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TRANSVERSE VIBRATIONS OF TENSIONED PIPES
CONVEYING FLUID WITH TIME-DEPENDENT VELOCITY
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In this study, the transverse vibrations of highly tensioned pipes with vanishing #exural
sti!ness and conveying #uid with time-dependent velocity are investigated. Two di!erent
cases, the pipes with "xed}"xed end and "xed}sliding end conditions are considered. The
time-dependent velocity is assumed to be a harmonic function about a mean velocity. These
systems experience a Coriolis acceleration component which renders such systems
gyroscopic. The equation of motion is derived using Hamilton's principle and solved
analytically by direct application of the method of multiple scales (a perturbation technique).
The natural frequencies are found. Increasing the ratio of #uid mass to the total mass per
unit length increases the natural frequencies. The principal parametric resonance cases are
investigated in detail. Stability boundaries are determined analytically. It is found that
instabilities occur when the frequency of velocity #uctuations is close to two times the
natural frequency of the constant velocity system. When the velocity #uctuation frequency is
close to zero, no instabilities are detected up to the "rst order of perturbation. Numerical
results are presented for the "rst two modes.

( 2000 Academic Press
1. INTRODUCTION

Due to their technological importance, the dynamics of axially moving continua was
investigated by many researchers. The understanding of the vibrations of an axially moving
continuous medium is important in the design of high-speed magnetic tapes, band-saws,
power transmission chains and belts, textile and composite "bers, aerial cable tramways,
paper sheets during processing, pipes and beams conveying #uid, etc. Especially, pipe lines
are used in conveying gas, oil, water, dangerous liquids in chemical plants, cooling water in
nuclear power plants, and in many other places. The vibrations occur due to many reasons.
They are caused by compressors, ventilators, electrical power engines or internal
combustion engines and also by valves, elbows, ori"ces, transition parts and abrupt area
contractions. If these oscillations are not prevented, they can result in leakage, hazards and
accidents. Ulsoy et al. [1] and Wickert and Mote [2] reviewed the relevant work up to 1978
and 1988 respectively. Older studies concentrated on the axial velocity-dependent natural
frequency and existence of divergence instability at the critical velocity [3}6]. The natural
frequencies decrease with increasing transport speed, and the translating continua
experience divergence instability at a critical speed. The eigenfunctions are complex and
speed-dependent due to a convective acceleration component in the equations of motion.
The phases of the natural oscillations are not constant and propagate upstream at the phase
propagation velocity. The periodic variation of total mechanical energy was studied [7],
and also "rstly, Miranker [8] derived the equations of motion for time-dependent axial
velocity by using variational procedure. Wickert and Mote [9] showed that the energy #ux
at a "xed support is the product of the string tension and the convective component of
0022-460X/00/370259#18 $35.00/0 ( 2000 Academic Press
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a velocity. They [10] also investigated the transverse vibrations by complex modal analysis.
An analogous case with a similar equation of motion exists in highly tensioned pipes
conveying #uid with negligible #exural sti!ness and #uid pressure e!ect. Wickert [11]
analyzed free non-linear vibration of an axially moving, elastic, tensioned beam over
sub- and supercritical speed ranges. Pakdemirli et al. [12] re-derived the equations of
motion for an axially accelerating strip using Hamilton's principle and numerically
investigated the stability of the response using Floquet theory. Pakdemirli and Batan [13]
analyzed the constant acceleration-type motion. Pakdemirli and Ulsoy [14] obtained
approximate analytical solutions by using the method of multiple scales and showed that
direct-perturbation yields better results for higher order expansions with respect to the
discretization-perturbation method. The direct-perturbation method does not require
transformation of the equations or the selection of an orthogonal basis. The authors also
investigated principal parametric resonances and combination resonances for any two
modes for an axially accelerating strip. OG z et al. [15] studied the transition behaviour from
string to beam for an accelerating material and presented an approximate analytical
expression for the natural frequency and determined stability borders for variable velocity
and studied principal parametric resonance case. OG z and Pakdemirli [16] investigated the
transverse vibrations of an axially accelerating beam with simple supports. They considered
six di!erent #exural sti!ness coe$cients and solved the equations of motions by using the
method of multiple scales and studied principal parametric resonances and combination
resonances. They found that for velocity #uctuation frequency nearly twice any natural
frequency, an instability region occurs whereas for the frequencies close to zero, no
instabilities were detected. For combination resonances, instabilities occurred only for those
of additive type. No instabilities were detected for di!erence-type combination resonances
in agreement with references [14}16]. OG z et al. [17, 18] investigated linear and non-linear
vibrations and performed a stability analysis.

Up to now in the studies related to #uid #ow, the velocity was assumed as constant.
Benjamin [19] neglected #uid friction e!ects. Nemat-Nasser et al. [20] and Gregory and
Paidoussis [21] found the destabilizing e!ect of dissipation in a cantilevered, fourth order
beam conveying #uids. Paidoussis and Li [22] and Lee and Mote [23, 24] neglected gravity
and pressure e!ects. In references [23, 24] the energetics of translating one-dimensional
uniform strings, highly tensioned pipes with vanishing bending sti!ness and tensioned
beams and #owing #uid are analyzed for "xed, free and damped boundary conditions. The
#uid velocity was assumed to be constant. Natural frequencies are found by using
phase-closure principle. It was found that the energies transferred at the di!erent boundary
supports were quanti"ed by energy re#ection coe$cients which were determined
completely by the boundary conditions.

In this study, the transverse vibrations of highly tensioned pipes conveying #uid are
investigated. The pipe is assumed to have negligible #exural sti!ness and it can be thought
of as a string conveying #uid. A harmonically varying velocity function is chosen for the
#uid #ow. The ends of the pipe are on "xed supports in the "rst case and on "xed}sliding
supports in the second case. The linear equations of motion are derived by using Hamilton's
principle and solved analytically by means of direct application of the method of multiple
scales. The natural frequencies are found analytically depending on #uid velocity and ratio
of #uid mass to total mass per unit length and are calculated for the "rst two modes.
Increasing the ratio of #uid mass to the total mass per unit length increases the natural
frequencies. The natural frequencies for "xed}sliding tensioned pipe are lower than those of
"xed}"xed tensioned pipe. The stability boundaries are determined analytically for
principal parametric resonances. For velocity #uctuation frequency nearly twice any
natural frequency, an instability region occurs whereas for frequencies close to zero, no
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instabilities are detected up to the "rst order of approximation. The stability borders shift to
higher velocity #uctuation frequency values for the two cases. Stable}unstable regions shift
to relatively lower velocity #uctuation frequency values for "xed}sliding end conditions
compared with "xed}"xed end conditions.

2. EQUATIONS OF MOTION

For the "xed}"xed and "xed}sliding tensioned pipes conveying #uid in Figures 1(a) and
1(b), x* and z* are the spatial co-ordinates, u* and w* are longitudinal and transverse
displacements respectively. t* is variable #uid velocity, o

f
is the #uid density, A

f
and A

p
are

the cross-sectional areas of the pipe and #ow and assumed to be constant. Tension force in
the pipe is P(t*). The length is ¸. The modulus of elasticity of the pipe is E

p
. The transverse

displacement is assumed to be small compared with span ¸ and the tension force is assumed
to be su$ciently large compared with the e!ects arising from elongation. The extensional
sti!ness is su$ciently large so that the longitudinal deformation resulting from the
pretension is negligible. Variation of cross-sectional dimensions during vibration is not
considered. In this study sub-critical region is considered. If gravity, pressure and #uid
friction e!ects, and restoring #exural forces are neglected, then a pipe conveying #uid is
considered to be a string conveying #uid. Let us denote the time by t*, the derivatives with
respect to the spatial variable by ( )@ and the derivatives with respect to time by ( > ). Since
only linear analysis is made the non-linear strains deriving from u* and w* are negligible. So
the strain in the pipe is approximately

e+u*{, (1)

The total kinetic energy of the system is
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where the "rst term denotes the kinetic energies of the #uid in the x* and z* directions, the
last term is the kinetic energy of the pipe in the z* direction. The elastic potential energy of
the system
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relative to equilibrium derives from extension. The "rst term is the elastic potential energy
of the pipe due to elongation, and the second term is due to the tensile force. The
Lagrangian of the system is

@"¹!;. (4)

The Hamilton's principle is

d P
t*
2

t *1

@ dt*"0. (5)

Substituting equation (1) into equation (3), and then substituting equations (2) and (3) into
equation (4), and applying Hamilton's principle (5), the equations of motion for the



Figure 1. Schematics of second order translating continua in a tensioned pipe (a) with "xed}"xed supports, (b)
with a sliding end at x"¸.
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transverse vibration and the boundary conditions are derived:

wK *#
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f
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f
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f
A

f
#o

p
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p

(2w5 *{t*#w*{tQ *#w*{{t*2)"0, (6)

w* (0, t*)"w* (¸, t*)"0 (7)

for "xed}"xed tensioned pipe. Following a similar way the boundary conditions for
"xed}sliding pipe can be expressed as

w* (0, t*)"w*{ (¸, t*)"0 (8)

The following parameters are introduced to non-dimensionalize equations (6)}(8):
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and the #uid velocity is non-dimensionalized by the critical #ow velocity at which the pipe
system experiences divergence instability

t"
t*

JP/o
f
A

f

. (10)

One obtains non-dimensional linear equations of motion for the transverse vibration

wK#b (2w5 @t#w@tQ #(t2!1)w@@)"0 (11)

with solutions satisfying the end conditions

w (0, t)"w (1, t)"0 (12)
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for "xed}"xed tensioned pipe. Following a similar way the boundary conditions for
"xed}sliding pipe can be expressed as

w (0, t)"w@ (1, t)"0 (13)

and the ratio of the #owing #uid mass to the total mass per unit length is de"ned as
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o
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f
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f
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f
#o

p
A

p
)
. (14)

Several cases can be discussed for restricted parameter values. First, for the limiting case
b"1 the equation of motion for a travelling string with variable velocity is obtained as
a special case of the second order #uid}pipe system. Second, for a stationary #uid, b"1 and
t"0, the equation for linear stationary string is obtained. In equation (11) wK and 2w5 @t
denote local and Coriolis accelerations, respectively, tQ denotes variable #uid velocity, and
t2w@@ denotes centrifugal acceleration.

3. APPROXIMATE SOLUTION

Assuming that the velocity is harmonically varying about a constant mean velocity t
0
,

one writes

t"t
0
#et

1
sinXt, (15)

where e is a small parameter and et
-
is also small, represents the amplitude of #uctuations.

X is the #uctuation frequency. Substituting equation (15) into equation (11) and keeping
terms up to the "rst order of approximation, one has
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Direct-perturbation method will be applied to equation (16) in search of solutions. Using
the method of multiple scales (a perturbation technique) [25, 26] and assuming a "rst order
expansion, one writes
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where w
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and w
1

are the displacement functions at orders 1 and e,¹
0
"t and ¹
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the usual fast and slow time scales respectively. Now the time derivatives can be written as
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where (D
i
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i
). Substituting equations (17) and (18) into equation (16) and separating

each order of approximation, one obtains
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The solution of equation (19) can be written as follows:
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where n is mode number, u
n

is natural frequency and cc stands for complex conjugate.
Substituting equation (21) into equation (19) one obtains
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The solution of equation (22) is
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where k is wave number. Substituting equation (23) into equation (19), one obtains
dispersive relation for the tensioned pipe conveying #uid
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Solving the polynomial (24) in terms of k
j
and de"ning k
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the downstream and upstream wave numbers, respectively, are found. The denominators of
equation (25) are downstream and upstream phase velocities. Substituting equations (23)
and (25) into equation (21) and applying "xed}"xed end conditions (12) one obtains
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In equation (26), !k
d
"k

u
is trivial solution. For non-trivial solution the wave numbers

must be complex:

k
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d
, k

u
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where i denotes complex number J!1, kM
d
and kM

u
are real parts of assumed wave numbers

and the following relationship should hold,

k
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d
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to satisfy e!k
d"ek

u condition, and of course from equation (25) the assumed natural
frequency must be complex:

u
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n
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Substituting equations (27) and (29) into equation (25) and then together into equation (28),
the natural frequency equation for "xed}"xed tensioned pipe conveying #uid is obtained as
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n
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Following a similar derivation for "xed}sliding tensioned pipe conveying #uid, the
relationship between wave numbers is obtained as

kM
u
"!kM

d
#2An!

1

2Bn, n"1, 2, 3,2 (31)

and the natural frequency equation is obtained as

u6
n
"

(n!1
2
)nb (1!t2

0
)

Jb2t2
0
#b (1!t2

0
)
, n"1, 2, 3,2. (32)

Combining equations (25), (27), (29), and (30) for "xed}"xed tensioned pipe and equation
(32) for "xed}sliding tensioned pipe and substituting into displacement function (16), one
obtains
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for "xed}"xed and "xed}sliding tensioned pipes conveying #uid with related natural
frequencies and wave numbers. Substituting equation (33) into order e equation one obtains
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In the next section three di!erent cases will be discussed for the "xed}"xed and
"xed}sliding tensioned pipes.

4. PRINCIPAL PARAMETRIC RESONANCES

4.1. X IS AWAY FROM 2u6
n

AND 0

In this case, for "xed}"xed end conditions, equation (34) becomes
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where cc and NS¹ stand for complex conjugates and non-secular terms respectively. The
solution of equation (35) is as follows:
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The "rst term is related to secular terms and the second term is related to non-secular terms.
If equation (36) is substituted into equation (35), /

n
satisfy the equations
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The solvability condition requires (see reference [25] for details of calculating solvability
conditions)

D
1
C

n
"0. (39)

This means a constant amplitude solution up to the "rst order of approximation

C
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0
. (40)

Following a similar way one obtains the solvability condition for "xed}sliding pipe as

D
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n
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This means a constant amplitude up to the "rst order of approximation

C
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0
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4.2. X IS CLOSE TO 0

For this case, the nearness of #uctuation frequency to zero can be expressed as
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where p is the detuning parameter. Substituting equations (33) and (43) into equation (34),
the order e equation is obtained as
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Following a similar way to that in section 4.1 the solvability condition for "xed}"xed and
"xed}sliding tensioned pipes is obtained as
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The solution of equation (45) is
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Since !1)sin p¹
1
)!1 and !1)cosp¹

1
)1, there is no instability up to O(e).

4.3. X IS CLOSE TO 2u6
n

The nearness of #uctuation frequency to twice any natural frequency can be expressed as

X"2uN
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Substituting equations (33) and (43) into equation (34) the order e equation for "xed}"xed
and "xed}sliding tensioned pipes conveying #uid is obtained as
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where CM
n
is the complex conjugate of amplitude C

n
. The solvability condition for this case is
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The solution of equation (50) is assumed as
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Substituting equation (52) into equation (50), one obtains
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where complex amplitudes are
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where R and I denote real and imaginary parts

respectively. Substituting equation (54) into equation (53) and separating real and
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imaginary parts, one obtains the matrix equation

j#kR
0

kI
0
!

p
2

kI
0
#

p
2

j!kR
0
G
bR
n

bI
n
H"G

0

0H . (55)

For non-trivial solution, the determinant of the coe$cient matrix must be zero. This implies
that
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Stable solution requires j"0. Then the stability boundaries can be written as
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Substituting equation (57) into equation (48) the stability regions can be expressed as
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The numerical solution for the two pipes will be given in the next section. The solutions di!er
in the integrals since the shape functions and natural frequencies are di!erent for the two pipes.

5. NUMERICAL ANALYSIS

In this section, the numerical examples will be given for the vibrations of tensioned pipes
conveying #uid. In Figures 2}5, the natural frequencies are plotted depending on mean
Figure 2. The natural frequency value versus mean velocity for di!erent ratios of #uid mass to the total mass
(b"0)2, 0)4, 0)6, 0)8, 1)0) for the "rst mode for "xed}"xed end conditions.



Figure 3. The natural frequency value versus mean velocity for di!erent ratios of #uid mass to the total mass
(b"0)2, 0)4, 0)6, 0)8, 1)0) for the second mode for "xed}"xed end conditions.

Figure 4. The natural value versus mean velocity for di!erent ratios of #uid mass to the total mass (b"0)2, 0)4,
0)6, 0)8, 1)0) for the "rst mode for "xed}sliding end conditions.
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velocity and the ratio of #uid mass to the total mass per unit length by using equation (30)
for "xed}"xed tensioned pipe and equation (32) for "xed}sliding tensioned pipe for the "rst
and second modes. Increasing the mean velocity decreases the natural frequency values. At



Figure 5. The natural frequency value versus mean velocity for di!erent ratios of #uid mass to the total mass
(b"0)2, 0)4, 0)6, 0)8, 1)0) for the second mode for "xed}sliding end conditions.

Figure 6. Stable and unstable regions for the principal parametric resonances for the "rst mode (b"0)25) for
"xed}"xed end conditions.
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the critical speed the frequency values vanish and divergence instability occurs. Increasing
the ratio of #uid mass to the total mass per unit length, increases the natural frequencies. At
the limiting value, b"1, the results coincide with the results of axially moving string. The



Figure 7. Stable and unstable regions for the principal parametric resonances for the "rst mode (b"0)75) for
"xed}"xed end conditions.

Figure 8. Stable and unstable regions for the principal parametric resonances for the second mode (b"0)25) for
"xed}"xed end conditions.
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natural frequencies for "xed}sliding tensioned pipe are lower than those of "xed}"xed
tensioned pipe. At higher modes the natural frequency values and critical velocity values
increase.

Stability analysis is made for the principal parametric resonance case. It is found that
when the velocity #uctuation frequency is close to zero, no instabilities are detected up to



Figure 9. Stable and unstable regions for the principal parametric resonances for the "rst mode (b"0)75) for
"xed}"xed end conditions.
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the "rst order of perturbation. When the #uctuation frequency is away from zero and twice
the natural frequency, the solutions are bounded and no instability exists. Instabilities occur
when the frequency of velocity #uctuations is close to two times the natural frequency of the
constant velocity system. The stable and unstable regions are plotted for the principal
parametric resonance case by using equation (58) for "xed}"xed tensioned pipe and
"xed}sliding tensioned pipe. In Figures 6 and 7, the stable and unstable regions are plotted
for the principal parametric resonance case for di!erent mean velocities and velocity
#uctuation amplitudes (b"0)25, 0)75) for the "rst mode and in Figures 8 and 9 for the
second mode (b"0)25, 0)75) for "xed}"xed end conditions. Increasing velocity #uctuation
amplitude enlarges the stability regions. With increasing the mass ratio, the stability shift to
higher X values. At the critical velocity values, the unstable regions widen. In Figures 10 and
11, the stable and unstable regions are plotted for the principal parametric resonance case
for di!erent mean velocities and velocity #uctuation amplitudes (b"0)25, 0)75) for the "rst
mode and in Figures 12 and 13 for the second mode (b"0)25, 0)75) for "xed}sliding end
conditions. The "xed}sliding tensioned pipe shows similar characteristics. Increasing
velocity #uctuation amplitude enlarges the stability regions. With increasing the mass ratio,
the stability regions shift to higher X values. At the critical velocity values, the unstable
regions widen. The stability borders for "xed}sliding tensioned pipe have lower values those
of "xed}"xed tensioned pipe. At higher modes the stability borders shift to higher ) values
for both cases.

In all "gures (Figures 6}13), the regions in between the planar surfaces are unstable
whereas the remaining regions are stable.

6. CONCLUDING REMARKS

In this study, the transverse vibrations of highly tensioned "xed}"xed and "xed}sliding
supported pipes with vanishing #exural sti!ness and transporting #uid with time-dependent



Figure 10. Stable and unstable regions for the principal parametric resonances for the "rst mode (b"0)25) for
"xed}sliding end conditions.

Figure 11. Stable and unstable regions for the principal parametric resonances for the "rst mode (b"0)75) for
"xed}sliding end condtions.
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velocity are investigated. The sliding end condition for tensioned pipes permits only
transverse displacement but the slope is zero. The supports result in extension of the pipe
during the vibration and hence introduce further non-linear terms to the equation of
motion. The #uid velocity is assumed to be harmonically varying about a mean velocity.
The equation of motion is solved analytically by direct application of the method of



Figure 12. Stable and unstable regions for the principal parametric resonances for the second mode (b"0)25,)
for "xed}sliding end conditions.

Figure 13. Stable and unstable regions for the principal parametric resonances for the second mode (b"0)75)
for "xed}sliding end conditions.
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multiple scales (a perturbation technique). The natural frequencies are found analytically
depending on mean velocity and the ratio of #uid mass to the total mass per unit length. It is
found that, increasing the mean velocity decreases the natural frequency values and at the
critical speed the frequency values vanish and divergence instability occurs. Also increasing
the ratio of #uid mass to the total mass per unit length, increases the natural frequencies.
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The natural frequencies for "xed}sliding tensioned pipe are lower than those of "xed}"xed
tensioned pipe. The principal parametric resonances are investigated in detail. Stability
boundaries are determined analytically. It is found that instabilities occur when the
frequency of velocity #uctuations is close to two times the natural frequency of the constant
velocity system. When the velocity #uctuation frequency is close to zero, no instabilities are
detected up to the "rst order of perturbation. When the #uctuation frequency is away from
zero and twice the natural frequency, the solutions are bounded and no instability exists.
Increasing velocity #uctuation amplitude enlarges the stability regions. With increasing the
mass ratio, the stability regions shift to higher velocity #uctuation frequency values. Stable
and unstable region shift to lower velocity #uctuation frequency values. Stable and unstable
regions shift to lower velocity #uctuation frequency for "xed}sliding supports when
compared with those of "xed}"xed supports.
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