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A novel method is presented for investigating elastic waves in functionally graded material
(FGM) plates excited by plane pressure waves. The FGM plate is "rst divided into quadratic
layer elements (QLEs). A general solution for the equation of motion governing the QLE has
been derived. The general solution is then used together with the boundary and continuity
conditions to obtain the displacement and stress in the frequency domain for an arbitrary
FGM plate. The response of the plate to an incident pressure wave is obtained using the
Fourier transform techniques. Results obtained by the present method are compared with
an existing method using homogeneous layer elements. Numerical examples are presented
to investigate stress waves in FGM plates. The relationship between the surface
displacement response and the material property of quadratic FGM plates has been
analytically obtained for the material characterization. A computational inverse technique is
also presented for characterizing material property of an arbitrary FGM plate from the
surface displacement response data, using present QLE method as forward solver and
genetic algorithm as the inverse operator. This technique is utilized to reconstruct the
material property of an actual SiC-C FGM.

( 2000 Academic Press
1. INTRODUCTION

Aircraft and spacecraft are typical weight-sensitive structures in which materials with high
strength-to-weight and sti!ness-to-weight ratios are required. Various advanced materials,
such as composite materials have been developed and used in aircraft and spacecraft
structures [1, 2]. Functionally graded materials (FGMs) have been proposed for
thermal-protection systems of a space-plane. Many techniques [3, 4] have been developed
for fabricating various FGMs, in which the material property changes continuously in the
thickness direction. The FGM can be used not only in the thermal-protection systems of
space-planes but also in electrical, chemical as well as many other "elds.

Using elastic waves is one of the very promising means for material characterization of
FGM. E!ective use of elastic waves for such a purpose relies on a good understanding of
wave propagation in FGMs. However, wave propagation problems related to FGM are
0022-460X/00/370307#15 $35.00/0 ( 2000 Academic Press
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generally di$cult to analyze without resorting to some numerical approaches, as the
material property is function of the co-ordinates. There are a number of methods [5}9] for
analyzing stress waves propagating in FGM plates. A brief review has been given by Liu
et al. [10] on the existing methods for analyzing elastic-dynamic response of the FGM
plate. Numerical models of FGM plates have been developed to solve forward problems
that relate the material property to elastic wave "elds. Thus, if a set of reasonably accurate
experimentally measured response data is available, material property of FGM plate
may be characterized by solving an inverse problem properly formulated, using forward
solver.

In an inverse process, there are two very important factors a!ecting the performance. One
is the number of the parameters to be reconstructed. The e$ciency and accuracy of the
results may reduce signi"cantly, if the number of parameters is too large. Another factor is
the e$ciency of the forward solver, as it is usually called thousands of times in the inverse
process.

Recently, a method has been proposed [10] using linearly inhomogeneous elements
(LIEs) for analyzing stress waves in FGM. In an LIE, both the elastic constant and mass
density are assumed to vary linearly in the thickness direction. It has be found that the
material property can be approximated with piecewise linear functions. The LIE method
can be used to solve forward problems that relate the material property to elastic wave "elds
in FGM plates. If the gradient constants, which represent the change of the material
property of each LIE, are available, the material property of the whole FGM plate can be
approximated in a discrete fashion. The characterization of material property of FGM is
actually equivalent to characterize the gradient constants. It should be mentioned here that
if LIEs are used, a su$ciently large number of elements are needed to accurately represent
the variation of the material property of an arbitrary FGM plate. This translates to a large
number of gradient constants to be reconstructed in an inverse process. Therefore, a high
order element, such as a quadratic element, is very important, because it leads to
a signi"cant reduction in element numbers.

On the other hand, the material property does not change sharply in the thickness
direction for many FGMs. In these cases, the material property may be approximated as
quadratic functions. If a quadratic element can be developed, the whole plate can be
modeled using a single element, and an explicit form of relationship between the material
property and response of the FGM plate can be obtained. There is no need for an inverse
process to characterize the material property of these FGMs. For an arbitrary FGM
plate, using quadratic elements can reduce signi"cantly the numbers of elements for
representing the material variation, and less number of gradient constants needs to be
reconstructed.

This paper consists two important parts. The "rst part is to propose a quadratic layer
element method, based on quadratic approximation of material property in the thickness
direction, for analyzing stress waves in FGM plate. Another is to suggest some analytical
and numerical methods for characterizing material property of FGM using the present
quadratic layer element (QLE) method.

2. A QUADRATIC LAYER ELEMENT METHOD

2.1. QUADRATIC LAYER ELEMENT

Consider a wave motion generated in an initially undisturbed, half-space FGM plate
subjected to a plane stress wave. The FGM plate is divided into N quadratic layer elements



Figure 1. A quadratic layer element (QLE).
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(QLEs) in the thickness direction. In each QLE, o and c
33

are assumed to be quadratic
functions of z shown in Figure 1:

o"o
0
(1#boz)2, c

33
"c0

33
(1#b

c
z)2, (1)

where bo and b
c

are gradient constants representing the changing of material property
within the QLE in the z direction. o

0
and c0

33
are the mass density and the elastic constant of

the material at the lower surface of the element.
Within a QLE, the governing di!erential equation (in the absence of body force) is

given by

L
Lz Ac33

Lw

LzB"o
L2w
Lt2

, (2)

where o is the mass density and c
33

is the elastic constant of the material. For isotropic
materials, we have

c
33

"j#2k, (3)

where j and k are lame constants. In equation (2), w is the displacement in the z direction.
It is assumed that the displacement in the frequency domain has the form

w"=(z) exp(!iut), (4)

where u is the angular frequency. Substitution of equations (1) and (4) into equation (2),
leads to the following equation:
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33
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Equation (5) can be rewritten as

m2
d2=

dm2
#2m

d=

dm
#(Amm2#Bmm#Cm )="0 (6)

in which the following substitutions have been made:

m"1#b
c
z, (7)
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For FGMs, b
c
O0, but bo may equal zero for some cases, such as layered structures [9, 11].

For boO0, equation (6) can be rewritten as

m
d2y

dm2
#2(1#k)

dy

dm
#(Amm#Bm) y"0, (11)

where

y"m~k= (12)

k"
!1$J1!4cm

2
. (13)

Equation (11) has an exact solution in the form of con#uent hypergeometric functions
[12]:

="mk eDm@2(A/(a, b,!Dm)#Bu(a, b,!Dm)), (14)

where A and B are integral constants to be determined by the boundary conditions, and

D2"!4Am , h"D/2, a"1#k#Bm/D, b"2#2k. (15)

The functions / and u in equation (14) are the con#uent hypergeometric functions.
Using the displacement given in equation (14), the normal stress can be obtained

p"AA*#BB*, (16)

where

A*"c0
33

mk`1 ehm A(mh#k)/ (a, b,!Dm)!
2ah

b
m/(a#1, b#1,!Dm)B b

c
, (17)

B*"c0
33

mk`1ehm((mh#k)u (a, b,!Dm)#2ahmu(a#1, b#1,!Dm)) b
c
. (18)

For bo"0, equation (6) can be reduced to the following Euler equation:

m2
d2=

dm2
#2m

d=

dm
#Cm="0. (19)

Equation (19) is a partial di!erential equation of second order with variable coe$cients. The
solution of equation (19) can be obtained in the form of [12]

="G
Amm1#Bmm2 r@'0,

Am~0>5#Bm~0>5 ln DmD r"0,

m~0>5(A sin(ln DmDm@)#B cos(ln DmDm@) r@(0,

(20)
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where A and B are integral constants to be determined by the boundary conditions, m
1

and
m

2
are the roots of following equation:

m2#m#Cm"0 (21)

and

r@"(1!4Cm), (22)

m@"0)5JD1!4Cm D. (23)

The normal stress can be obtained using the displacement given in equation (20)
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33
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m2(m

1
Amm1#m
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Bmm2 ), r@'0,

c0
33

b
c
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b
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(24)

Solutions given by equations (14) and (16) or (20) and (24) are then applicable for all the
N elements. Consequently, there are 2N constants to be determined by the boundary
conditions at the surfaces of the plate and the continuity conditions at the interfaces
between the elements.

2.2. BOUNDARY AND CONTINUITY CONDITIONS

For generality, we "rst assume that the plate is loaded on the two surfaces as well as the
(N!1) interfaces by a harmonic load with an angular frequency u. Hence, the amplitude of
the external force vector can be written as follows:

TT"M¹
1
,¹

2
,¹

3
,2,¹

N
,¹

N`1
N, (25)

where ¹
j

is the amplitude of the external force acting at the jth interface, j"1 is for the
lower surface, and j"N#1 is for the upper surface of the plate. The boundary and
continuity conditions for the FGM plate can be written as follows:

On the lower surface of the plate

!pL
1
"¹

1
. (26)

At the interfaces

pU
n
!pL

n`1
"¹

n`1
, wU

n
"wL

n`1
for 1)n)(N!1). (27)

On the upper surface of the plate

pU
N
"¹

N`1
. (28)

The subscripts indicate the element numbers and the superscripts 00;11 and 00¸11 stand,
respectively, for the upper and lower surfaces of the layer elements.

Assembling all the QLEs using equations (26)} (28), we obtain the following equation for
the whole plate:

T"KA, (29)
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where T is the total external force, and A is a vector of constants for all the layer elements:
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Matrix K in equation (29) is given by
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Here

1
n
"1#b

c (n)
H (n). (40)

It should be noted that equations (32)}(39) are obtained for boO0. Similar equations are
obtained for bo"0:
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Equations (41)} (44) are for the case of r@'0. The corresponding equations for r@(0 and
r@"0 are given as follows:

For r@"0
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Solving equation (29), the constant vector A can be obtained, and the displacement and
stress in the frequency domain for each QLE can be obtained, respectively, using equations
(14) and (16) or equations (20) and (24).

2.3. RESPONSE IN THE TIME DOMAIN

Once the displacement in the frequency domain is known, the displacement in the time
domain can be obtained by the Fourier superposition

w
t
(t)"

1

2n P
=

~=

=(u)PM (u) exp(iut) du, (53)

where

PM (u)"P
tf

0

P (t) exp(!iut) dt (54)

is the Fourier transform of the incident pressure wave. In equation (54), P (t) is the incident
pressure wave upon the FGM plates. The time duration of the load is (0, t

f
). The integrals in

equation (53) can be evaluated by ordinary routines using equally spaced sampling points
together with the exponential window method [13}15]. To minimize the sampling points
and achieve a good accuracy in the integration, an adaptive quadrature scheme suggested
by Liu et al. [15] is employed to evaluate the integrals in equation (53). The stress in the time
domain can be obtained in the same way as the displacement.
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3. NUMERICAL EXAMPLES

A program is developed in FORTRAN to compute the wave "eld in a FGM plate excited
by an incident wave pressure on the surface of the plate. In the computation, the following
dimensionless parameters are used:

wN "w/H, zN"z/H, pN "p/c
33r

, pN "p/c
33r

, cN
33

"c
33

/c
33r

,

uN "uH/c
r
, tM"tc

r
/H, oN "o/o

r
, bM

c
"b

c
H, bM o"boH, (55)

where c
33r

(c
33r

"c2
r
o
r
), c

r
, o

r
are respectively, the reference elastic constant, wave velocity,

and density, and tM"1 is the time for the wave of velocity c
r

travelling once over the
thickness H of the plate. For quadratic FGM plates investigated here, the wave velocity at
the middle surface is used as the reference wave velocity c

r
.

The external force T used in equation (15) should be

T"M0, 0, 0,2, 0, 0, 0, PN, (56)

where

P"P
0

sin(u
f
t) (57)

is the incident pressure wave upon the upper surface. In this paper, we set PM
0
"2)0, and

uN
f
"2n and tM

f
"2n/uN

f
"1)0, namely the wave is one cycle of a sine function.

For an arbitrary FGM plate, two models shown in Figure 2 can be used. The "rst model
is using homogeneous elements, and the second model is using QLEs. In order to validate
the present method, the displacement in the frequency domain of a quadratic FGM plate is
computed. Material property of the quadratic FGM plate varies quadratically in the
thickness direction as de"ned by equation (1). Only one QLE is used to obtain the exact
results, and the results are shown in Figure 3 together with those obtained by a method
proposed by Liu et al. [16], in which the plate is divided into homogeneous layers. It can be
seen from Figure 3 that many homogeneous elements have to be used in order to obtain
a result with a reasonable accuracy.

In order to investigate how a stress wave propagates in an FGM plate, the time history of
the stress in a FGM plate subjected to a single-cycle sinusoidal pressure wave is computed
using the present method. The constant bM

c
of the FGM plate is "xed at 0)5 and the constant

bM o is "xed at zero, so that the wave velocity at the middle point is "xed at c
r
"5000 m/s. The

results are shown in Figure 4 for the stress at the middle point in the FGM plate together
with that in a homogeneous plate whose wave velocity is c

r
. Because the pressure wave is

applied on upper surface where the wave velocity is the highest, and the wave velocity of the
Figure 2. Two discrete models.



Figure 3. Comparison of results obtained by the present method (solid line) with those obtained by
homogeneous method (dashed line) for a quadratic FGM plate.

Figure 4. Comparison of time history of the stress at the middle point of a FGM (solid line) and homogeneous
(dashed line) plates subjected to a single cycle of sinusoidal pressure wavelet on the upper surface.
(uN

f
"6)28, bM o"0, c"c

r
(1#0)5z/H)).
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FGM plate is higher than that of homogeneous plate in the upper-half portion of the plate,
the stress wave propagates faster in the upper-half of the FGM plate. When the stress wave
is travelling in the lower portion of the plate, the wave velocity in the homogeneous plate is
higher than in the FGM plate. This is clearly evident in Figure 4 where the dashed line is
lagging behind during the time 0(tM(1)5, and then over-taking during 1)5(tM(3)0. With



Figure 5. Same as Figure 4 but for uN
f
"31)4.
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increasing time, the dashed line will again be over-taken by the solid line, and so on. It is
also observed that the amplitude of the stress wave in the FGM plate is slightly smaller than
that in the homogenous plate. This is because the pressure wave is applied on the harder
surface that is capable of taking higher stress, and leaving small stress for other portion of
the plate to take.

Consider a pressure wave with higher frequency (uN
f
"31)4 and tM

f
"0)2). Figure 5 shows

the time history of the stress at the middle point of the FGM and homogeneous plate. The
phenomena observed in Figure 4 can be again seen. It is more clearly shown that the stress
waves change their signs whenever they hit the free surfaces of the plates.

4. MATERIAL CHARACTERIZATION OF FGMS

Analytical and numerical methods are suggested for characterizing material property of
FGM based on QLE method. First, the relationship between the surface displacement
response and the material property of quadratic FGM plates has been analytically
obtained, and the material property can be directly characterized from this closed form
relationship. Then a computational inverse technique is presented for characterizing
material property of an arbitrary FGM plate, using QLE method as the forward solver and
genetic algorithm as the inverse operator. The e$ciency of present inverse technique is
demonstrated in characterizing the material property of an actual SiC-C FGM.

4.1. MATERIAL PROPERTY OF QUADRATIC FGMS

Consider a quadratic FGM plate, the material property is assumed to vary in the
thickness direction as de"ned in equation (1). The displacement in the frequency domain on
upper surface can be obtained as a function of b

c
and bo :

="gkeDH(A/(a, b,!Dg)#Bu(a, b,!Dg)), (58)
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where a, b, h can be obtained from equation (15), H is the thickness of the plate, and

g"Hb
c
#1. (59)

Constants A and B can be obtained from equation (29):

A"aB, (60)

B"

p
h

c0
33

gk`1 exp(hg)K
, (61)

where

a"!

(h#k)u (a, b,!D)#2ahu(a#1, b#1,!D)

(h#k)/ (a, b,!D)!2ah/(a#1, b#1,!D)/b
, (62)

K"K*
A
a#K*

B
(63)

and

K*
A
"(gh#k)/ (a, b,!Dg)!

2ah

b
g/(a#1, b#1,!Dg), (64)

K*
B
"(gh#k)u(a, b,!Dg)#2ahgu(a#1, b#1,!Dg) (65)

in equation (61), P
h

is the magnitude of the harmonic load

P"P
h
e~*ut. (66)

The relationship between the constant b
c
(for "xed bo"0)1) and displacement= is plotted

in Figure 6, and the relationship between the constant bo (for "xed b
c
"1)0) and

displacement= is plotted in Figure 7. These curves shown in Figures 6 and 7 imply that for
Figure 6. The relationship between displacement on the top surface and the gradient constant b
c
of a quadratic

FGM plate (uN "0)5, bM o"0)1).



Figure 7. The relationship between displacement on the top surface and the gradient constant bo of a quadratic
FGM plate (uN "2)0, bM

c
"1)0).
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quadratic FGM plates, the gradient constants of elastic constant and density can be
determined inversely from the measured surface displacements by a closed form, of
equation (58).

4.2. MATERIAL PROPERTY OF SIC-C FGM

For an arbitrary FGM plate, it can be divided into a number of QLEs. The relationship
between the whole gradient constants and the upper surface displacement response data
cannot be obtained in an explicit form. A computational inverse method is suggested for
characterizing the material property of an arbitrary FGM plate. The QLE method is
employed as the forward solver to build implicitly the relationship between displacement
response on the surface and the material property, and Genetic Algorithm (GA) is employed
as the inverse operator to reconstruct the gradient constants of each QLE from the upper
surface displacement response data. The objective function for inverse problem can be
de"ned by

Minimize err(p)"
M
+
i/1

DDum
i
!uc

i
(p)DD2, (67)

where p represents the gradient constants, and um
i

is the displacement response obtained
from experimental measurements. In this paper, we utilize computer-generated
displacement response instead of the measured one for FGM plates with given material
property. M is the number of di!erent observed points where the displacement response is
sampled. In a GA run, each individual chromosome represents a candidate combination of
reconstructed parameters. For each candidate combination, forward calculation has to be
performed to obtain uc

i
, the displacement response subjected to the given dynamic loading.

These calculated displacement readings are used to obtain the "tness value of the candidate
combination. The "tness value, which is de"ned as equation (67), will determine the



TABLE 1

GA search space for SiC-C FGM plate

Parameter Original data Search range Possibilities no. Binary digit

bM 1
c

5)5 4)40}6)60 256 8
bM 2
c

4)4 3)52}5)28 256 8
bM 1o 0)4 0)32}0)48 128 7
bM 2o 1)0 0)80}1)20 128 7
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probability of the candidate being chosen as a future parent. A FORTRAN sub-program
for forward calculation using QLE is developed and interfaced with the GA main program.

Consider an actual SiC-C FGM plate as an example of the arbitrary FGM plate. The
e!ective material property of this FGM is given by Kerner [17]. The plate is divided evenly
into two QLEs. There are, therefore, four gradient constants for this whole plate, and they
are denoted as b1

c
, b1o , b2

c
, b2o , respectively, where the superscripts stand for the element

numbers. The original values of these four gradient constants are shown in Table 1.
The search range for the four parameters are set between !20 and #20% from the

actual values as shown in Table 1. These four parameters are described and translated into
a chromosome of length. In the whole search space, there are 230 possible combinations of
these four parameters. The uniform crossover micro-GA [18] is used as the GA
performance. Both the noise-free and noise-contaminated displacement responses are used
for the characterization of the gradient constants. The Gauss noise of various levels is
directly added to the computer-generated displacements. A vector of pseudo-random
number is generated from a Gauss distribution with mean a and standard deviation b. The
mean a is set to zero, and the standard deviation b is de"ned as

b"p
e
]C1/M

M
+
i/1

(um
i
)2D

0>5
, (68)

where um
i

is the computer-generated displacement reading at the ith sample point, p
e

is the
value to control the level of the noise contamination, e.g. p

e
"0)05 means 5% noise. To

investigate the sensitivity and stability of present inverse procedure to noise, three noise
levels: 2%, 5%, and 10% are considered in this work. The characterized results are listed in
Table 2. The accurate identi"cation results demonstrate the e$ciency of present inverse
procedure and forward solver using QLE. Furthermore, it also should be noted that the
TABLE 2

Characterized gradient constants for SiC-C FGM

Results (deviation) for di!erent noise levels

Parameter Original data Noise free 2% noise 5% noise 10% noise

bM 1
c

5)5 5)65(2)8%) 5)77(4)9%) 5)43(!1)3%) 5)81(5)6%)
bM 2
c

4)4 4)52(2)7%) 4)34(!1)4%) 4)55(3)4%) 4)76(8)2%)
bM 1o 0)4 0)42(5)0%) 0)38(!5)0%) 0)38(!5)0%) 0)43(6)0%)
bM 2o 1)0 0)98(!2)0%) 0)98(!2)0%) 0)94(!6)0%) 1)07(7)0%)
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reconstructed results remain stable regardless of the levels of noise; even level of 10% is
acceptable.

5. CONCLUSIONS

In this paper, a numerical method is presented for analyzing the response of FGM plate
excited by a pressure wave using QLEs, whose elastic constants and mass density change
quadratically in the thickness direction. A general solution of the equation of motion for the
QLE is derived. This solution is used together with the boundary and continuity conditions
to obtain the response of an arbitrary FGM plate both in frequency and time domain. The
propagation of a stress wave in a FGM plate is computed and discussed in details.

Analytical and numerical methods are proposed for characterizing material property of
FGM using the present QLE method. Firstly, the relationships between the surface
displacement response and the material property of quadratic FGM plates have been
obtained to characterize the material property of quadratic FGM. Then a computational
inverse technique is presented for characterizing material property of an arbitrary FGM
plate from the upper surface displacement response data. This technique is performed to
characterize the material property of an actual SiC-C FGM. It can be found that the inverse
technique could provide an accurate predication of the material property of FGM from the
displacements response data measured on the surface. The present QLE method can be
used as a forward solver in an inverse process for material characterization of FGM.
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