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REFLECTION OF PLANE SOUND WAVE FROM
A MICROPOLAR GENERALIZED THERMOELASTIC SOLID

HALF-SPACE

B. SINGHs

Department of Mathematics, Jat College, Rohtak 124 001, Haryana, India

(Received 19 July 1999, and in ,nal form 13 March 2000)

The present study is concerned with the re#ection and refraction of plane sound wave at
an interface between a liquid half-space and a micropolar generalized thermoelastic solid
half-space. The numerical results are calculated in terms of amplitude ratios for
water/aluminium-epoxy composite model for L-S (Lord and Shulman) and G-L (Green and
Lindsay) theories. The comparison between these theories reveals the e!ect of second
thermal relaxation time taken by Green and Lindsay. The results are also compared with
those without thermal e!ect.
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1. INTRODUCTION

Je!ereys [1] and Gutenberg [2] considered the re#ection of elastic plane waves at a solid
half-space. Chadwick and Sneddon [3] and Lockett [4] studied the propagation of
thermoelastic plane waves. Knot [5] derived the general equations for re#ection and
refraction at plane boundary.

In classical dynamical coupled theory of thermoelasticity, the thermal and mechanical
waves propagate with an in"nite velocity, which is not physically admissible. To overcome
this contradiction, the coupled theory of thermoelasticity has been extended by including
the thermal relaxation time in constitutive relations by Lord and Shulman [6] and Green
and Lindsay [7]. Some problems on re#ection in thermoelastic solid have been discussed by
Deresiewicz [8], Sinha and Sinha [9] and Sharma [10].

A theory of micropolar continua was proposed by Eringen and Suhubi [11] and Eringen
[12] to explain the continuum behaviour of materials possessing microstructure. The
propagation of plane waves in an in"nite micropolar elastic solid has been discussed by
Par"tt and Eringen [13], Ariman [14] and Smith [15]. Par"tt and Eringen [13] have
shown that four basic waves (a longitudinal displacement wave, two sets of coupled waves
and a longitudinal microrotational wave) propagate in an in"nite micropolar elastic solid.

The linear theory of micropolar thermoelasticity was developed by extending the theory
of micropolar continua to include thermal e!ect by Eringen [16] and Nowacki [17] and is
known as micropolar coupled thermoelasticity. Dost and Tabarrok [18] have presented the
generalized micropolar thermoelasticity by using Green}Lindsay theory. Kumar and Singh
[19] have also presented the generalized micropolar thermoelasticity with stretch by using
Lord}Shulman and Green}Lindsay theories. Wave propagation in a micropolar
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generalized thermoelastic body with stretch has been studied by Kumar and Singh [19].
Singh and Kumar [20, 21] have discussed some problems on re#ection of plane waves from
#at boundary of a micropolar generalized thermoelastic half-space. Singh and Kumar [22]
have also proposed a generalized thermo-microstretch elastic solid and have discussed the
re#ection of plane waves from the free surface of a generalized thermo-microstretch elastic
solid.

In the present paper, a problem of re#ection and refraction of plane sound wave has been
studied at an interface between a thermally conducting liquid half-space and a micropolar
generalized thermoelastic solid half-space.

2. FORMULATION OF THE PROBLEM

We consider a homogeneous micropolar generalized thermoelastic solid and thermally
conducting liquid which occupy lower and upper half-spaces respectively. We assume that
heat sources, external force loading and body forces are absent and consider a "xed
rectangular Cartesian co-ordinate system (x, y, z). We consider that the two semi-in"nite
media are in contact at a plane interface (z"0) and suppose that the plane sound wave
impinges on the interface from above which we take as "rst medium, the negative z-axis
lying inside the solid half-space (second medium). We take the plane wave motion in the
xz-plane (i.e., L/Ly"0). Following Eringen [16], Lord and Shulman [6] and Green and
Lindsay [7], the constitutive and "eld equations of micropolar generalized thermoelastic
solid without body forces and body couples can be written as (Figure 1)
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Figure 1. Geometry of the problem.
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where symbols have their usual meanings. A superposed dot denotes di!erentiation with
respect to time and a comma followed by a subscript denotes partial di!erentiation with
respect to the corresponding co-ordinate. The use of symbol D, in equation (5) makes these
fundamental equations possible for the two di!erent theories of the generalized
thermoelasticity.

For the L}S (Lord}Shulman) theory t
1
"0, D"1 and for G}L (Green}Lindsay) theory
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1
'0 and D"0. The thermal relaxations t

0
and t

1
satisfy the inequality t
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0
*0 for the

G}L theory only.
We de"ne the angle of incidence (I) as the angle between the propagation of plane sound

wave and normal to the boundary of the "rst medium.

3. SOLUTION OF THE PROBLEM

To solve the problem in second medium, we decompose the displacement and
microrotation vectors as
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Using equations (7) and (8), equations (3)}(4) reduce as
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From equations (9) to (12), we see that the longitudinal displacement wave (LD wave) is
a!ected due to the thermal wave, the coupled transverse and microrotational waves (CD
I and CD II waves) and longitudinal microrotational wave (LM wave) remain una!ected.

From equation (9), we have
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Eliminating h from equations (5) and (13), we get
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where
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We assume the solution of equation (15) in the form
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1
). (17)

With the help of equation (17), equation (15) reduces to
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The solution of equation (18) is of the form
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correspond to the thermal and modi"ed LD waves, respectively, and A
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Making use of equation (8) in equation (10), we get
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Using equation (24) in equation (11) and then the "nal solution is in the form
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and A
5
, A

6
, A

7
, A

8
are arbitrary constants.

If we assume k"i"a"b"c"0, we see that the longitudinal wave in a thermally
conducting liquid medium is a!ected due to the presence of a thermal wave. In this case,
there is no existence for other waves. We consider the variables with primes in the thermally
conducting liquid medium.

The appropriate potentials for two media Mafter dropping the exponential term
ik(ct!x)N are as follows:
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where a
1
is velocity of sound wave and m@

1
and m@

2
correspond to thermal wave and modi"ed

longitudinal wave in liquid medium and are obtained from equations (22) and (23), if we let
k"i"a"b"c"0.

Here we assume that the boundary conditions at the interface z"0 are independent of
x and t, so the values of the phase velocity and wave number in /, t, h, /

2
must be same as

those in /@ and h@. We consider the continuity of stresses and displacements at the interface
z"0 as
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Making use of the potentials given by equations (30)}(35) in boundary conditions (40),
after using equations (1), (2), (7) and (8), we get a system of six non-homogeneous equations
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which can be written as
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and (Z
j
) are the amplitude ratios for various re#ected and refracted waves.

4. NUMERICAL RESULTS AND DISCUSSIONS

To explain the analytical procedure presented earlier, we now consider a numerical
example. The results depict the variation of the angle of incidence with the modulus of the
amplitude ratios in the context of water}aluminium-epoxy composite.

Physical constants for water

o@"1)0 g/cm3, a
1
"1)439]105 cm/s,

K*@"0)144 cal/cm s 3C, C*@"1)0 cal/g 3C.

Following Gauthier [23], the physical constants for aluminium-epoxy composite

o"2)19 g/cm3, j"7)59]1011 dyn/cm2,

k"1)89]1011 dyn/cm2, i"0)0149]1011 dyn/cm2,

c"0)0268]1011 dyn, j"0)0196 cm2,

K*"0)48 cal/cm s 3C, C*"0)206 cal/g 3C, h
0
"203C,



Figure 2. Variations of the amplitude ratios for re#ected thermal waves with the angle of incidence:**, LS
Theory; *]*]*]*], GL Theory.
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Nayfeh and Nasser [24] took t
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Chadwick and Sneddon [3], Lockett [4], Lord and Shulman [6] and Nayfeh and Nasser
[24] have considered e"lN 2h

0
/a2C* as the thermoelastic coupling coe$cient, where a is the

velocity of longitudinal wave. All of them have considered it to be very small and have taken
its value to be in the range of 0)03 and 0)073. We take this coupling coe$cient to be 0)073.

The classical theory is believed to be inadequate for the treatment of deformations and
motions of a material possessing granular structure. In particular, the e!ect of granular
structure, or microstructure, becomes important in transmitting waves of small wavelength
and/or high frequency. When the wavelength is comparable with the average grain size, the
motion of the grains must be taken into account. This introduces new type of waves not
encountered in the classical theory. Here, u'J2 u

0
is the condition for existence of these

new waves which implies that (u2/u2
0
) should be greater than two. We have chosen

u2/u2
0
"200 arbitrarily to get results for the case of very high frequency. We can call u2/u2

0
as frequency ratio as u and u

0
are of same dimension.

For the above values of relevant physical constants, the system of equations (41) in
reduced form for L}S theory, G}L theory and in absence of thermal e!ect has been solved
for amplitude ratios by using the Gauss elimination method for di!erent angle of incidence
varying from 0 to 903. The variations of the modulus of amplitude ratios for various
re#ected and refracted waves with the angle of incidence have been shown graphically in
Figures 2}7 at a given excitation frequency, i.e., when u2/u2

0
"200.

The variations of the amplitude ratios for re#ected thermal waves with the angle of
incidence have been shown in Figure 2 for L}S theory and G}L theory by solid line and
solid line with centre symbols respectively. The amplitude ratios decrease with the increase
in angle of incidence for both of L}S and G}L cases. The comparison between these two line
curves shows the e!ect of second thermal relaxation time. Also, if we neglect the thermal
e!ect, these thermal waves will disappear.

The amplitude ratios for re#ected longitudinal wave for L}S theory, G}L theory shows
the oscillatory behaviour. The variations for these amplitude ratios with the angle of
incidence have been depicted in Figure 3. The solid curve in Figure 3 represents the
variations for L}S theory whereas the solid curve with centre symbols represents the



Figure 3. Variations of the amplitude ratios for re#ected longitudinal waves with the angle of incidence:**,
LS Theory; *]*]*]*], GL Theory; } }, No thermal e!ect.

Figure 4. Variations of the amplitude ratios for refracted thermal waves with the angle of incidence:**, LS
Theory; *]*]*]*], GL Theory.
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variations for G}L theory. Also, if thermal e!ect is neglected, then these variations reduce to
those shown by dashed line in Figure 3.

The variations of the refracted thermal waves for L}S theory and G}L theory have been
shown in Figure 4. If we compare the solid line with the solid line with centre symbol, we
observe the signi"cance of second thermal relaxation time taken by Green and Lindsay [7].

The amplitude ratio for refracted longitudinal displacement wave for L}S case "rst
increases to its maxima and then decreases sharply whereas the amplitude ratios of LD
wave for G}L case "rst increases to its maxima and then decreases slowly. The variations of
these amplitude ratios for L}S case and G}L case have been shown in Figure 5 by solid and
solid line with centre symbols respectively. The dashed line in Figure 5 represent the
variations of the refracted LD wave with the angle of incidence in absence of thermal e!ect.

The variations of the amplitude ratios for two sets of refracted coupled waves (CD I and
CD II waves) with the angle of incidence have been shown in Figures 6 and 7. These two sets
of coupled wave behave alike. The comparison between solid line and solid line with centre



Figure 5. Variations of the amplitude ratios for refracted longitudinal displacement waves with the angle of
incidence: **, LS Theory; *]*]*]*], GL Theory; } }, No thermal e!ect.

Figure 6. Variations of the amplitude ratios for refracted coupled waves (CD I waves) with the angle of
incidence: **, LS Theory; *]*]*]*], GL Theory; } }, No thermal e!ect.

PLANE SOUND WAVE AT A SOLID HALF-SPACE 693
symbols shows the importance of second thermal relaxation time. Also, if thermal e!ect is
neglected, then these variations reduce to those shown by dashed lines in Figures 6 and 7.

The variations of these amplitude ratios with the excitation frequency at a given angle of
incidence can be expressed in similar manner.

5. CONCLUSIONS

A problem of re#ection and refraction of plane sound wave has been studied at an
interface between a thermally conducting liquid and a generalized micropolar generalized
thermoelastic solid. Both the theory and numerical results indicate the dependence of the
amplitude ratios of various re#ected and refracted waves upon the angle of incidence. The
variations of the amplitude ratios for various re#ected and refracted waves in G}L case are
di!erent from those in L}S case. The comparison between the amplitude ratios for L}S case



Figure 7. Variations of the amplitude ratios for refracted coupled waves (CD II waves) with the angle of
incidence: **, LS Theory; *]*]*]*], GL Theory; } }, No thermal e!ect.
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and G}L case reveals the e!ect of second thermal relaxation time. The comparison of the
variations of the amplitude ratios with those without thermal disturbances in "gures shows
the importance of thermal phenomenon in the problems of re#ection and refraction. The
"nal results also indicate that the problems of waves and vibrations become more
important in the "eld of seismology, when we study the problem with additional parameters
(e.g., thermal disturbance, microrotation, etc.). This problem introduces a more realistic
model of the earth's crust. Such type of problems may provide some useful information
about the presence of oil layers in earth's crust and may be of some use for experimental
seismologists.
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APPENDIX A. NOMENCLATURE

c apparent phase velocity on the surface
C* speci"c heat at constant strain
i "J!1
j microrotational inertia
k wave number
K* coe$cient of thermal conductivity
KM * "K*/o
m

kl
components of the couple stress tensor

t
0
, t

1
relaxation times

u
k

components of displacement vector u
uR
i,j

"L2u
i
/Lx

j
Lt

uK
i,j

"L3u
i
/Lx

j
Lt2

u
k, l

"Lu
k
/Lx

1
u, / displacement and microrotation vector respectively
U, U vector potentials
x
k

components of the position vector (x
1
"x, x

2
"y, x

3
"z)

a
t

coe$cients of linear expansion
d
kl

Kronecker delta
+ del operator
e thermocoupling coe$cient
e
klr

alternate tensor
h temperature variable
h
0

initial uniform temperature
j, k, i, c, a, b micropolar material constants
l thermal constants
l "(3j#2k#i)a

t
lN "l/o
o density of micropolar generalized thermoelastic solid
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p
kl

components of the force stress tensor
/
k

component of microrotation vector /
/
2

"(!/)
y

/
k,l

"L/
k
/Lx

l
/, m scalar potentials
t "(!U)

y
u ("kc) angular frequency
@ similar quantities in the liquid medium
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