

COMMENT ON "NON-LINEAR VIBRATION ANALYSIS OF A TRAVELLING STRING WITH TIME-DEPENDENT LENGTH BY NEW HYBRID LAPLACE TRANSFORM/FINITE ELEMENT METHOD"

A. Y. T. LEUNG

School of Engineering, University of Manchester, M13 9PL, England

(Received 1 September 1999)

The authors of reference [1] solved the Laplace transformed equation (20) below

$$(s^2\mathbf{M} + s\mathbf{C} + \mathbf{K})\bar{\mathbf{Q}} = \mathbf{f} \tag{20}$$

by three consecutive similarity transformations to make the symmetric square matrices M, C and K diagonal for the inverse Laplace transform. The first transformation is

$$\bar{\mathbf{Q}} = \mathbf{R}\bar{\mathbf{Q}}^{(1)},\tag{23}$$

so that equation (20) becomes

$$(s^2\mathbf{I} + s\mathbf{T} + \mathbf{G})\bar{\mathbf{Q}}^{(1)} = \mathbf{f}^{(1)}.$$
 (24)

The second transformation is

$$\bar{\mathbf{Q}}^{(1)} = \mathbf{P}\bar{\mathbf{Q}}^{(2)}, \quad \mathbf{P}^{\mathsf{T}}\mathbf{P} = \mathbf{I},\tag{25}$$

so that equation (24) becomes

$$(s^2\mathbf{I} + s\mathbf{T}_1 + \mathbf{\kappa})\bar{\mathbf{Q}}^{(2)} = \mathbf{f}^{(2)},\tag{26}$$

where $\mathbf{\kappa} = diag\left[\kappa_i : i = , ..., n\right]$ and \mathbf{T}_1 is a full symmetric matrix. The third transformation is

$$\mathbf{\bar{Q}}^{(2)} = \mathbf{W}\mathbf{\bar{Q}}^{(3)}, \quad \mathbf{W}^T\mathbf{W} = \mathbf{I},$$

so that equation (26) becomes

$$(s^2\mathbf{I} + s\boldsymbol{\beta} + \lambda)\bar{\mathbf{Q}}^{(3)} = \mathbf{f}^{(3)}, \tag{27}$$

where all matrices are diagonal, $\beta = diag[\beta_i : i = 1, ..., n]$ and $\lambda = diag[\lambda_i : i, ..., n]$. A serious mistake is to claim that the orthogonal transformation of a diagonal matrix is still a diagonal matrix, i.e., $\mathbf{W}^T \mathbf{\kappa} \mathbf{W} = \lambda$. For the sake of argument, let

$$\mathbf{W} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{\kappa} = diag[1, 2] \quad \text{and} \quad \lambda = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix},$$

which is not diagonal. Therefore, the subsequent decoupled inverse Laplace transform is not possible.

REFERENCE

1. C. M. YAO, R. F. FUNG and C. R. TSENG 1999 *Journal of Sound and Vibration* 219, 323–337. Nonlinear vibration analysis of a travelling string with time-dependent length by new hybrid Laplace transformation/finite element method.

doi:10.1006/jsvi.1999.2712, available online at http://www.idealibrary.com on IDELL®

AUTHOR'S REPLY

R. F. Fung

Department of Mechanical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan 32023, R. O. C.

(Received 12 October 1999)

The comment made by Professor Leung is correct. The numerical results of examples 1 and 2 as shown in Figures 2 and 3, respectively, are still correct for the stationary string system [1], since the damping terms are ignored in equations (42) and (46).

REFERENCES

1. C. M. YAO, R. F. FUNG and C. R. TSENG 1999 Journal of Sound and Vibration 219, 323-337. Non-linear vibration analysis of a travelling string with time-dependent length by new hybrid Laplace transform/finite element method.