hand side
vector to zero and condensing U with U"!K~1

ee
KT

me
q.

9. ACTIVE CONTROL OF SMART STRUCTURES

Figure 1 shows a typical con"guration of smart structure with piezoelectric sensors and
actuators. The sensors sense the strains of the host structure and produce electrical
potentials. The signals are fed into controllers which implement certain control algorithms.
Outputs of the controllers are used to strain the actuators which in turn strain the host
structure. By partitioning the system vector of electric potential U into that of the actuators
UA and of the sensors US, equation (40) can be split into
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In particular, K
ee

is the block diagonal because the host structure is non-piezoelectric, i.e.,
UA and US do not couple. As there is no electric loading applied to the sensors, FS

Q
vanished.

Consequently, equation (41) gives
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which gives sensor outputs and can be processed to provide input signals to the actuators
for active vibration control. Substitution of equation (42) into equation (41) results in

MqK#Cq5 #[K
mm

!KS
me

(KS
ee

)~1 (KS
me

)T] q"Fp!KA
me

UA. (43)

With the control algorithm known and by virtue of equation (43), U
A

can be expressed in
terms of q and thus all the electric d.o.f.s. in equation (43) can be condensed.

For active dampling, negative velocity feedback can be adopted as the control algorithm
with which US and UA can be related by a control gain matrix T

(
, namely,
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With equation (42), equations (43) and (44) become
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Matrices C and C1 will be termed as passive and active damping matrices which are due to
material dissipation and active damping e!ect of the smart structure respectively.

By means of modal analysis, the global displacement q can be expressed in terms of the
vector of modal generalized displacements h as

q"Yh (46)
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where u
i
is the eigenvalue pertinent to W

i
. Substituting equation (46) into equation (45) and

multiplying the latter with the transpose of W, we have
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By using the orthonormal property of the modal matrix, the above equation can be
simpli"ed as
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in which k
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i
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) is the passive damping ratio arising from the Rayleigh's

damping. In case of YTC1 Y being diagonal, the system response can be solved by the
classical mode superposition method. In particular, if only the "rst-mode is considered, the
governing equation can be reduced from equation (49) as
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where kN
1

is the active damping ratio induced by the control algorithm and is equal to the (1, 1)-
entry of YTC1 Y divided by 2u

1
.
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10. NUMERICAL EXAMPLES

In this section, a number of problem related to smart structure modelling are studied by
the elements derived in sections 4}7. The adhesive in between the host structures and the
piezoelectric patches will be assumed to be thin enough to be neglected. Thus, the concept of
using viscoelastic constraint layers for passive damping will not be studied.

10.1 BIMORPH POINTER

A bimorph pointer is portrayed in Figure 5. It consists of two identical PVDF layers
(E"2 GPa, m"0)29, e

31
"e

32
"0)046 C/m2, 3

33
"0)1062 nF/m) with vertical but

opposite polarities and, hence, will bend when an electric "eld is applied vertically. The
bimorph is modelled by 2]5 elements. With a unit voltage applied across the thickness, the
de#ection of bimorph beam is computed by the present piezoelectric solid-shell element and
compared with the theoretical and other "nite element predictions as listed in Table 1. It
can be seen that the present solid-shell element model matches theoretical results up to four
signi"cant "gures.

The tip de#ection of the bimorph is the prescribed to 1 cm and the open circuit voltage
output across the thickness is computed. Figure 6 shows the predicted voltage when 1, 5 and
10 electrode (metallization) pairs are employed. The related meshes contain 2]5, 2]5 and
2]10 elements. The predictions show excellent agreement with the analytical solution [20]
in which the equipotential e!ect induced by the metallization is ignored and thus the electric
potential is a continuous function of x.

The e!ect of mesh distortion on the element accuracy is then studied. The bimorph is
modelled by 2]4 elements as shown in Figure 7. With a unit voltage applied across the
thickness, the free end de#ection is computed by the present element and the following
piezoelectric solid elements in ABAQUS [21]:

f C3D8E*the 8-node piezoelectric brick element.
f C3D20ER*the 20-node reduced integrated piezoelectric brick element.

Using the beam theory in which a plane stress condition is assumed in the> direction, the
analytical end de#ection is 0)345 km. To assess the element accuracy by the beam solution,
the Poisson ratio is set to zero for mimicking the required plane stress condition. The
Figure 5. A bimorph cantilever modelled by 2]5 elements.



TABLE 1

Static de-ection of the piezoelectric bimorph beam (10~7 m), see Figure 5

Distance x (mm) 20 40 60 80 100

Tsengs [10] 0)150 0)569 1)371 2)351 3)598
Tzous [20] 0)124 0)508 1)16 2)10 3)30
Tzou and Yes [7] 0)132 0)528 1)19 2)11 3)30
Wang et al. [9] 0)139 0)547 1)135 2)198 3)416
Detwiler et al. 0)14 0)55 1)24 2)21 3)45
Analytical [20] 0)138 0)552 1)242 2)208 3)450
Presents 0)138 0)552 1)242 2)208 3)450

sThe element derived are solid or solid shell elements.

Figure 6. Convergence of sensor voltage for a prescribed tip de#ection (see Figure 5):*r* 1-electrode;*m*
5-electrodes;*]#* 10-electrodes; ** analytical [20].

Figure 7. The bimorph cantilever model led by 2]4 distorted elements.
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Figure 8. End de#ections versus distortion for the bimorph cantilever problem (see Figure 7): *d*
present/reference;*m* C3D20ER; *j* C3D8E.

Figure 9. (a) A clamped square aluminum plate with a circular PZT patch. (b) The employed mesh.
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predicted end de#ections for di!erent element distortions &&e'' are plotted in Figure 8.
Without resorting to any advanced "nite element technique, C3D8E is very poor in
accuracy. Despite the higher order nature of C3D20ER, its accuracy is marginally lower
than that of the present element whose prediction is graphically indistinguishable from the
beam solutions.

10.2. ALUMINUM SQUARE PLATE WITH A CIRCULAR PIEZOELECTRIC WAFER

Figure 9 shows a 305]305]0)8 mm fully clamped aluminum square plate
(o"2800 kg/m3, E"68 GPa, m"0)32) with a /20 mm piezoelectric wafer bonded to its
centre. The wafer is 1 mm thick and made of PZT-5H (o"7500 kg/m3, E

1
"E

2
"

62)5 GPa, E
3
"57)16 GPa, G

44
"G

55
"23 GPa, G

66
"23)3 GPa, m

12
"0)3345,

m
13
"m

23
"0)442, e

31
"e

32
"!6)5 C/m2, e

33
"23)3 C/m2, 3

33
"13 nF/m). A 1 Pa

uniform pressure is applied to the lower surface of the plate. The mesh layout is essentially
the same as the one used by Kim et al. [8] who employed 192 nine-node #at shell,
8 thirteen-node solid-to-plate transition, 4 twenty-node solid and 4 twenty-node
piezoelectric solid elements [8]. In the present analysis, 200 solid-shell and 12 piezoelectric
solid-shell elements are employed. The static central de#ections with and without the wafer
are listed in Table 2. Given the high accuracy of the result in the absence of the wafer and the
relative dimension of the plate and the wafer (area ratio+300 : 1), the predicted de#ection
of Kim et al. appears to be too small. It is noteworthy that the ratio of the active d.o.f.s in



TABLE 2

Static central de-ection for the clamped square aluminum plate, see Figure 9

Without wafer (km) With wafer (km)

Kim et al. [8] Not available 2)465
Present 3)381 3)253
Series solution [23] 3)380 Not available

Figure 10. Sensor response of aluminum square plate under pressure loading (see Figure 9): - - - - Kim et al. [8];
*** present.
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Kim et al's mesh and the present one is +3 : 1, not to mention the modelling burden of
co-using four di!erent types of elements.

Figure 10 shows the peak voltage output of the wafer when the plate is subjected to
sinusoidal pressure loading. The "rst two peaks predicted by the present elements are 74)20
and 284)16 Hz whereas the predictions of Kim et al. [8] are 78)5 and 279)5 Hz. The
di!erences in the "rst and second peaks are +5% and +4%. In the absence of the
piezoelectric wafer, series solutions [22] and the predictions of the present element for
the "rst two symmetric eigenmodes are 74)06/270)0 and 74)81/290)0 Hz respectively.
The di!erence in the "rst eigenfrequency is +1%. It should be remarked that the voltage
does not peak at the unsymmetric eigenmode in which the centre of plate is stationary.

10.3. CANTILEVER COMPOSITE PLATE WITH DISTRIBUTED ACTUATORS

Figure 11 shows a composite cantilever plate with 22 square and eight non-square
surface-bonded G-1195 piezoelectric ceramic patches (o"7600 kg/m3, E"63)0 GPa,
G"24)2 GPa, m"0)3, d

31
"d

32
"254 pm/V, d

33
"374 pm/V, d

24
"584 pm/V, 1

11
"

1
22
"15)3 nF/m, 1

33
"15)0 nF/m). Stacking of the composite plate is [03/$453]s and the

plate is made of T300/976 graphite/epoxy unidirectional laminae (o"1600 kg/m3,
E
L
"150 GPa, E

T
"9 GPa, G

TL
"7)1 GPa, G

TT
"2)5 GPa, m

LT
"m

TT
"0)3). Following

the mesh of Ha et al. [1], the host plate is modelled by 10]16 elements. A voltage supply of
157)6 V is applied to the piezoelectric patches such that the ones above and below the



Figure 11. A cantilever composite plate with 30 surface-bonded piezoelectric actuators.

Figure 12. Non-dimensional longitudinal bending de#ection of the cantilever plate in Figure 11: ***
Present; } - - } Ha et al. [1]; K experiment [24].
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composite plate are subjected to equal but opposite electric "elds of magnitude 394 V/mm.
The following non-dimensional de#ection parameters are computed by the present element
models and shown in Figures 12}14:

=
L
"

= D
y/7>6 #.
C

, =
T
"

= D
y/7>6 #.

!(= D
y/15>2 #.

#= D
y/0 #.

)/2

C
and

=
R
"

= D
y/15.2 #.

!= D
y/0 #.

C

which correspond to longitudinal bending, transverse bending and lateral twisting
de#ections. In the above equations, C"15)2 cm is the width of the plate. For the purpose
of comparison the experimental results of Crawly and Lazarus [24] and the "nite
element predictions of Ha et al. [1] are also included in the "gures. The element
models developed by Ha et al. are eight-node solid elements with nine incompatible
displacement modes. These incompatible elements su!er from shear locking when
the elements are not in the form of rectangular prisms [25]. Despite the regular geometry
of the elements in this example, =

R
perdicted by the incompatible models are

apparently smaller than that obtained by the present models and the experimental
measurement.



Figure 13. Non-dimensional transverse bending de#ection of the cantilever plate in Figure 11:*** Present;
} - } - Ha et al. [1]; K experiment [24].

Figure 14. Non-dimensional lateral twisting de#ection of the cantilever plate in Figure 11: *** Present;
} - } - Ha et al. [1]; K experiment [24].
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10.4. STEEL RING WITH SEGMENTED SENSORS AND ACTUATORS

Figure 15 shows a 6)35 mm thick semi-circular steel ring (o"7750 kg/m3,
E"68)95 GPa, m"0)3) sandwiched by two PZT layers (o"7600 kg/m3, E"63 GPa,
m"0)3, d

31
"179 pm/V, 3

33
"16)50 nF/m). The thickness of the PZT layers is taken to be

either 254 or 50)8 km.
In the absence of the PZT layers, the lowest eigenfrequencies of the steel ring are

computed and listed in Table 3. For the purpose of comparison predictions of the following
ABAQUS [21] curved shells.

f S4*the 4-node general-purpose (thin and thick) shell element,
f S4R5*a stabilized reduced-integrated 4-node thin shell element with 5 d.o.f. per node,
f S9R5*a stabilized reduced-integrated 9-node thin shell element with 5 d.o.f. per node,

as well as Tzou and Ye's 12-node triangular prismatic solid element [7] are also included.
The predictions of S4 and the present solid-shell element are insensitive to the mesh density.
This implies that the mesh densities have been adequate for the two-element models to give
reasonably converged results. With 1]10 elements, predicted frequencies of S4R5 are very
low. The observation is probably due to the hourglass modes which are stabilized by small
sti!ness parameters. Nevertheless, close results are yielded by S4, S4R5 and the present
element using 2]20 elements as well as S9R5 using 1]10 elements. The eigen frequencies
computed by Tzou and Ye's element indicates that the element is too sti!.



Figure 15. Semi-circular steel ring with surface bonded PZT patches.

TABLE 3

¹he eigenfrequencies (in Hz) for the steel ring (without the PZ¹ layers) in Figure 15

Mesh Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

S4 shell 1]10 3)6552 6)0444 12)301 34)944 44)092
2]20s 3)6920 5)9455 11)965 34)043 41)446

S4R5 shell 1]10 3)2930 3)7298 9)2736 12)102 32)565
2]20s 3)7439 5)9033 11)911 33)342 41)238

S9R5 shell 1]10s 3)7475 5)8971 11)856 33)634 40)626
Present 1]10 3)6822 5)8278 11)838 33)641 42)295

2]20t 3)6810 5)8041 11)691 33)231 40)450
Tzou and Ye [7] 2]10t 8)17 25)66 86)93 194)14 346)08

sDenotes the same number of nodes and d.o.f.s
tDenotes the same number of nodes and d.o.f.s.
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In the subsequent computations, the ring is modelled by 1]10 elements. A tip
circumferential load of 100 N/m is applied along the negative Z direction. The voltage
outputs of the 10 piezoelectric elements modelling the inner PZT layer are plotted in Figure
16. The strain is largest at the clamped end and so is the voltage output. The voltage
predictions by the solid-shell and membrane piezoelectric elements modelling the inner
PZT layer are plotted in Figure 16. The strain is largest at the clamped end and so is the
voltage output. The voltage predictions by the solid-shell and membrane piezoelectric
elements are graphically indistinguishable except at the vicinity of the clamped end for both
thick and thin PZT layers.

The ring shell is then sandwiched by 1 pair (10% of the ring counting from the clamped
end is covered) to 10 pairs (100% as covered) of PZT patches. The inner and outer patches
serve, respectively, as sensors and actuators which are linked by negative velocity feedback
controller(s) of unit gain. Figures 17 and 18 show the damping ratio for the "rst eigenmode
with di!erent numbers of S/A (sensor/actuator) pairs constituted by thick (254 km) and thin



Figure 16. Voltage output of inner PZT layer bonded to the semi-circular ring in Figure 15:*r* solid, thick
PZT; *j* membrane, thick PZT; *m* solid, thin PZT; *]#* membrane, thin PZT.

Figure 17. Damping ratio of the ring in Figure 15 versus the number of thick piezoelectric pairs:*j* solid,
1-controller; - -K - - membrane, 1-controller;*d* solid, multi-controllers; - -]- - membrane, multi-controllers.
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(50)8 km) PZT patches respectively. With only one controller (all sensing patches are
electrically connected and so are the actuating patches), the damping ratio increases rapidly
from zero S/A pair to four S/A pairs, reaches its peak and starts to drop at "ve S/A pairs.
With multiple controllers where each S/A pair employs a separate controller, the damping
ratio increases monotonically with the number of S/A pairs. It is noteworthy that the
control e!ectiveness of using one controller is better than that of using multi-controllers.
Comparing Figures 17 and 18, the membrane approximation of the PZT patches is more
realistic for the thinner patches.

10.5. SQUARE PLATE WITH SEGMENTED SENSORS AND ACTUATORS

Figure 19 shows a simply supported 1)6 mm thick plexiglass square plate
(o"1190 kg/m3, E"3)1 GPa, m"0)35) with eight 40 km thick surface-bonded PVDF
"lms (o"1800 kg/m3, E"2)0 GPa, m"0)2, d

31
"d

32
"10 pm/V, 3

33
"0)1062 nF/m).

The "lms bonded to the top and bottom faces are used as actuators and sensors respectively
[5]. The Plexiglass plate is modelled by 17]17 elements whereas each PVDF "lm is
modelled by 7]7 elements. The gap between the PVDF "lm is not speci"ed in reference [5]
and is here taken rather arbitrarily to be 1/200 of plexiglass length. In the absence of the
PVDF "lms, the eigenfrequencies of the plate are predicted and compared to that obtained



Figure 18. Damping ratio of the ring in Figure 15 versus the number of thin piezoelectric pairs: *j* solid,
1-controller; - -K - - membrane, 1-controller;*d* solid, multi-controllers; - -]- - membrane, multi-controllers.

Figure 19. A Plexiglass plate with segmented PVDF piezoelectric sensors and actuators, ¸"400 mm,
c"2 mm, h"1)6 mm, t"0)04 mm.
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by Tzou et al.'s solid element. For the purpose of comparison, the frequencies are also
computed with the PVDF "lms included and with a 17]17 uniform mesh. It can be
seen from Table 4 that the element of Tzou et al. is accurate only for the "rst mode whereas
the present solid-shell element is still reasonably accurate for the third mode. It is noted that
Tzou et al.'s solid elements [7] and Ha et al.'s solid elements [1] are highly similar, if not
identical, in the sense that they all contain nine incompatible displacement modes and,
thus, exhibit shear locking when the elements are not in the form of rectangular
prisms [25].

With the passive damping coe$cient of the smart plate taken to be 0)01, the initial
de#ection of the composite plate structure is prescribed according to the "rst eigenmode at
1 mm amplitude. The signals from the four sensors are input into four negative velocity
feedback controllers which drive the four actuators immediately above the respective
sensors. Figure 20 shows the 10 per cent settling time versus the controller gain. As only the
"rst mode is focused, the results predicted by present solid-shell elements and Tzou et al.'s
incompatible are in good agreement. The PDVF "lms are also modelled by the piezoelectric



TABLE 4

Eigen frequencies (in Hz) of the simply supported Plexiglass square plate in Figure 19

Modes m"1, n"1 m"1, n"2 m"2, n"2

Tzou et al., w/o PVDF [7] 15)9 41)7 70)6
Non-uniform mesh w/o PVDF 15)688 39)782 63)681
Uniform mesh w/o PVDF 15)672 39)523 63)263
Non-uniform mesh with PVDF 17)803 40)082 64)132
Series solution [22] 15)524 39)060 62)496

Note: m and n are the numbers of peaks in the eigenmodes along the X and > directions.

Figure 20. Ten per cent setting time for the Plexiglass plate in Figure 16 versus feedback gains: *d* solid;
*j* membrane; - - -L- - - Tzou et al. [7].
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membrane elements. The prediction is graphically indistinguishable from that of the
piezoelectric solid-shell elements by virtue of the fact that the plexiglass is 400 times thicker
than the PDVF.

11. CLOSURE

In this paper, a number of "nite element models are developed for modelling smart
structures with surface-bonded piezoelectric patches. New solid-shell elements for
formulated for modelling homogeneous and laminated host structures. The assumed
natural strain method is employed to resolve the shear and trapezoidal lockings observed in
conventional solid elements whereas the hybrid stress method is employed to improve the
inplane element response. Piezoelectric solid-shell and membrane elements are developed
by including the electromechanical coupling e!ect. Unlike the conventional piezoelectric
elements, the poling direction of the piezoelectric material is assumed to be parallel to the
transverse direction of the elements as it always happens in practice. Moreover, the notion
of electric nodes is introduced that can conveniently take into account the equipotential
e!ect induced by the metallization coated on the piezoelectric material. Several examples
are examined to illustrate the accuracy and e$cacy of the derived models. In particular, the
piezoelectric membrane element o!ers a more economical and convenient choice for
modelling thin piezoelectric patches than its solid-shell counterpart.



MODELLING SMART STRUCTURES 519
ACKNOWLEDGMENT

The work described in this paper was substantially supported by an Earmarked Research
Grant from the Research Grant Council of the HongKong SAR, P.R. China (Project no.
HKU 7082/97E).

REFERENCES

1. S. K. HA, C. KEILERS and F. K. CHANG 1992 American Institute of Aeronautics and Astronautics
Journal 30, 772}780. Finite element analysis of composite structures containing distributed
piezoelectric sensors and actuators.

2. K. CHANDRASHEKHARA and A. N. AGARWAL 1993 Journal of Intelligent Material Systems
& Structures 4, 496}508. Active vibration control of laminated composite plates using
piezoelectric devices: a "nite element approach.

3. W. S. HWANG and H. C. PARK 1993 American Institute of Aeronautics and Astronautics Journal 31,
930}937. Finite element modelling of piezoelectric sensors and actuators.

4. S. S. RAO and M. SUNAR 1993 American Institute of Aeronautics and Astronautics Journal 31,
1280}1286. Analysis of distributed thermopiezoelectric sensors and actuators in advanced
intelligent structures.

5. H. S. TZOU, C. I. TSENG and H. BAHRAMI 1994 Finite Elements in Analysis and Design 16, 27}42.
A thin piezoelectric hexahedron "nite element applied to design of smart continua.

6. D. T. DETWILER, M. H. SHEN and V. B. VENKAYYA 1995 Finite Elements in Analysis and Design
20, 87}100. Finite element analysis of laminated composite structures containing distributed
piezoelectric actuators and sensors.

7. H. S. TZOU and R. YE 1996 American Institute of Aeronautics and Astronautics Journal 34,
110}115. Analysis of piezoelectric structures with laminated piezoelectric triangle shell elements.

8. J. KIM, V. V. VARADAN and V. K. VARADAN 1997 International Journal of Numerical Methods in
Engineering 40, 817}832. Finite element modelling of structures including piezoelectric active
devices.

9. Z. D. WANG, S. H. CHEN and W. Z. HAN 1997 Finite elements in analysis and design 26, 303}314.
The static shape control for intelligent structures.

10. C. I. TSENG 1989 Ph.D. dissertation, ;niversity of Kentucky, ¸exington, Ky. July. Electro-
mechanical dynamics of a coupled piezoelectric/mechanical system applied to vibration control
and distributed sensing.

11. K. Y. SZE, S. YI and M. H. TAY 1997 International Journal of Numerical Methods in Engineering
40, 1839}1856. An explicit hybrid-stabilized eighteen-node solid element for thin shell analysis.

12. K. J. BATHE and E. N. DVORKIN 1986 International Journal of Numerical Methods in Engineering
22, 697}722. A formulation of general shell elements* the use of mixed interpolation of tensorial
components.

13. R. H. MACNEAL 1987 International Journal of Numerical Methods in Engineering 24, 1793}1799.
A theorem regarding locking of tapered four-node membrane elements.

14. K. Y. SZE 2000 International Journal of Numerical Methods in Engineering 47, 907}920. On
immunizing "ve-beta hybrid stress elements from &&trapezoidal locking'' in practical analysis.

15. H. S. STOLARSKI 1991 First ;.S. National Congress on Computational Mechanics July 21}24,
Chicago. On a formulation of the quadrilateral with highly accurate in-plane bending behavior.

16. T. H. H. PIAN 1985 Finite Elements in Analysis & Design 1, 131}140. Finite elements based on
consistently assumed stresses and displacements.

17. K. Y. SZE 1992 International Journal of Numerical Methods in Engineering 35, 1}20. E$cient
formulation of robust hybrid elements using orthogonal stress/strain interpolants and admissible
matrix formulation.

18. E. P. ERNISSE 1967 IEEE ¹ransactions on Sonics and ;ltrasonics 14, 153}160. Variational
method for electroelastic vibration analysis.

19. K. Y. SZE and Y. S. PAN 1999 Journal Sound and <ibration 26, 519}547. Hybrid "nite element
models for piezoelectric materials.

20. H. S. TZOU 1993 Piezoelectric Shells: Distributed Sensing and Control of Continua. Netherlands:
Kluwer Academic Publishers.

21. ABAQ;S ;ser1s Manual 1998 Version 5.8. Rhode Island: Hibbitt, Karlsson & Sorensen, Inc.
22. A. W. LEISSA 1969 <ibration of Plates. Washington D.C.: Scienti"c & Technical Information

Division, NASA.



520 K. Y. SZE AND L. Q. YAO
23. S. P. TIMOSHENKO and S. WOINOWSKY-KRIEGER 1959 ¹heory of Plates and Shells. New York:
McGraw-Hill, second edition.

24. J. L. CRAWLY and K. B. LAZARUS 1991 American Institute of Aeronautics and Astronautics Journal
29, 944}951. Induced strain actuation of isotropic and anisotropic plate.

25. K. Y. SZE and A. GHALI 1993 International Journal of Numerical Methods in Engineering 36,
1519}1540. An hexahedral element for plates, shells and beams by selective scaling.

26. K. Y. SZE, L. Q. YAO and S. N. ATLURI in press Computational Mechanics. Development of
solid-shell elements with particular reference to thickness strain (accepted).

APPENDIX A

By changing the objects of equation (10), the constitutive relation for a generic lamina can
be expressed as
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In order to inhibit thickness locking (also known as Poisson's locking) and recognize the
thickness average nature of eE in the element, the modi"ed generalized sti!ness matrix for
replacing C

G
is derived as [26]

C3
G
"C

A
0
#B

0
BT
0
/D

0
B

0
/D

0
A

1
#B

0
BT
1
/D

0
BT
0
/D

0
1/D

0
BT

1
/D

0
A

1
#B

1
BT
0
/D

0
B

1
/D

0
A

2
#B

1
BT
1
/D

0
D

in which

[A
0
, A

1
, A

2
, B

0
, B

1
, D

0
]"

1

2 P
`1

~1

[A, fA, f2A, B, fB, D]df.

For homogeneous materials, the material constitutive coe$cients are independent of f.
Thus,
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