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In order to evaluate the control performance of the tuned liquid column damper in
suppressing pitching vibration of structures, an optimal parametric study of the damper is
carried out for an undamped structure. The structure is assumed to be subjected to harmonic
excitation in the analysis. The optimum tuning ratio (or the optimum liquid length) and the
optimum head loss coe$cient of the damper are determined using Den Hartog's method.
The analytical formulas of the optimum TLCD parameters for the undamped structure are
derived. The optimum peak amplitudes for the structure and the liquid are also obtained.
Based on the developed analytical formulas, the practical solution procedures for "nding the
optimum parameters are proposed. The presented example indicates that the optimum
TLCD parameters can be easily calculated from the developed formulas. With the help of
this study, the understanding of TLCD behavior with respect to its optimum parameters is
enhanced.

( 2000 Academic Press
1. INTRODUCTION

Tuned liquid column-damper (TLCD), proposed by Sakai et al. [1], was developed mainly
for suppressing horizontal motion of structures. TLCD has de"nite advantages over other
types of damping devices, such as relatively simple mathematical modelling of the
damper}structure interaction, easy tuning of frequency in practice, easy manufacturing and
installation, low cost, and almost free maintenance, etc. Therefore, it is preferable device for
vibration control of large structures.

In the past few years, the researches on TLCD are only concerned with its control
performance and applications in the suppression of structural horizontal vibrations [2}10].
Recently, the possibility and e!ectiveness of using TLCD to reduce pitching vibration of
structures were investigated by the authors [11, 12]. A mathematical model of
TLCD}structure interaction under pitching motion was developed. This model was further
veri"ed by a series of free and forced vibration experiments. It was demonstrated that
TLCD can e!ectively reduce structural pitching vibrations as well. Incorporating the
developed theoretical model with Scanlan's wind force model for bridge decks, it has been
proved that the TLCD can also be successfully used for wind-induced torsional vibration
0022-460X/00/330235#15 $35.00/0 ( 2000 Academic Press
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control of suspension bridge decks [13]. The studies indicated that the control e!ectiveness
could be signi"cantly in#uenced by the parameters of the tuned liquid column damper.
Therefore, a necessary optimal parameter design should be required in the practical
application of the damper.

In this paper, in order to enhance the understanding of the TLCD performance and its
behavior in the mitigation of pitching vibration of structures, an optimal parametric study
is carried out for the damper. The structure is assumed to be undamped and be subjected to
harmonic excitation for facilitating the analysis.

The method used in this paper is similar to that described by Den Hartog [14]
in determining the optimum vibration absorber parameters for an undamped
single-degree-of-freedom main system, where closed-form expressions for the optimum
damper parameters were derived with the assumption that no damping was presented in the
main mass. Den Hartog's procedure has been employed by many other authors. Snowdon
[15] extended it to include di!erent types of absorber damping instead of the viscous
damping considered by Den Hartog. Introducing the concept of e!ective mass and e!ective
sti!ness and representing the structural response by a single relevant mode, the optimum
parameters for absorbers, which are attached to elastic bodies like beams, plates, and
cylindrical shells, etc., were investigated by Jacquot [16], Warburton and Ayorinde [17],
Ayorinde and Warburton [18]. The extension of Den Hartog's method to the main systems
with two or multiple degrees of freedom was outlined by Warburton [19] with both
narrow-band and broad-band optimizations. Warburton [20] also derived closed-form
expressions for optimum absorber parameters for undamped main systems subjected to
harmonic and white-noise random excitations.

However, the above investigations are only limited to the applications of determining the
optimum parameters of vibration absorbers. No relevant research has been found on the
determination of the optimum parameters of the tuned liquid column dampers with the use
of Den Hartog's method. Therefore, an e!ort is made in this paper to investigate the
optimum parameters of the tuned liquid column damper in suppressing pitching vibration
of undamped structures. First, a TLCD-structure model subjected to pitching motion is
presented. The TLCD-structure interactive equations under harmonic excitation are solved
in a frequency domain. Then, assuming the structure to be undamped, the optimum tuning
ratio and the optimum head loss coe$cient of the tuned liquid column damper are studied
with the help of Den Hartog's method. The analytical formulas of the optimum TLCD
parameters are derived. The optimum peak amplitudes for the structure and the liquid are
also obtained. Finally, based on the developed analytical formulas, the practical solution
procedures for "nding the optimum TLCD parameters are proposed, and an example is
presented to illustrate the results.

2. TLCD-STRUCTURE MODEL

Figure 1 shows a model of a primary structure equipped with a tuned liquid column
damper. The structure is modelled as a single-degree-of-freedom system subjected to
pitching motion only. It has parameters of the mass moment of inertia I

s
, damping

coe$cient C
s
and torsional sti!ness K

s
. The tuned liquid column damper is a U-shaped

container "lled with liquid. It is characterized by the density of liquid o, the cross-sectional
area A, the total length of liquid ¸, and the horizontal width B. The ori"ce installed inside
the column tube of TLCD is used to provide the resistance to the liquid motion, thus
increasing the additional damping to the structure. H is the distance from the centerline of
the bottom tube of TLCD to the rotational axis of the structure.



Figure 1. TLCD}structure interaction model.

Figure 2. TLCD under pitching motion.
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When an external moment M
s
is applied, the structure will vibrate around its rotational

axis. The tuned liquid column damper will move together with the structure, resulting in the
sloshing of the liquid. The liquid motion in the TLCD will produce a restoring force to
counteract the external moment acting on the structure, while the ori"ce in the TLCD will
induce damping force that dissipates energy. Therefore, the structure}damper system
behaves interactively during the vibration. If the parameters of the TLCD are properly
selected according to the design requirements, the vibrational response of the structure will
be mitigated.

The motion of TLCD during pitching vibration is shown in Figure 2. The
TLCD-structure interactive equations have been developed by the author as follows
[13]:

C
I
s
#I

d
G

G mD G
hG

=G H C
C

s
0

0 (oA/2)dD=Q DD G
hQ

=Q H#C
K

s
#mgH mga

mga 2oAgD G
h

=H"G
M

s
0 H , (1)

where G"oAB(H#(¸!B)/2); m"oA¸ is the mass of the liquid; and a"B/¸ de"nes the
ratio of liquid horizontal length to its total length.
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I
d
represents the moment of inertia of the liquid column of TLCD around the rotational

axis of the structure, which is expressed as

I
d
"oAB(H2#B2/12)#oA(¸!B)[H2#B2/4!H (¸!B)/2#(¸!B)2/12] (2)

and M
s
is the external moment acting on the structure;= is the relative motion of liquid to

the column tube of TLCD; h is the rotational displacement of the structure; the dot over
them denotes the time derivative; g is the acceleration of gravity; and the constant d is
de"ned as the coe$cient of head loss governed by the opening ratio of ori"ce. The natural

circular frequency of the liquid motion is given by u
d
"J2g/¸, which depends only on the

length of the oscillating liquid mass.
In order to keep equation (1) valid, the liquid motion in TLCD has to satisfy

=)

¸!B

2
!

d

2
, (3)

where d is the thickness of the liquid column (inner dimension of the TLCD tube).
It is noticed that the combined system of the structure with TLCD is nonlinear due to

the nonlinear damping property of the tuned liquid column damper. For a study in
the frequency domain, the nonlinear equations can be linearized by some equivalent
linearization techniques. Taking an equivalent linear damping force C

eq
=Q to represent the

non-linear damping force 1
2
oAdD=Q D=Q and supposing the liquid motion in TLCD to be

sinusoidal under harmonic excitation, the equivalent damping coe$cient C
eq

and the
equivalent damping ratio m

d
of the TLCD are found by a energy equivalent principle [13]

C
eq
"

4

3n
oAd=M

0
u, (4)

m
d
"

J2d

3nJg¸
=M

0
u, (5)

where =M
0

is the amplitude of liquid motion under harmonic vibration and u is the
frequency of oscillation.

The linearized equations for TLCD}structure interaction can be written as

C
1#k G/I

s
G/m 1 DG

hG

=G H#C
2m

s
u

s
0

0 2m
d
u

d
DG

hQ

=Q H#C
u2

s
#mgH/I

s
mga/I

s
ag u2

d
DG

h

=H"G
M

s
/I

s
0 H,

(6)

where k"I
d
/I

s
is the ratio of moment of inertia of TLCD to structure; u

s
"JK

s
/I

s
is the

natural circular frequency of structure; and m
s
"C

s
/2I

s
u

s
represents the damping ratio of

structure.
Under harmonic excitations, the structure dynamic magni"cation factor (DMF), i.e., the

ratio of dynamic response to static response and the liquid response amplitude=M
0

can be
determined as

DMF"S
(j2!b2 )2#4m2

d
j2b2

E2#F2
, (7)

=M
0
"

DGb2!mga/u2
s
D

mJE2#F2 A
M

0
K

s
B , (8)
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where

E"[1#mgH/K
s
!(1#k)b2](j2!b2 )!4m

s
m
d
jb2!

(Gb2!mga/u2
s
)2

mI
s

, (9)

F"2m
s
b(j2!b2 )#2m

d
jb[1#mgH/K

s
!(1#k)b2], (10)

and j"u
d
/u

s
represents the tuning ratio of TLCD frequency to that of structure; b"u/u

s
stands for the ratio of excitation frequency to that of structure; M

0
is the excitation force

amplitude.
It should be noted that the value of equivalent damping ratio m

d
of the TLCD depends on

the amplitude of liquid motion =M
0
, while =M

0
is further a function of u, M

0
and m

d
.

Therefore, the equivalent damping ratio m
d
has to be determined by iteration from equations

(5) and (8) for each speci"c excitation frequency u and excitation force amplitude M
0
. For

di!erent amplitudes of excitations, the equivalent damping ratio has di!erent values.
Therefore, it varies over the excitation frequency ranges.

3. OPTIMUM TUNING RATIO

It has been shown that for tuned liquid column dampers, the most important parameters
a!ecting the control performance are the tuning frequency ratio, which controls the total
length of liquid of TLCD, and the head loss coe$cient, which dominates the damping
values induced by TLCD.

When structural damping ratio m
s
"0, the dynamic magni"cation factor (DMF) of the

structure can be reduced to the following form:

DMF"S
A

1
#B

1
m2
d

C
1
#D

1
m2
d

, (11)

where

A
1
"(j2!b2 )2, (12a)

B
1
"4j2b2, (12b)

C
1
"G[1#mgH/K

s
!(1#k)b2](j2!b2 )!

(Gb2!mga/u2
s
)2

mI
s

H
2
, (12c)

D
1
"4j2b2[1#mgH/K

s
!(1#k)b2]2 (12d)

m
d
is the equivalent damping ratio of TLCD. The magnitude of m

d
is determined by the value

of head loss coe$cient d of the TLCD.
Figure 3 shows some typical plots of frequency response curves under di!erent values of

head loss coe$cients for an undamped structure. Two extreme conditions for head loss
coe$cients d"0 and d"R are plotted together with those of d"8)0 and 20)0. It is
observed that with d"0, the peak response is in"nite, and with d"R the peak response is
again in"nite. The condition for d"0 and R can be easily examined from equation (11).
With d"0 and R, we have m

d
"0 and R. Equation (11) is thus reduced to

DMF"JA
1
/C

1
and DMF"JB

1
/D

1
respectively, from which the condition for in"nite

peak response can be easily determined. Since the objective of installing the damper to the
structure is to bring the resonant peak down to its lowest possible value, somewhere



Figure 3. Frequency response curves of undamped structure with di!erent head loss coe$cients. } - } - , d"0)0;
- - - - - -, d"8)0; } } }, d"20)0; **, d"R.
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between d"0 and d"R there must be a value of d for which the peak becomes
a minimum

As indicated by Den Hartog [14], Figure 3 also reveals a fact that all four curves of
di!erent d intersect at two "xed points, P and Q. This is not accidental. Studies for other
cases also indicate that all curves pass through these two points independent of the
coe$cients of head loss, or the equivalent damping of the tuned liquid column damper.
Obviously, the most favorable curve under a given d is the one which passes with
a horizontal tangent through the highest of the two "xed points P and Q. The ordinate at
that point gives the best obtainable amplitude of the response peak, and the corresponding
head loss coe$cient is the optimum head loss coe$cient for the given system. In addition,
by changing the tuning frequency ratio j, the two "xed points P and Q can be shifted up and
down, one point going up and the other going down. Clearly, the most favorable case is such
that "rst by a proper choice of the tuning ratio j, the two "xed points are adjusted to equal
heights, and second by a proper choice of the head loss coe$cient d, the curve is adjusted to
pass with a horizontal tangent through one of them.

First, let us "nd the optimum tuning ratio. The relation that is independent of the
equivalent damping ratio can be found from equation (11) if A

1
/C

1
"B

1
/D

1
, or written out

fully

j2!b2

[1#mgH/K
s
!(1#k)b2](j2!b2 )!(Gb2!mga/u2

s
)2/mI

s

"$

1

1#mgH/K
s
!(1#k)b2

.

(13)

With plus sign, we have

(Gb2!mga/u2
s
)2

mI
s

"0 or Gb2!mga/u2
s
"0. (14)

This gives a zero amplitude of liquid motion, i.e., =M "0 (see equation (8)), thus giving
a zero equivalent damping, m

d
"0 (see equation (5)). Therefore, it is a trivial result which we

are not interested in.
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With the minus sign, equation (13) becomes

2(j2!b2 )[1#mgH/K
s
!(1#k)b2]!

(Gb2!mga/u2
s
)2

mI
s

"0. (15)

Expanding equation (15) leads to a quadratic equation in b2

C2(1#k)!
G2

mI
s
Db4!2[1#(1#k)j2#(mgH!Gga)/K

s
]b2

#2j2(1#mgH/K
s
)!

mg2a2

K
2
u2

s

"0 (16)

which has two positive roots of b
1

and b
2
, representing the horizontal co-ordinates of the

"xed points P and Q in Figure 3, respectively. From equation (16), we have the following
relation:

b2
1
#b2

2
"

2[1#(1#k)j2#(mgH!Gga)/K
s
]

2(1#k)!(G2/mI
s
)

. (17)

It has been mentioned that at the two "xed points the value of the dynamic magni"cation
factor (DMF) is independent of the damping m

d
. This happens for m

d
"R, whereby equation

(11) becomes

DMF"S
B
1

D
1

"

1

D1#mgH/K
s
!(1#k)b2 D

, (18)

which is in"nite at b"J(1#mgH/K
s
)/(1#k) . Adjusting the two "xed points to equal

amplitudes gives

1

1#mgH/K
s
!(1#k)b2

1

"!

1

1#mgH/K
s
!(1#k)b2

2

, (19)

where a minus sign is added because the horizontal co-ordinates of the two "xed points

b
1

and b
2

are on di!erent sides of the point of in"nity, b"J(1#mgH/K
s
)/(1#k).

From equation (19), we have

b2
1
#b2

2
"

2(1#mgH/K
s
)

1#k
. (20)

Combining equations (17) and (20) leads to

j2 (1#k)2"(1#k)[1#(mgH#Gga)/K
s
]!(1#mgH/K

s
)

G2

mI
s

. (21)

If other parameters are known, the optimum tuning ratio j
opt

can be easily calculated
from equation (21). However, it should be noted that the parameters j, m, and G are all
function of the liquid length ¸. Therefore, we have to determine the optimum liquid length
¸
opt
"rst, then the other optimum parameters can be calculated from ¸

opt
.
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The parameter G can be expressed in terms of ¸ as

G"oA¸aAH#

1!a
2

¸B"m[Ha#1
2
a (1!a)¸], (22)

therefore we have

G

m
"Ha#

1

2
a (1!a)¸, (23)

where a"B/¸ is the ratio of liquid horizontal length to its total length; m"oA¸ is the
mass of liquid column.

Similarly, the mass moment of inertia of liquid column can be expressed in terms of ¸ as

I
d
"kI

s
"oA¸aAH2#

a2

12
¸2B#oA¸(1!a) CH2#

a2

4
¸2!H

1!a
2

¸#

(1!a)2

12
¸2D

"

m

12
[(!3a3#6a2!3a#1)¸2!6H(1!a)2¸#12H2], (24)

thus we have

m"

12kI
s

c
11
¸2!c

12
¸#12H2

, (25)

where

c
11
"!3a3#6a2!3a#1, (26a)

c
12
"6H(1!a)2. (26b)

Noticing the following relation

j2"u2
d
/u2

s
; u2

d
"2g/¸; u2

s
"K

s
/I

s
. (27)

Equation (21) can be rewritten as

C
2g (1#k)2

¸

!(1#k)u2
sD

I
s

m
!(1#k) CgH#ga A

G

mBD#[u2
s
#mgH/I

s
] A

G

mB
2
"0.

(28)

Substituting equations (23) and (25) into equation (28) gives

A
A

11
¸

!A
12B (c

11
¸2!c

12
¸#12H2)#Au2

s
#

A
13

c
11
¸2!c

12
¸#12H2B

](Ha#A
14
¸)2!A

15
¸!A

16
"0, (29)



OPTIMUM PARAMETERS OF TUNED LIQUID COLUMN DAMPER 647
where

A
11
"

g (1#k)2

6k
, (30a)

A
12
"

(1#k)u2
s

12k
, (30b)

A
13
"12kgH, (30c)

A
14
"1

2
a (1!a), (30d)

A
15
"

ga2(1#k) (1!a)

2
, (30e)

A
16
"gH(1#k) (1#a2 ). (30f )

Equation (29) gives an implicit formula for the optimum liquid length. Solving this
equation by iterative procedure, the optimum liquid length ¸

opt
can be determined. Then,

the optimum tuning ratio is given by

j
opt

"u
dopt

/u
s
, (31)

where u
dopt

"J2g/¸
opt

is the optimum natural frequency of the tuned liquid column
damper.

The optimum liquid mass m
opt

can be calculated from equation (25) in terms of ¸
opt

. The
optimum cross-sectional area of TLCD is given by A

opt
"m

opt
/o¸

opt
, and the optimum

parameter G
opt

can be determined from equation (22).

4. OPTIMUM HEAD LOSS COEFFICIENT

The optimum tuning ratio gives the result that makes the heights of the two "xed points
equal. Substituting the optimum parameters to equation (16), the two horizontal
co-ordinates, b

1
and b

2
, of the "xed points P and Q at the optimum tuning are solves as

b2
1,2

"

1

2B
11

[!B
12
GJB2

12
!4B

11
B
13

], (32)

where

B
11
"2(1#k)!

G2
opt

m
opt

I
s

, (33a)

B
12
"!2[1#(1#k)j2

opt
#(m

opt
gH!G

opt
ga)/K

s
], (33b)

B
13
"2j2

opt
(1#m

opt
gH/K

s
)!

m
opt

g2a2

K
s
u2

s

. (33c)
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The optimum equivalent damping ratio m
dopt

of TLCD at optimum tuning can be found
by setting the slope of the curve of equation (11) equal to zero at the "xed co-ordinates b

1
and b

2
, i.e.

d(DMF)

db K b/b1,b2

"0. (34)

Expressing equation (11) in the following form

DMF"S
X (b)

>(b)
(35)

then the condition that satis"es d(DMF)/db"0 is given by

>(b)
dX (b)

db
!X(b)

d>(b)

db
"0, (36)

where

X(b)"(j2
opt

!b2)2#4m2
d
j2
opt

b2, (37)

>(b)"E (b)2#F (b)2, (38)

E (b)"[1#m
opt

gH/K
s
!(1#k)b2](j2

opt
!b2)!

(G
opt

b2!m
opt

ga/u2
s
)2

m
opt

I
s

, (39)

F (b)"2m
d
j
opt

b[1#m
opt

gH/K
s
!(1#k)b2]. (40)

Di!erentiating X(b) and >(b) with respect to b gives

dX(b)

db
"!4b (j2

opt
!b2 )#8bj2

opt
m2
d
, (41)

d>(b)

db
"2E(b)

dE(b)

db
#2F(b)

dF(b)

db

"2E(b)E
11

b#2F
11

(b)F
12

(b)m2
d
, (42)

where

E
11

(b)"4 A1#k!
G2

opt
m

opt
I
s
Bb3!2[1#(1#k)j2

opt
#(m

opt
gH!2G

opt
ga)/K

s
]b, (43)

F
11

(b)"2j
opt

b[1#m
opt

gH/K
s
!(1#k)b2], (44)

F
12

(b)"!6j
opt

(1#k)b2#2j
opt

(1#m
opt

gH/K
s
). (45)

Substituting the above results into equation (36) leads to a quadratic equation in m2
d
,

D
11

(b)m4
d
#D

12
(b)m2

d
#D

13
(b)"0, (46)
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where

D
11

(b)"32j3
opt

b4 (1#k)F
11

(b), (47)

D
12

(b)"8E(b)j2
opt

b[E(b)!bE
11

(b)]!2F
11

(b) (j2
opt

!b2 )

][2bF
11

(b)#(j2
opt

!b2)F
12

(b)], (48)

D
13

(b)"!2E(b)(j2
opt

!b2 )[2bE(b)#(j2
opt

!b2 )E
11

(b)]. (49)

Solving equation (46) corresponding to the horizontal co-ordinate b
1

at the "xed point
P gives the equivalent damping ratio m

d1
that makes the curve pass horizontally through the

point P (but not horizontally at point Q):

m
d1
"S

1

2D
11

(b
1
)
[!D

12
(b

1
)#JD

12
(b

1
)2!4D

11
(b

1
)D

13
(b

1
)]. (50)

Similarly, solving equation (46) corresponding to the horizontal co-ordinate b
2

at the
"xed point Q gives the equivalent damping into m

d2
that makes the curve pass horizontally

through the point Q (but not horizontally at point P):

m
d2
"S

1

2D
11

(b
2
)
[!D

12
(b

2
)!JD

12
(b

2
)2!4D

11
(b

2
)D

13
(b

2
)]. (51)

Then, the optimum head loss coe$cients, d
1

and d
2
, corresponding to m

d1
and

m
d2

respectively, can be obtained from equations (5) and (8) as

d
1
"

3nm
opt

Jg¸
opt

J2

JE(b
1
)2#F

11
(b

1
)2m2

d1
DG

opt
b2
1
!m

opt
ga/u2

s
D A

K
s

M
0
B

1

b
1
u

s

m
d1

(52)

d
2
"

3nm
opt

Jg¸
opt

J2

JE(b
2
)2#F

11
(b

2
)2m2

d2
DG

opt
b2
2
!m

opt
ga/u2

s
D A

K
s

M
0
B

1

b
2
u

s

m
d2

. (53)

It is noticed that d
1

and d
2

de"ne the optimum conditions for points P and Q separately.
In practical design, the optimum head loss coe$cient d

opt
for the system can be evaluated by

the average value between d
1

and d
2
:

d
opt

"(d
1
#d

2
)/2. (54)

5. OPTIMAL PEAK AMPLITUDES

At the optimal condition, the two "xed points P and Q have equal heights, and the
response curve passes horizontally through either point P or point Q. Therefore, the
optimal peak amplitude of the structure can be taken as the height of either point.

Since the amplitude at points P or Q is independent of the damping (or the head loss
coe$cient) of the tuned liquid column damper, it can be taken as the simple form as shown
in equation (18). Substituting one of the roots, b

1
and b

2
, into equation (18) gives the peak

amplitude at the optimum condition

DMF
opt

"

1

D1#m
opt

gH/K
s
!(1#k)b2

i
D

(i"1, 2). (55)
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The corresponding amplitude of liquid motion at the optimum condition can be found by
substituting the optimum parameters to equation (8). The amplitudes of liquid motion for
points P and Q have also equal magnitudes if the related optimum parameters for the two
points are used correspondingly,

=M
opt

"

DG
opt

b2
i
!m

opt
ga/u2

s
D

m
opt

JE(b
i
)2#F

11
(b

i
)2m2

di
A
M

0
K

s
B (i"1, 2). (56)

It should be noted that equations (55) and (56) are based on an assumption that the head
loss coe$cients (or equivalent damping ratio) of TLCD take di!erent optimum values for
each point. However, for a practical structure system, the tuned liquid column damper is
designed with a speci"c ori"ce opening, which gives a "xed value of head loss coe$cient. If
the average value given by equation (54) is used for the optimum head loss coe$cient of
the damper, the response curve will not pass points P or Q horizontally, therefore, the
amplitudes given by equations (55) and (56) will not be the maximum amplitudes for the
structure and the liquid. In this case, the optimal peak amplitudes can be simply found from
numerical results of the frequency responses using the suggested optimum TLCD
parameters. In general, equations (55) and (56) can give a good approximation for the true
peak amplitudes of the structure and the liquid.

As indicated by equation (3), in the practical design of the tuned liquid column damper,
the predicted maximum liquid amplitude=M

max
has to satisfy

=M
max

)[(1!a)¸!d]/2, (57)

so that the liquid motion keeps valid during the vibration.

6. SOLUTION PROCEDURE AND EXAMPLE

Based on the developed theoretical formulas, the optimum TLCD parameters for an
undamped structure can be determined by the procedures suggested as follows:

(1) Input basic parameters: o, g, k, a, H, u
s
, I

s
, K

s
, M

0
.

(2) Determine optimum liquid length ¸
opt

from equation (29).
(3) Calculate optimum tuning ratio j

opt
and other optimum parameters: m

opt
, G

opt
, and

A
opt

.
(4) Calculate the horizontal co-ordinates b

1
and b

2
of the two "xed points P and Q from

equation (32).
(5) Calculate optimum equivalent damping ratio m

d1
and m

d2
from equations (50) and (51).

(6) Determine the optimum head loss coe$cient d
1
, d

2
and d

opt
from equations (52)}(54).

(7) Calculate the optimal amplitudes of structure and liquid from equations (55) and (56).
(8) Check equation (57) to ensure it is not violated.

According to above solution procedures, a computer program has been developed to
assist the analysis. In order to demonstrate the method, we present a numerical example
taken from a practical suspension bridge deck. Figure 4 shows a typical deck section
equipped with a tuned liquid column damper. The TLCD is used to control the torsional
vibration of the bridge deck. The cross-sectional properties of the deck section is
characterized by the total deck width b"30 m; the inner deck width at the bottom
b@"20 m; and the deck height h"3)5 m. The mass moment of inertia of the deck section
per unit span is I

s
"4)34]106 kg m2/m, and the torsional sti!ness of the deck section per

unit span is K
s
"3)86]106 N m/m/rad. The damping ratio of the deck is very low, and is



Figure 4. Geometric property of Bridge Deck with TLCD.

Figure 5. Frequency response curve of undamped structure under optimum condition. } } } }, horizontally pass
P; - - - - - -, horizontally pass Q; **, average curve.
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therefore neglected in the analysis. The natural frequency of the deck torsional motion is
found by f

s
"0)15 Hz (u

s
"0)943 rad/s). The TLCD is "lled with water. Design the TLCD

with following parameters: o"1000 kg/m3, g"9)8 m/s2, k"1%, a"0)85, H"1)0 m,
and M

0
"4)0]103 N m/m.

Using the described method, the optimum liquid length is determined as ¸
opt

"22)13 m,
which gives an optimum tuning ratio of j

opt
"99)85%. The optimum cross-sectional area of

the TLCD is found by A
opt

"0)05 m2/m. The two horizontal coordinates for points P and
Q are found, respectively, b

1
"0)9554 and b

2
"1)0359, and the same amplitude of 12)35 is

found for the two points. The optimum equivalent damping ratios of the TLCD for the two
points are calculated as m

d1
"7)39% and m

d2
"6)59%. The corresponding optimum head

loss coe$cients are found to be d
1
"14)121 and d

2
"11)611 respectively, which gives an

average head loss coe$cient of 12)866. Using the individual optimum parameters for points
P and Q, respectively, a same liquid amplitude of 0)571 m is found for the two points.

Figure 5 shows the structural response curves determined from the optimum TLCD
parameters, where three curves are drawn, which are respectively, the curve passing
horizontally through point P; the curve passing horizontally through point Q; and the curve
using the average optimum head loss coe$cient given by equation (54). The corresponding
liquid response for the optimum TLCD parameters are also illustrated in Figure 6. It is seen
that the average curve gives a good approximation for the two optimum curves, either for
the response of structure or for the response of liquid.



Figure 6. Frequency response curve of liquid under optimum condition. }} } }, d
1
"14)121; - - - - - -,

d
2
"11)611; **, d"12)866.
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In the condition of using the average head loss coe$cient, the true peak amplitudes of the
response curves are found respectively, to be 12)42 for the structure, and 0)596 m for the
liquid. It is seen that for both the structure and the liquid, the di!erences between the peak
amplitudes using the average head loss coe$cient and the amplitudes at points P and Q are
very small. Therefore, the amplitude at points P and Q can give a good evaluation of the
true peak amplitude. Using the optimum parameters obtained, the horizontal width of the
TLCD is determined as B"a¸

opt
"18)81 m. Taking the thickness of the TLCD tube to be

d"0)6 m, it is seen that the liquid vibration is within the valid range. It is also evident that
the designed TLCD can be suitably accommodated within bridge decks.

7. CONCLUSIONS

The main objective of this paper is to develop some analytical formulas for determining
the optimum parameters of the tuned liquid column damper in suppressing pitching
vibration of undamped structures. Using Den Hartog's method, the optimum tuning ratio
and the optimum head loss coe$cient of the damper were investigated. The analytical
formulas of the optimum TLCD parameters for the undamped structure were derived. The
optimum peak amplitudes for the structure and the liquid were also obtained. Based on the
developed analytical formulas, the practical solution procedures for "nding the optimum
parameters were proposed. The presented example indicated that the optimum TLCD
parameters can be easily calculated from the developed formulas. With the help of this
study, the understanding of TLCD behavior with respect to its optimum parameters could
be enhanced. It is expected that the analytical formulas developed in this paper will give
a good estimation of the optimum TLCD parameters to low damped structures.
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