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The problem of analytical description of temperature "elds and heat #uxes in
thermoacoustic devices (such as refrigerators and prime-movers) is discussed. It is
demonstrated that for the precise analysis of the thermoacoustic process near the edges of
the stacks and the heat exchangers, and also for the prediction of the heat #uxes between the
stack and the heat exchangers, it is necessary to avoid the traditional &&mean-"eld''
approximation. In other words, on the spatial scale of the order of a particle displacement in
the standing acoustic wave, hydrodynamical (advective) transport of heat cannot be
described as a di!usional transport with an e!ective (depending on the acoustic wave power)
di!usivity. In order to get insight into the non-linear phenomena, related to axial (along the
stack) advective transport of heat, the simpli"ed description of the transverse heat exchange
between the gas and the stack (the relaxation-time approximation) has been adopted in the
present investigation. The analytical descriptions obtained of the temperature distribution
and of the heat #ux predict, in particular, that in some cases the thermoacoustic heat #ux
between two stacks separated by an adiabatic gap can increase with the increasing width of
the gap.

( 2000 Academic Press
1. INTRODUCTION

The classical thermoacoustic refrigerator [1] is based on a half-wavelength resonator driven
by a loudspeaker (see Figure 1). A system of parallel solid plates (i.e., the so-called
thermoacoustic stack) is installed in the resonator. As a consequence of the thermal
interaction of the acoustic waves with the stack there is an additional phase shift between
the oscillations of particle velocity and temperature in the standing acoustic wave. This
results in a directional heat #ux along the stack and in heating of one of its terminations
(edges) and in cooling of the other. Installation of additional stacks (i.e., the so-called heat
exchangers) near the edges of the basic stack (see Figure 1) provides an opportunity to
extract this heat #ux from the resonator (through the hot heat exchanger) and use this
thermoacoustic engine to cool the other systems which are connected to the cold heat
exchanger.
022-460X/00/350711#16 $35.00/0 ( 2000 Academic Press



Figure 1. The qualitative scheme of the thermoacoustic heat pump (refrigerator): 1*the loud-speaker, 2*the
acoustic resonator, 3*the porous thermoacoustic stack, 4*the porous heat exchangers.
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The basic physical problem to be solved concerning thermoacoustic refrigeration is the
description of the temperature and heat #ux distributions inside and at the edges of the
stacks, and the heat #uxes between the basic stack and the heat exchangers. This solution is
necessary for the optimization of the performances of practical thermoacoustic engines. In
the following the fundamental equations and approximations used for its analytical
treatment are brie#y discussed. In particular, attention is concentrated on the limitations of
the traditional &&mean-"eld'' approximation in which the convective heat transport is
described as a di!usional process. After that, the results of an analytical approach which
precisely treats convective heat transport avoiding the &&mean-"eld'' approximation are
presented.

2. &&MEAN-FIELD'' APPROXIMATION IN THERMOACOUSTICS

The equation for the energy transport in the gas can be presented in the form [2]
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where s is the entropy, v is the particle velocity (with the components v
i
), o and ¹ are the

density and the temperature of the gas, p@
ij

is the viscous part of the stress tensor, and k is the
gas thermal conductivity. Traditionally, in the analytical approaches, the energy release due
to viscous losses is neglected (simultaneously with a possibility of the formation of vortices
near the stack edges) [1, 3]. The experimental results on vortex shedding at the edges of the
plates and the results of computer modelling of this phenomenon can be found in references
[4, 5] and in the references therein. As the goal of the present investigation is not the
analysis of these e!ects, we accept in the following the approximation of an inviscid #uid
where these e!ects are completely absent. If the viscosity is neglected and the thickness of
the stack plates is assumed to be much less than the separation distance between the plates
(the limiting case of the in"nitely thin plates), then the velocity "eld is approximately
one-dimensional v"iv

x
,iv and the operator describing the hydrodynamic advective

transport of entropy on the left-hand side (l.h.s.) of equation (1) becomes v Ls/Lx. Here and in
the following the x-axis is directed along the axis of the resonator, while the y-axis is
perpendicular to the plates of the thermoacoustic stack (see Figure 1).

In the thermoacoustic devices designed for applications around room temperature, the
relative variations of temperature are usually small and, consequently, the right-hand side
(r.h.s.) of equation (1) can be linearized relative to some characteristic state (o

0
,¹

0
) of the

gas. It is suitable to associate the characteristic state of the gas with its state in the absence of
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the stack and the heat exchangers. Thus, equation (1) takes the form
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where ¹@ denotes the deviation of the temperature from ¹
0
. Upon applying the

thermodynamic relation ds"(c
p
/¹) d¹!(b/o) dp (where c

p
is the isobaric heat capacity,

b is the thermal expansion coe$cient and p is the gas pressure), equation (2) is transformed
into
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If u is the cyclic frequency of harmonic acoustic oscillations, then the following
estimations are valid: Lp/LtJup and vJu; (where ; is the particle displacement in the
acoustic wave). As Lp/LxJp/j (where j is the acoustic wavelength), then the second term
on the r.h.s. of equation (3) can be neglected in comparison with the "rst one, because it
contains an additional small parameter;/j@1. Finally, the equation for the temperature is
presented in the form
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where b, c
p

and the thermal di!usivity of the gas D
0
,k
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can be evaluated in the
characteristic state of the gas and, consequently, are considered to be constants.

For the analysis of thermoacoustic refrigeration, the "elds of particle velocity and
pressure can be approximated by their distribution in the resonator in the absence of the
temperature gradients (i.e., by neglecting inverse in#uence of the thermoacoustic processes
on acoustic "eld) [1, 3, 6]. In fact, in this approximation it is assumed that all the
installations in the resonator (i.e., both the stack and the heat exchangers) are always
acoustically thin and, as a consequence, the travelling-wave components of the acoustic
"eld in the resonator are negligibly small in comparison with the standing-wave
component. We choose the following description of the acoustic "eld:

;,!u
A

sin(2nx/j) cos(ut),!u cos(ut),

v"uu sin(ut), p"o
0
(ju2/2n)u

A
cos(2nx/j) cos(ut). (5)

Here u
A

denotes the maximum amplitude of the particle displacement and u denotes the
local amplitude of the particle displacement amplitude in the acoustic "eld. The acoustic
"eld described in equations (5) introduces in the standing-wave thermoacoustic e!ects,
a characteristic axial scale in space equal to the acoustic wavelength j [1]. The other
characteristic scales in space are introduced, in general, by the presence of the stack and of
the heat exchangers (these scales are equal to the stack length and the separation between
the stack and the heat exchanger, etc.). Though it is assumed here that the latter scales do
not in#uence the acoustic "eld in equations (5) (in particular, because thermoacoustic
installations are usually acoustically thin and also because of neglecting of the viscosity
here) these scales can manifest themselves in the distribution of the temperature as the
installations inside the acoustic resonator can signi"cantly modify the conditions for the
temperature variations (because heat conduction is active in equation (4)). Although in
thermoacoustics the scale related to the installation of the stack is usually much shorter
than the acoustic wavelength [1] there is an even shorter scale in the problem under
consideration which is equal to the local particle displacement amplitude u in the acoustic
"eld. It is also a commonly accepted idea that the separation between the stack and the heat
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exchanger should not exceed an order of u for the e!ective heat transport between these
elements [1].

The primary goal of the analysis presented here is the investigation of thermoacoustic
phenomena at the scale much less than j near the stack edges and in a vicinity of the gap
separating the stack and the heat exchanger. To achieve this purpose we simplify equation
(4) by explicitly taking into account that the variation of v and p with co-ordinate x in
equations (5) is much slower than the spatial variation of temperature in equation (4) in the
region of the stack termination. Introducing the dimensionless temperature h"¹@/¹

c
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c
,!(b¹

0
/c

p
) (ju2/2n)u

A
cos (2nx/j)) and the dimensionless variables q"ut, f"x/u

and g"y/y
0

(where y
0

is the distance between the plates in the stack) and neglecting the
contribution from the scale of the order of j to the derivatives over axial co-ordinate, one
can simplify equation (4) to

hq#hf sin q"sin q#Dh,

where

D,(D
0
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0
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0
/u2u)L2/Lf2. (6)

Note that the solution of equation (6) depends implicitly (through the normalization of the
function h and the variable f) on the position of the stack inside the acoustic resonator. It
should be mentioned that equation (6) can be applied for the description of thermoacoustic
phenomena at any scale that is signi"cantly less than the acoustic wavelength j (in
particular, for the description of temperature distribution inside an acoustically thin stack)
as long as the local acoustic "eld parameters are used. The solutions of equation (6) are
related via the boundary conditions to the solutions of the equation for the di!usional
thermal conduction in the plates [1, 3]. Until now the only way used to solve this system of
coupled equations analytically was by means of its additional simpli"cation in the
&&mean-"eld'' approximation (see the review article [1] and the references therein). For
a recent application of the mean-"eld approximation in thermoacoustics see reference [7],
for example.

The complexity of the problem of the analytical solution of equation (6) is, in fact, in the
presence of the di!erential term hf sin q with a time-dependent coe$cient. This term,
describing the hydrodynamic [2] (or convective (advective) [8]) transport of heat, is
responsible for the thermoacoustic e!ect. The idea of the &&mean-"eld'' approximation is in
the derivation from equation (6) of the equation for the time-averaged physical functions. In
practice, the temperature "eld is presented in the form of a superposition of an oscillating
periodic part hI and the "eld ShT averaged over the period of oscillations:

h"hI #ShT, ShT,(2n)~1P
n

~n
hdq, ShI T"0. (7)

In accordance with equations (7) LShT/Lq"0. Then the substitution of equations (7) into
equation (6) provides

h3 q#(ShT sin q#hI sin q)f"sin q#D(ShT#hI ). (8)

The averaging of equation (8) over a period of the process leads to

ShI sin qTf"DShT. (9)

In accordance with equation (9), to close the equation for the average temperature ShT, we
need to derive an equation for the sine component ShI sin qT of the "rst harmonic of the
oscillating temperature "eld. In fact, the second order heat #ux per unit area in
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a thermoacoustic device can be de"ned as [1]
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In the standing acoustic wave under consideration, it coincides with the second order
enthalpy #ux per unit area [1]. Consequently, equation (9) has a clear physical meaning: for
the description of the temperature distribution it is necessary to know spatial variation of
acoustically induced heat #ux per unit area. In order to "nd ShI sin qT, equation (9) is
subtracted from equation (8) with the result

hI q#(ShT sin q#hI sin q!ShI sin qT)f"sin q#DhI . (11)

Multiplying equation (11) by cos q and averaging over a period, one "nds

ShI sin qT#(1/2)ShI sin 2qTf"DShI cos qT. (12)

Multiplying equation (11) by sin q and averaging over a period, one has

!ShI cos qT#(1/2)(ShT!ShI cos 2qT)f"1/2#DShI sin qT. (13)

In order to solve equations (12) and (13) for the "rst harmonic of the oscillating temperature
"eld, one "rst has to "nd the second-harmonic components ShI sin 2qT and ShI cos 2qT. Of
course, the equations for the second harmonic are readily obtained by multiplying each
term of equation (11) by cos 2q ( sin 2q) and then averaging, but their solution requires
a knowledge of the third harmonic, and so on. At any step of this procedure one has an open
set of equations. Thus, this problem is nearly identical to the problem of closing the moment
hierarchy in the theory of #uid turbulence, which is usually referred to as the &&closure
problem'' and is the underlying problem of turbulence theory [8].

To the best of our knowledge, in thermoacoustic theory until now the &&closure problem''
has been solved in the most simple way, just by neglecting the second harmonic of the
temperature "eld in equations (12) and (13). Thus, system (9), (12), (13) becomes a closed
system of equations for ShT, ShI sin qT and ShI cos qT. In particular, this system can be
reduced to the following single equation for the average temperature distribution:

[1#D2!(1/2)L2/Lf2]DShT"0. (14)

However, a traditional way of analytical evaluation of the temperature "elds in
a thermoacoustic stack [1, 3] avoids direct solution of equation (14) (or the truncated
system of equations (9), (12), (13), i.e., with the second harmonic being neglected). Instead,
the term (hI sin q!ShI sin qT)f (responsible for the generation of the hierarchy of the
harmonics) is neglected already in equation (11), resulting in

hI q#sin qShTf"sin q#DhI . (15)

Equation (15) should be solved simultaneously with equation (9).
Before discussing the solution methods for the problem described by equations (9), (15),

let us establish the formal physical criteria for the validity of the &&mean-"eld''
approximation. This can be achieved by examining the spectrum of harmonics in the
solutions of the equation hq#sin q hf"sin q, which describes an adiabatic process (and
follows from equation (6) when molecular heat di!usion is neglected). Deleting the adiabatic
harmonic oscillation of the temperature by means of the transformation h"h@!cos q, one
derives the equation

h@q#sin q h@f"0.

This equation has an exact analytical solution

h@"f [f!(1!cos q)]
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for any initial temperature distribution h@(q"0)"f (f). Let us choose a function with
a single characteristic spatial scale f

c
, for example, f (f)"exp(f/f

c
). Thus, the solution for

the temperature is

h@"exp[(f!1)/f
c
] exp( cos q/f

c
).

Then one derives
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where I
1
, I

2
are the modi"ed Bessel functions of integer order. Consequently, one can

estimate that in the adiabatic version of equation (13) (i.e., in the absence of molecular heat
transport) the contribution (1/2)Sh@ cos 2qTf from the second harmonic is negligible in
comparison with the contribution Sh@ cos qT from the "rst harmonic, if
(1/2f

c
)I
2
(1/f

c
)@I

1
(1/f

c
). This inequality holds only if f

c
A1: that is, if the spatial scale

x
c
,f

c
u of the axial variation of the temperature "eld signi"cantly exceeds the amplitude

u of particle displacement in the acoustic "eld. Consequently, one can conclude that the
&&mean-"eld'' approximation is asymptotically valid only for the description of temperature
"elds that vary slowly at the scale of the acoustic displacement (x

c
Au).

The classical (and the simplest) solution of system (9), (15) is obtained by assuming that
the average temperature of the gas inside the stack is equal to the average temperature of the
plate [1] at each point of the f-axis and, consequently, there is no average transverse heat
#ux between them (i.e., ShTg"0) . Under this condition, equation (14) has an important
simple precise solution ShTf,const, and, thus, this classical approximation is also known
as an approximation of constant axial temperature gradient in the thermoacoustic stack
[1]. When ShTf is constant, the oscillating temperature "eld can be easily found from
equation (15) and then the acoustically induced temperature #ux (10) can be evaluated.

In the absence of average transverse heat exchange between the gas and the plates inside
the stack, the theory predicts the heat exchange to be delta-localized at the terminations of
the plates. However, recent computer simulations of the heat transport in the vicinity of an
isolated stack in the acoustic "eld (which were based on the numerical solution of
a complete set of non-linear hydrodynamical equations) [6] do not support this conclusion.
The results of reference [6] demonstrate that, though the e!ective heat exchange between
the gas and the plates really takes place in the vicinity of the plate termination (at
distances not exceeding the particle displacement from the plate termination), it is not
delta-localized.

In an attempt to con"rm the numerical predictions of reference [6] analytically, the
possibility of the transverse energy transport inside the stack (ShTgO0) has been taken into
account in reference [3]. The predictions of numerical analysis [6] have been con"rmed in
reference [3]. But, because of the complicated transverse structure of the acoustically
induced heat #ux and the temperature "eld, this con"rmation has been obtained only by
combining analytical methods with numerical ones. As for the design and optimization of
thermoacoustic devices more simple (and preferably, purely analytical) models are highly
desirable, so it was proposed in references [3, 9] to overcome the complexity of the
description of transverse heat transfer by the di!erential operator L2ShT/Lg2 via modelling
its action by a term proportional to the di!erence of some characteristic average
temperatures of the gas and the plate (J!h(ShT!ShT

plate
)). The characteristic

temperatures can be de"ned by a procedure of averaging across the stack cross-section,
while the coe$cient h, in general, depends on the distance y

0
between the plates, the

thermophysical parameters of the gas and the plates, and on the frequency [3, 9]. In fact,
this approximation consists in the modelling of the di!erential operator by an e!ective
relaxational operator, since the operator !h(ShT!ShT

plate
) just describes a physically
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clear tendency of the system in the absence of acoustic oscillations to relax to the state with
ShT"ShT

plate
. The description of the transverse heat transfer by a term proportional to the

di!erence of the temperatures between the moving #uid and the solid reminds one of the
application of Newton's law of cooling in the general theory of the heat transfer in
convection mode [2, 10]. It should be mentioned, however, that Newton's law of cooling is
not a solution for the problem of transverse heat exchange between the gas and the plates,
but is rather its reformulation, because the precise determination of the heat exchange
coe$cient h demands itself the solution of the heat transfer problem (see, for example,
reference [3]). But, concentrating attention on the physics of the non-linear phenomena of
the axial heat transfer, we will treat the parameter h (and, as a consequence, the relaxation
parameter R in the next section) as phenomenological. The relaxational approximation
discussed above is also quite frequently used in the analysis of the cyclic #ow regenerators
[11, 12]. Under this approximation, a completely analytical description of the temperature
"elds and the heat #uxes around an isolated stack and also near a close contact of two
di!erent stacks was obtained in reference [9].

However, the results obtained in references [3, 9], of course, do not reproduce the
computer simulation [6] precisely. Among the reasons for the discrepancy can be the use of
the &&mean-"eld'' approximation. Consequently, it is necessary to evaluate the preciseness of
the &&mean-"eld'' theory and the limits of its validity. For this purpose, we will extend the
application of relaxational operator (introduced in references [3, 9] for the description of
the edge e!ects in averaged transverse heat exchange) also to the description of transverse
heat exchange in an oscillating temperature "eld. It should be noted that the relaxation
operators have been used many times before for the analysis of the periodic and transient
processes (for the latest publications see, for example, references [11}15]). However, here
this approach will be applied for the "rst time to the completely non-linear analysis of the
thermoacoustic edge e!ects at the scale of the order of particle displacement in acoustic
"eld. Exact analytical solutions for the non-linear problem will be presented also for the "rst
time.

3. &&RELAXATION-TIME'' APPROXIMATION IN THERMOACOUSTICS

In the case of an isolated stack with in"nite thermal conductivity [6], which is kept
at the initial temperature (ShT

plate
"0) and, consequently, plays itself the role of a

heat exchanger with external to resonator systems, we change the operator (D
0
/y2

0
u)L2/Lg2

in equations (9), (12)} (15) to (!1/R). Here R is a relaxation parameter R,uq
R
, while

q
R

is the characteristic relaxation time, whose dependence on y
0
, u, etc. should be

modelled by solving the problem of the transverse heat conduction [3, 9, 10].
When q

R
PR, the acoustic oscillations inside the stack are adiabatic, while in the

limiting case q
R
P0 they are isothermal. It should be also mentioned that now both

ShT and hI in equations (9), (12)}(15) are considered as averages over a cross-section of the
stack.

In the &&relaxation-time'' approximation adopted in the following, equation (14) takes the
form

GA1#
1

R2B!
1

2

L2

Lf2 C1#
4D

0
Ru2u

!2A
D

0
u2uB

2 L2

Lf2DH G!
1

R
#

D
0

u2u
L2
Lf2HShT"0. (16)

In the currently operating thermoacoustic engines, the molecular heat transport in the
direction of the x-axis is usually negligible in comparison with acoustically induced heat
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#ux [1, 3, 16, 17]. The terms related to molecular heat transport in equation (16) (i.e., those
proportional to D

0
) can be omitted if

4D
0
/Ru2u@1, 2(D

0
/u2u)2L2/Lf2@1, (D

0
/u2u)L2/Lf2@1/R. (17)

The last inequality from equation (17) corresponds to the case where the transverse
molecular heat transport is more important than the axial molecular heat transport. Under
conditions (17), equation (16) becomes

R

2(1#R2)

L2

Lf2
ShT!

ShT
R

"0.

This equation demonstrates that the acoustic oscillations induce in the stack an e!ective
thermal di!usivity

D
eff

,

R

2(1#R2)
u2u,

2R

(1#R2)
D

ac
.

This acoustically induced thermal di!usivity is the highest for R"1 (D
eff

(R"1)"D
ac

). It
diminishes both when the relaxation parameter increases (D

eff
+(2/R)D

ac
+u2/(4q

R
)

@D
ac

, in the quasi-adiabatic regime RA1) and when the relaxation parameter diminishes
(D

eff
+2RD

ac
+(uu)2q

R
/2@D

ac
in the quasi-isothermal regime R@1).

The general solution of the simpli"ed equation is

ShT"C
1

exp[(J2(1#R2)/R)f]#C
2

exp[!(J2(1#R2)/R)f]. (18)

Consequently, conditions (17) for the validity of solution (18) can be rewritten as

D
0
/u2u@minMR/4, 2/(1#R2)N or D

0
/D

ac
@minMR,8/(1#R2)N, (19)

which can be always satis"ed for a su$ciently high level of the acoustic oscillations in the
resonator. As minMR/4, 2/(1#R2)N is always less than 1/2, then solution (18) is valid only
when the acoustically induced di!usivity D

ac
Ju2u signi"cantly exceeds molecular thermal

di!usivity (D
ac

AD
0
). In accordance with equation (18) the characteristic normalized scale

of spatial variation of temperature "eld is f
0
,R/J2(1#R2) and it is always less than

1/J2 (the value corresponding to the adiabatic case). Thus, the characteristic spatial scale
x
0
"f

0
u is always less than the particle displacement amplitude u in the acoustic "eld.

Consequently, in a stack with a length exceeding a few particle displacement amplitudes, the
description of the temperature "eld distribution near the terminations can be obtained
independently near each termination. For example, near the right termination
(f"0) of a stack positioned in the region f)0 (Figure 1) the temperature distribution is
described by

ShT"C
1

exp[(J2(1#R2)/R)f]. (20)

To determine the constant C
1

it is necessary to use the condition of the absence of an
acoustically induced heat #ux through the stack termination Ju (f"0)"0 (this condition
holds because the gas oscillations in the region f*0 are adiabatic due to the absence of the
plates).

Under condition (19), equation (15) is reduced to

hI q#hI /R"(1!ShTf ) sin q

with a solution

hI "[R/(1#R2)](1!ShTf)(sin q!R cos q),
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leading to the following description of the acoustically induced dimensionless (normalized)
heat #ux per unit area:

Ju,ShI sin qT"[R/2(1#R2)](1!ShTf ). (21)

In accordance with equations (20) and (21), the acoustically induced heat #ux per unit area
far from the stack termination (f)!2) is equal to Ju (f"!R)"R/2(1#R2), with
a maximum value equal to 1/4 in the case of a stack with an optimal relaxation parameter
R"1. Thus, the optimal conditions for heat pumping are in the intermediate regime
between the isothermal and the adiabatic regimes (in full correlation with classical
predictions [1]). Hydrodynamical temperature #ux falls down both in a quasi-adiabatic
stack Ju (RA1)J1/(2R)@1 and in a quasi-isothermal stack Ju (R@1)JR/2@1.

From the condition Ju (f"0)"0 one "nds that the amplitude of average temperature
variation is

C
1
"Sh(f"0)T"R/J2(1#R2). (22)

From equations (22) and (20) it follows that the stack termination temperature diminishes in

the quasi-isothermal regime (Sh(f"0)T"R/J2 when R@1) and saturates in the

quasi-adiabatic regime (Sh(f"0)T"1/J2 when RA1).
It is interesting to note that the above-assumed &&mean-"eld'' approximation can be

formally applied for the description of the average temperature "eld even in the adiabatic
regions of the resonator. For example, the complete solution for the temperature
distribution near the right termination (f"0) of an isolated stack (i.e., in the absence of the
right heat exchanger (see Figure 1)) can be found:

Sh(f)0)T"[R/(2J(1#R2))] exp[(J2(1#R2)/R)f],

Sh(f*0)T"[R/(2J(1#R2))] exp[!J2f].

However, in accordance with equation (21), as Ju (R"R)"0, the &&mean-"eld''
approximation fails to describe the hydrodynamic (advective) heat transport through the
adiabatic gap that should take place if the distance between the di!erent stacks does not
exceed the maximum particle displacement in the acoustic "eld. Thus, in the analysis of the
heat transport between the stack and the heat exchangers, the &&mean-"eld'' approximation
should be avoided.

We have found that, indeed, in the &&relaxation-time'' approximation, the analytical
solution of some important thermoacoustic problems can be obtained beyond the
&&mean-"eld'' approximation.

4. BEYOND &&MEAN-FIELD'' APPROXIMATION IN THERMOACOUSTICS

In the &&relaxation-time'' approximation, under the conditions of equation (19) (i.e., when
the acoustically induced heat transport dominates), equation (6) for the total temperature
takes the form

hq#sin q hf"!h/R#sin q, (23)

and can be solved analytically. Then the average temperature "eld ShT and the heat #ux per
unit area Ju,Sh sin qT can be evaluated by the averaging procedure de"ned in equation (7).

It is suitable, by introducing a new function h@"h#cos q, to delete from the total
temperature "eld the adiabatic oscillations which do not contribute to ShT and
Ju,Sh sin qT. It is also suitable to transfer equation (23) to a system of co-ordinates



720 V. GUSEV E¹ A¸.
moving together with the oscillating particle, by considering f"f
0
#(1!cos q), where

f
0

is the co-ordinate of a particle at the moment of time q"0. In the Lagrange co-ordinates
(q, f

0
), equation (23) becomes

h@q"!h@/R#cos q/R. (24)

Equation (24) describes a variation of the temperature of a particle with initial co-ordinate
f
0

when it oscillates in the acoustic "eld. As an example, we evaluate, by solving equation
(24), the temperature "eld and heat #uxes in the vicinity of an adiabatic gap separating two
stacks. The "rst stack is positioned as before in the region f)0, and the second is
positioned in the region f*d, where d is the width of an adiabatic gap normalized by the
local particle displacement amplitude (see Figure 2). Both of them are kept via heat
exchange with the external to the resonator systems at ShT

plate
"0. The system of equations

to be solved is

h@q"!h@/R
1
#cos q/R

1
(f)0), h@q"0 (0)f)d),

h@q"!h@/R
2
#cos q/R

2
(f*d), (25)

subjected to the conditions of the continuity of the particle temperature when a particle
crosses the boundaries f"0 and d. Only the particles with initial co-ordinates satisfying the
inequality !2#d)f

0
)0, which are initially in the left stack and can penetrate into the

right stack during a period of oscillation, can contribute to heat #ux across the gap
(0)d)2). A particle with an initial co-ordinate satisfying the above inequality leaves the
"rst (left) stack at the time moment q(1)

`
"arccos(1#f

0
), reaches the second (right) stack at

the moment q(2)
`
"arccos(1#f

0
!d), leaves the second stack at q(2)

~
"2n!q(2)

`
, and

returns in the "rst stack at the moment q(1)
~
"2n!q(1)

`
(which, due to the periodicity of the

process considered, is equivalent to the moment !q(1)
`

). The variation of particle
temperature when it moves inside the "rst stack (!q(1)

`
)q)q(1)

`
) is described by the

solution of equation (25) as

h@
1
"C

1
exp(!q/R

1
)#[1/(1#R2

1
)](cos q#R

1
sin q). (26)

Similarly, when a particle moves inside the second stack (q(2)
`
)q)2n!q(2)

`
) its

temperature is described by

h@
2
"C

2
exp(!q/R

2
)#[1/(1#R2

2
)](cos q#R

2
sin q). (27)
Figure 2. The con"guration of the plates assumed for the analysis of the thermoacoustic heat #ux across the
adiabatic gap (1*the regions occupied by the stacks, 2*the adiabatic gap between the stacks).
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Because the temperature of a particle, in accordance with equation (25), does not change
when it crosses the adiabatic region 0)f)d, the constants in equations (26) and (27) can
be found from the conditions

h@
1
(q(1)

`
)"h@

2
(q(2)

`
), h@

1
(!q(1)

`
)"h@

2
(q(2)

~
). (28)

After that, the average temperature and the average temperature #ux at any point can be
found by the integration of the contributions from all particles reaching this point during
the period of oscillations (and, of course, by dividing by 2n).

Let us start the analysis with the simplest limiting case where the distance d between the
stacks exceeds the maximal particle displacement (d'2) and, consequently, there is no heat
transport across the gap. In this situation the particles with initial co-ordinates
!2)f

0
)0 contribute to the variation of ShT near the stack termination. The

temperature h@ of the particle inside the "rst stack is described by equation (26), subjected to
the boundary condition h@

1
(q(1)

`
)"h@

1
(!q(1)

`
). The "nal presentation of the average

temperature in the region !2)f)0 (note that Sh(f)!2)T"0) is

ShT"
R

1
1#R2

1

1

nP
!3##04(~1~f)

0

sin q@
sinh(q@/R

1
)
cosh(q/R

1
) dq, q@"arccos(cos q#f). (29)

Consequently, the temperature of the stack termination (f"0) is described by

Sh(f"0)T"
R

1
1#R2

1

1

nP
n

0

sin q
tanh(q/R

1
)
dq. (30)

The analysis of solution (30) demonstrates that this solution con"rms the asymptotic
behaviour of Sh(f"0)T predicted in the `mean-"elda approximation (see equation (22)),
that is, it con"rms the saturation of Sh(f"0)T in the adiabatic limit (R

1
A1) and its

diminishing (JR
1
@1) in the isothermal limit. However, the average temperature of the

stack termination, predicted by the &&mean-"eld'' theory (equation (22)), is approximately
10}20% higher than the value, predicted by solution (30) based on the precise description of
hydrodynamical transport. The dependence of the average temperature of the stack
termination on the relaxation parameter R

1
described in the &&mean-"eld'' approximation

by equation (22) and by the solution (30) (which avoids this approximation) are presented in
Figure 3. In Figure 4, we present the spatial distribution of average temperature ShT near
the stack termination described by equation (29) for di!erent values of R

1
,R. Note that

ShT in Figure 4 is additionally normalized to Sh(f"0)T (equation (30)) in order to
appreciate the signi"cant diminishing of the characteristic spatial scale of the distribution
when the relaxation parameter R diminishes. It should be pointed out that, in the
&&relaxation-time'' approximation, the transverse heat exchange between the gas and the
plate is (by assumption) proportional to ShT (in the case ShT

plate
"0). Consequently, Figure

4 simultaneously provides the distributions of the transverse heat #uxes evaluated in
references [3, 6] by other methods. The results presented in Figure 4 are in agreement with
those results of the numerical evaluation of the problem [6], which have been established
for negligible Prandtl numbers. Finally, in Figure 5 we compare the predictions of the
&&mean-"eld'' approximation (equations (20), (22)) and of the solution (30) for the
temperature distribution in the important (optimal) regime R

1
"1. These results provide

an idea of the preciseness of the &&mean-"eld'' approximation for thermoacoustics. It can be
concluded that the &&mean-"eld'' approximation, due to its simplicity, and due to the
su$ciency for the estimations preciseness is de"nitely a very suitable mathematical tool for
thermoacoustics. However, for the description of heat transport between adiabatically
isolated elements of the thermoacoustic devices, the &&mean-"eld'' approximation should be
avoided.



Figure 3. The dependence of the average dimensionless temperature Sh(f"0)T of the stack termination on the
dimensionless relaxation parameter R (curve 1*the prediction of the &&mean-"eld'' theory, curve 2*the prediction
of the theory based on the &&relaxation-time'' approximation).

Figure 4. The distribution of the normalized average temperature ShT/Sh(f"0)T near the stack termination as
a function of the relaxation parameter R and the dimensionless co-ordinate f predicted in the &&relaxation-time''
approximation.
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The derived solution (26)}(28) leads to the following description of the normalized heat
#ux per unit area Sh(f"0) sin qT across the adiabatic gap:

Ju(f"0)"
1

n G
R

1
2(1#R2

1
)
[arccos(d!1)#(1!d)J1!(1!d)2]

!P
!3##04(d~1)

0

C
1
(q) sinhA

q
R

1
B sin qdqH,



Figure 5. The distribution of the average dimensionless temperature ShT (in the case of the optimal value
R

1
"1 of the relaxation parameter) predicted by the &&mean-"eld'' theory (curve 1) and by the &&relaxation-time''

model (curve 2) as a function of the dimensional co-ordinate f.
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C
1
(q)"

C
(1/(1#R2

2
)cos q@!1/(1#R2

1
) cos q) sinh(q@/R

2
!n/R

2
)

#(R
2
/(1#R2

2
)sin q@!R

1
/(1#R2

1
)sin q) cosh(q@/R

2
!n/R

2
)D

sinh(q@/R
2
!n)/R

2
!q/R

1
)

,

q@"arccos(cos q!d). (31)

The dependence of the heat #ux per unit area on the normalized width d of the adiabatic gap
and on the relaxation parameter R

2
,R of the second stack in the case where the

relaxation parameter of the "rst stack is equal to an optimal value (R
1
"1) is presented in

Figure 6. In accordance with the obtained results (see Figure 6), in the absence of the gap
(d"0) the maximal heat #ux between the stacks is achieved when they are matched (i.e.,
when they have equal relaxation parameters R

2
"1"R

1
). An interesting and rather

unexpected feature of the description obtained (equation (31), Figure 6) is the prediction

that for R
1
"1, R

2
,R)J2 the heat #ux increases when the separation distance

d between the stacks increases from d"0 to some "nite value d(2. This e!ect corresponds
to the diminishing of the temperature of the "rst stack termination observed in Figure 7,
where Sh(f"0)T is presented as a function of d and R

2
,R (for R

1
"1), as predicted by an

analytical solution

Sh(f"0)T"
1

n GP
!3##04(d~1)

0

C
1
(q) coshA

q
R

1
Bdq#P

n

!3##04(d~1)

C
1
(q,R

2
"R) coshA

q
R

1
BdqH

(32)

(which is valid, in fact, for an arbitrary value of R
1
). Here the function C

1
(q, R

1
,R

2
) is

described in equation (31). The second integral in equation (32) accounts for the
contribution to the average temperature from the particles with initial co-ordinates in the
region 2)f

0
)!2#d. They do not contribute to the heat #ux per unit area

(equation (31)) but they do contribute to the average temperature in equation (32).



Figure 6. The dependence of the dimensionless heat #ux per unit area Ju across the adiabatic gap on the
dimensionless width d of the gap and on the relaxation parameter R

2
,R of the second stack. The relaxation

parameter of the "rst stack is optimized (R
1
"1).

Figure 7. The dependence of the average dimensional temperature Sh(f"0)T of the "rst stack termination on
the dimensionless width d of the gap and on the relaxation parameter R

2
,R of the second stack. The relaxation

parameter of the "rst stack is optimized (R
1
"1).
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The e!ect of the thermoacoustic heat #ux increasing with increasing separation distance
between the stacks (Figure 6) is, in fact, important only for R

2
,R)1, d)0)5. This

observation provides an opportunity to propose the following qualitative explanation for
the e!ect considered. In the case, R

1
"1, R

2
(1, d"0 the total process of the heat

exchange between the oscillating #uid element and the stacks is too fast in comparison with
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the optimal regime R
2
"R

1
"1, d"0. When the stacks with R

1
"1, R

2
(1 are a little bit

separated in space, this introduces additional adiabaticity in the total process of the #uid
motion (because the separation gap is adiabatic). Thus the system shifts in the direction of
the optimal regime. In other words, if one de"nes some characteristic relaxation parameter
R

c
(averaged over all #uid elements, which are able to carry heat across the gap, and

averaged over the period of the oscillations with accounting of the fact that each of these
elements spends a part of the period inside the stack with R"R

1
and another part inside

the stack with R"R
2
) then it will appear that in the case R

1
"1, R

2
(1 the characteristic

parameter R
c

is less than an optimal one Ropt
c

"1. Thus, it is clear that by &&adding''
adiabaticity (for example, by introducing and optimizing the width of the adiabatic gap) the
thermoacoustic heat #ux can be increased.

The possibility of an application of the predicted e!ect for the optimization of the
hydrodynamical heat transfer between the thermoacoustic stack and the heat exchangers
deserves detailed investigation and will be a subject for the future research.

5. CONCLUSIONS

It has been demonstrated that by extending the application of the &&relaxation-time''
approximation to the description of the transverse heat exchange in the total temperature
"eld it is possible to avoid the use of the &&mean-"eld'' approximation in thermoacoustics.
The analytical results obtained, based on the exact description of the axial hydrodynamical
(advective) transport of heat in the standing acoustic wave, are not just more precise for
temperature "eld evaluation than those of the &&mean-"eld'' approximation. Importantly,
the approach developed provides the description of the heat transport between the
thermoacoustic elements separated by an adiabatic gap, which is absolutely impossible to
obtain in the &&mean-"eld'' approximation.

The perspectives for further developments of the proposed method consist in taking into
account the gas viscosity in order to investigate the dependence of the above-described
phenomena on the Prandtl number [6]. For the solution of this problem and also for the
evaluation of the relaxation time q

R
"q

R
(u, y

0
, etc.) the methods developed in the acoustics

of porous materials [18] could be very useful.
Another extension of the theory may include an account of the possibility that the local

phasing between the oscillations of the pressure and the oscillations of the velocity deviates
from the one in the standing wave described by equation (5). In particular, the relaxation
time approximation can be applied for the analysis of travelling-wave thermoacoustic
devices as well.
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