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Two sets of governing equations for transverse vibration of non-uniform Timoshenko
beam subjected to both axial and tangential loads have been presented. In the "rst set, the
axial and tangential loads were taken perpendicular to the shearing force, i.e., normal to the
cross-section inclined at an angle t, while in the second set, the axial force is assumed to be
tangential to the axis of the beam-column. For each case, there exist a pair of di!erential
equations coupled in terms of the #exural displacement and the angle of rotation due to
bending. The two coupled second order governing di!erential equations were combined into
one fourth order ordinary di!erential equation with variable coe$cients. The parameters of
the frequency equation were determined for di!erent boundary conditions. The exact
fundamental solutions could be found by expressing the coe$cients of the reduced
di!erential equation in a polynomial form before applying the Frobenius method. Several
illustrative examples of uniform and non-uniform beams with various boundary conditions
such as clamped supported, elastically supported, and free end mass and pinned end mass,
have been presented. The stability analysis, for the variation of the natural frequencies of the
uniform and non-uniform beams with the axial force, has also been investigated. Moreover,
the present work illustrates the frequency behavior of the beam under a tangential load.

( 2000 Academic Press
1. INTRODUCTION

Present-day structures need to be lightweight but have high strength. This trend has created
many vibration-induced problems such as material fatigue, noise transmission and even
human discomfort. Moreover, for any complicated mechanical system which has a number
of resonant frequencies, it is a di$cult task to eliminate all the resonating frequencies.
Therefore, the determination of these frequencies and studying the behavior of structures at
these resonating frequencies is important from the point of reducing the dynamic stresses
and/or amplitudes.

Beams have been used for various purposes for many structures and hence the vibration
behavior of beams has a great importance in many engineering applications such as in the
design of machines and structures. The fundamental vibration behavior of long slender
cylindrical or prismatic beams can be investigated using the classical Euler}Bernoulli beam
theory. Attempting to use this theory for studying either short beams or vibrations at higher
modes can lead to a signi"cant over-prediction of natural frequencies, since the e!ect of
both transverse shear deformation and rotatory inertia has been ignored and, therefore, it
cannot provide su$cient explanations of vibration characteristics at higher modes.
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When the ratio of the radius of gyration of the cross-section of the beam to its length is
very small, say in the order of 10~4, the frequency values coincide with those found from the
Bernoulli}Euler classical theory. Lord Rayleigh improved the classical theory by
considering the e!ect of rotary inertia of the cross-section. Later, Timoshenko [1, 2]
developed a theory which allows one to study the vibrational behavior of either shorter
beams or higher vibrational modes by approximately accounting for both the transverse
shear deformation and the rotary inertia, when the cross-section remains undisturbed and
the axial stresses are assumed to be zero. Moreover, Timoshenko showed that the e!ect of
the rotatory inertia is typically less important than the shear deformation. The resulting
model is characterized by two coupled di!erential equations in terms of two dependent
variables, being the transverse de#ection of the neutral axis and the rotation of the
cross-section measured about the neutral axis. Furthermore, the model requires the exact
value of a well-known shear-correction factor i, being de"ned as the ratio of the averaged
shear strain within the cross-section to the shear strain at the section centroid.

Non-uniform beams in which the cross-section is varying either in a continuous or
non-continuous manner along their lengths have many structural applications. It is
desirable to achieve an optimum distribution of strength and weight and in some cases to
satisfy special architectural and functional requirements. Therefore, determination of
natural frequencies of such beams has been the subject of interest for many mechanical,
aeronautical, and structural engineers.

The in#uence of axial or in-plane loading on the free vibration frequencies of elastic
structures such as beams, plates and cylindrical shells has been investigated before. Tension
tends to increase the free-vibration frequencies, while on the other hand, compression tends
to reduce them. Since buckling occurs when the lowest frequency decreases to zero, it may
be possible to estimate buckling loads non-destructively by "rst measuring the frequencies
at several load levels and then extrapolating the results.

In the recent decades, due to the important usage of beams in industry, many scientists
and engineers have published papers in the "eld of static, free and forced vibrational
analysis of beams with di!erent geometry, boundary and loading conditions. Maurizi et al.
[3] presented a study on the free vibration of a uniform Timoshenko beam when elastically
restrained against rotation and translation and showed how frequencies are in#uenced by
the variations in the end-restrained parameters. Modal analysis was adopted to obtain the
deterministic and random vibration response of a uniform, mass-loaded, hysteretically
damped beam model which simulates a robotic arm [4]. At the left end of the beam, both
rotational and translational springs are attached, and the o!set and rotary e!ects of the tip
mass at the right free end are considered. Rossi and Laura [5] presented the exact,
analytical solution of the free vibration of Timoshenko beams carrying elastically mounted
masses, and obtained an independent solution by means of a "nite element code in order to
ascertain the validity and accuracy of the results predicted from the exact solution.

A number of papers have been published on the vibration of Timoshenko beams
subjected to moving loads and beams with varying thickness [6}8]. Irie et al. [9] studied
the steady state response of an internally damped Timoshenko beam with varying
cross-section to a sinusoidally varying point force using the spline interpolation technique.
The natural frequencies of transverse vibrations of a Timoshenko beam of non-uniform
thickness clamped at one end and carrying a concentrated mass at the other end was
determined for two types of structural con"gurations: (1) discontinuous variation of
thickness, (2) continuous linear variation [10]. Lee and Kuo [11, 12] performed the statical
and dynamical analysis of an elastically restrained non-uniform Bernoulli}Euler beam. The
exact solution for the problem governed by a general self-adjoint fourth order ordinary
di!erential equation with arbitrarily polynomial varying coe$cients were derived in
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Green's function form and concisely expressed in terms of four normalized fundamental
solutions of the system. Lee and Lin [13] presented the exact solution for the free vibration
of a symmetric non-uniform Timoshenko beam with a tip mass at one end and elastically
restrained at the other end. They have showed that the exact fundamental solutions can be
obtained by the method of Frobenius.

Many investigations have been concentrated on the vibrational behavior of column
beams under axial loads. The e!ect of a constant axial compression load on the natural
frequencies and mode shapes of a uniform single-span beam, with di!erent combinations of
end conditions has been studied by Bokaian [14]. Farghaly [15] presented closed-form,
exact frequency and mode shape solutions for a uniform cantilever Euler}Bernoulli beam
with an elastically mounted end mass under axial load concentrated either at the point of
attachment between the beam and the end mass or at the center of gravity of that mass. The
same problem but for the Timoshenko beam, based on two di!erent sets of governing
equations, has been studied by Farghaly and Shebl [16]. They showed that the di!erence
between the natural frequencies is signi"cant for beams subjected to larger loads and at
higher modes of vibration. Esmailzadeh [6] studied the vibration of a Timoshenko beam
subjected to a moving mass, and Lee [17] analyzed the dynamic response of a rotating shaft
when being subjected to an axial force and a moving load by using the assumed mode
method and the Timoshenko beam theory.

In the present study, two sets of governing equations for the transverse vibration of
a non-uniform Timoshenko beam subjected to axial and tangential loads have been derived.
In the "rst set, the axial and tangential loads have been taken normal to the shearing force
and thus normal to the cross-section inclined at an angle t. In the other set, the axial force is
tangential to the axis of beam-column. For each case, there exists a pair of coupled
di!erential equations in terms of #exural displacement and angle of rotation due to bending.
The two coupled governing characteristic di!erential equations are reduced into one fourth
order ordinary di!erential equation with variable coe$cients in terms of the angle of
rotation due to bending. After substituting the homogeneous solution into the associated
boundary conditions, the corresponding parameters of the frequency equation were
determined for di!erent boundary conditions. The exact fundamental solutions can be
determined by expressing the coe$cients of the reduced di!erential equation in the form of
a polynomial and then applying the Frobenius method. Several illustrative examples of
uniform and non-uniform beams with various boundary conditions, i.e., clamped supported,
elastically supported, free end mass and pinned end mass, have been presented. Furthermore,
convergence of solutions and comparison between the results of the two sets of equations have
also been studied. For stability analysis, the variation of the natural frequencies of the uniform
and non-uniform beams with the axial force have also been investigated. The present work
illustrates the frequency behavior of a beam under tangential load.

2. EQUATIONS OF MOTION

The equations of motion of the Timoshenko beam under axial loading can be obtained
on the basis of three approaches: namely; the principle of virtual work, Hamilton's
stationary principle and the classical dynamic equilibrium method. The derivation of these
equations is based on the assumption that the shearing force acts on the cross-sections
which are normal to the de#ected axis of the beam-column and therefore inclined at an
angle t with respect to the vertical direction. Two sets of equations of motion could be derived
for the following two cases: (1) the axial force is taken normal to the shearing force and
thus normal to the cross-section inclined at angle t; (2) the axial force is taken tangential to
the axis of the beam-column and thus is not normal to the direction of shear force.



Figure 1. (a) The Timoshenko beam system under study; (b) free body diagram of an element dx*axial force
tangential to the axis of the beam column; (c) free body diagram of an element dx*axial force normal to the
shearing force.

446 E. ESMAILZADEH AND A. R. OHADI
Referring to Figure 1, it can be easily shown that the governing equations for vibration and
stability of a non-uniform Timoshenko beam for the two cases mentioned above are as follows.

Case 1: Axial force normal to the shearing force,
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Case 2: Axial force tangential to the axis of beam-column,
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A list of nomenclature is given in the Appendix. For harmonic vibration (L2y/Lt2"!u2y),
the dimensionless governing characteristic equations of motion are as follows:

Case 1.

d

df C
q

d A
dy

df
!tBD#sX2y!

p

d
dt
df

"0,

(3)
d

df Ar
dt
dfB#A

p#q

d B A
dy

df
!tB#lgX2t"0.



NON-UNIFORM BEAMS 447
Case 2:
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By di!erentiating the second equation of each set and then combining it with the "rst
equation, the relationship between the dimensionless #exural displacement and the angle of
rotation due to bending can be obtained. Replacing the above-mentioned relations back
into the second equation of relations (3) and (4), the governing characteristic di!erential
equation of motion in terms of the angle of rotation will be obtained. The resulting fourth
order di!erential equations with variable coe$cients are as follows.
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Case 2.
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3. BOUNDARY CONDITIONS AND FREQUENCY EQUATION

The equations for the various end conditions, corresponding to equation (5), may be
expressed in non-dimensional form as follows. For the clamped support:
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while for the elastic support:
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However, for the free end mass one can write
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while for the pinned end mass:
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Similar relations could be written for case 2 in a similar fashion.
The general solution of the di!erential equation can be expected as
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where the <
j
(f), j"1, 2, 3, 4, are the four linearly independent fundamental solutions and

the C
j
are the four pairs of arbitrary constants which have to be de"ned by imposing the

boundary conditions. Fundamental solutions must satisfy the following normalization
condition at the origin of the co-ordinate system:

<
1
(0) <

2
(0) <

3
(0) <

4
(0)

< @
1
(0) < @

2
(0) < @

3
(0) < @

4
(0)

<A
1
(0) <A

2
(0) <A

3
(0) <A

4
(0)

< @@@
1

(0) < @@@
2

(0) < @@@
3

(0) < @@@
4

(0)

"

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

. (12)

Note that the prime indicates di!erentiation with respect to the dimensionless spatial
variable f. After substituting the general solution into the boundary conditions, a set of
linear, homogeneous equations will be deduced. One obtains the frequency equation of the
system if the corresponding determinant vanishes identically:

P"!(g
1
F
3
H

1
#g

4
F
4
H

3
#g

2
F
1
H

4
!g

4
F
3
H

4
!g

2
F
4
H

1
!g

1
F
1
H

3
)

#g
5
(g

1
F
3
H

2
#g

3
F
4
H

3
#g

2
F
2
H

4
!g

3
F
3
H

4
!g

2
F
4
H

2
!g

1
F
2
H

3
). (13)

For a few conventional boundary conditions, parameters g
i
with i"1,2, 10, and F

i
and

H
i
with i"1, 2, 3, 4 were evaluated and is presented in Table 1.

4. EXACT ANALYTICAL SOLUTION

In general, the closed-form fundamental solutions of a fourth order di!erential equation
with variable coe$cients are not available. If the coe$cients of the reduced di!erential
equation can be expressed in a polynomial form, then the exact fundamental solutions could
be found using the method of Frobenius [13].



TABLE 1

Parameters of frequency equation for di+erent boundary conditions
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The general form of the fourth order ordinary di!erential equation with variable
coe$cients is
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Most often, it is possible to have a power series representation of the variable coe$cients:
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Also, one can assume that the four fundamental solutions of equation (14) can be written in
the form
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The recurrence formula
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can be obtained by replacing equation (16) into equation (14) and collecting the coe$cients
of powers of f. By using equation (17) and with due attention to the normalization condition
(equation (12)), we evaluate the coe$cients k

i,j
. The natural frequencies will be obtained by

substituting the fundamental solutions into the associated frequency equation.

5. RESULTS AND DISCUSSION

The Maple V software has been used for all the computational processes in this work. The
results and a brief discussion of some examples with the veri"cation problems are as follows.

5.1. ILLUSTRATIVE EXAMPLE 1

The dependent of the accuracy of results to the number of terms of power series taken is
shown in Table 2. The material properties of the Timoshenko beam are taken as constant.
The beam is assumed to have a linearly varying thickness with constant width. Therefore,
TABLE 2

First four frequencies of a linearly varying thickness, clamped ¹imoshenko beam with tip mass
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q(f)"s (f)"(1#jf), l(f)"r(f)"(1#jf)3. The boundary conditions are taken as
clamped at one end and a lumped mass at the other. The axial force acts at the point of
attachment of the tip mass, and the dimensionless parameters of the beam are g"0)0016,
k"0)6, c"0)54, j"!0)2, a"0.

Results obtained for the case p"0 are exactly the same as those presented by Lee and
Lin [13], which veri"es the developed computer program for the non-uniform beams. It can
be seen that the axial compressive force would decrease all the natural frequencies of the
beam. Table 2 shows that the results obtained from the two systems are the same only for
lower modes of vibration. However, at higher modes the di!erences grow rapidly.
Moreover, it can be seen that for a convergent solution, especially at higher modes, the
minimum number of terms for the power series, N, must be 35.

Variation of the "rst natural frequency of the beam with the axial load for two di!erent
values of the tip mass is plotted in Figure 2. As expected, the frequencies of the beam with
the mass ratio k"0)6, is lower than for the case of zero mass (k"0). Moreover, the critical
buckling load is independent of the tip mass value since the axial force acts at the point of
the attachment.

5.2. ILLUSTRATIVE EXAMPLE 2

Table 3 shows the "rst four natural frequencies for the uniform and non-uniform
clamped}free Timoshenko beam under the action of an axial load. For recovery of the
previous results, dimensionless parameters of the uniform beam were selected in the form of
g"0)01, k"c"a"0, d"0)03, b

T
"100, bh"2 which are the same as those presented in

Table 1 of reference [16]. The comparison of the results presented in Table 3 with the
corresponding values taken from reference [16] shows good agreement and, therefore,
veri"es both the formulation and the developed computer program. Results for the case of
a constant width, and a second order varying thickness Timoshenko beam
(q(f)"s (f)"(1#0)2f2), l(f)"r (f)"(1#0)2f2)2) are presented in Table 3. The other
parameters of the beam are taken the same as that of the uniform beam.
Figure 2. Variation of the natural frequency versus the axial load. Cantilever Timoshenko beam with constant
width and linearly varying thickness; g"0)0016, c"0)54, j"!0)2, a"0, k"0)6 and k"0; **, mass ratio
k"0)6; - - -, mass ratio k"0.



TABLE 3

Comparison between the ,rst four frequencies of the two sets of equations, clamped
¹imoshenko beam: (a) uniform, (b) non-uniform; with second order varying thickness
(q (f)"s (f)"(1#0)2f2), l(f)"r(f)"(1#0)2f2)2); g"0)01, k"c"j"a"0, d"0)03

X
1

X
2

X
3

X
4

(a) Uniform beam
p"0 3)235 14)591 31)835 48)541
p"0)03 Case 1 * Eq. (5) 2)499 13)893 31)275 48)155
p"0)03 Case 2 * Eq. (6) 2)494 13)798 31)016 47)670
p"0)3 Case 1 * Eq. (5) 6)027 25)555 43)656
p"0)3 Case 2 * Eq. (6) 4)837 22)276 38)078

(b) Non-uniform beam
p"0 3)085 14)439 31)999 47)759
p"0)03 Case 1 * Eq. (5) 2)433 13)850 31)548 47)560
p"0)03 Case 2 * Eq. (6) 2)434 13)764 31)296 47)082
p"0)3 Case 1 * Eq. (5) 7)327 26)971 44)868
p"0)3 Case 2 * Eq. (6) 6)081 23)847 52)271
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Table 3 indicates that an increase in the axial load would increase the di!erence between
the result of the two system of equations. Furthermore, this may be signi"cant for the higher
modes of vibration.

5.3. ILLUSTRATIVE EXAMPLE 3

The vibration and the stability of an elastically supported Timoshenko beam carrying an
attached mass when being subjected to an axial tensile or compressive loads are
investigated here. For a uniform beam, the material and the geometric parameters are taken
as g"0)0001, k"1)0, c"1)0, a"0)01, d"0)0003051.

A non-uniform beam has been assumed with the same cross-section at f"0 but having
both the width and the depth of the beam decrease linearly with the same taper ratio as
j"!0)5. The parameters of the non-uniform beam are chosen the same as those of the
uniform beam except for the mass ratio k"1)7143 and q (f)"s (f)"(1!0)5f)2,
l(f)"r(f)"(1!0)5f)4.

Variation of the "rst and the second frequencies of the beam with the axial force are
presented in Figure 3. The results obtained for the uniform beam are in good agreement
with those of the previous studies (Figure 2 of reference [16]). It can be seen that the critical
buckling loads of a uniform beam are greater than those of the non-uniform one, as
expected, since the sti!ness of the uniform beam is now higher. On the other hand, the mass
of the uniform beam is also greater than that of a non-uniform beam. Therefore, depending
on the value of the axial load, the natural frequencies of the uniform beam may be either
smaller or greater than those of the non-uniform beam.

5.4. ILLUSTRATIVE EXAMPLE 4

The dimensionless frequencies of the "rst two modes versus the axial force (p) for both the
free}free uniform and non-uniform Timoshenko beams are illustrated in Figure 4. In these
cases, two identical masses with negligible rotatory inertia (a"0) are attached to both ends



Figure 3. Variation of the natural frequency versus the axial load. Elastically restrained uniform and non-
uniform Timoshenko beams with attached beam mass at one end; g"0)0001, c"1)0, a"0)01, d"0)0003051,
b
T
"100, bh"2, q(f)"s (f)"(1!0)5f)2, l(f)"r (f)"(1!0)5f)4:**, uniform beam; - - - , non-uniform beam.

Figure 4. Variation of the natural frequency versus the axial load. Free}free uniform and non-uniform
Timoshenko beams with attached mass at both ends; g"0)0001, c"1)0, a"0, d"0)0003051,
q(f)"s (f)"(1!0)5f)2, l(f)"r(f)"(1!0)5f)4: **, uniform beam; - - -, non-uniform beam.
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of the beam. The geometry of the non-uniform beam is the same as that of the previous
example.

5.5. ILLUSTRATIVE EXAMPLE 5

Consider the non-uniform beam with the geometry and boundary conditions de"ned as
in Example 1. The beam is subjected to an axial force at one end (p

0
"0)006) and

a uniformly distributed tangential load (q) along the beam. Therefore, the variation of
the axial load along the length of the beam can be written as p (f)"0)006#(1!f)q.



Figure 5. Variation of the natural frequency versus the tangential load. Cantilever Timoshenko beam with
constant width and linearly varying thickness; g"0)0016, c"0)54, j"!0)2, a"0, k"0)6 and k"0:**, "rst
mode; - - -, second mode.
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Figure 5 indicates that an increase in the tangential load (q) increases the "rst natural
frequency but decreases the second. Moreover, it can be seen that the natural frequencies
change linearly with the variation of the tangential load.

6. CONCLUSIONS

The exact solution of the vibration and the stability analysis for a non-uniform
Timoshenko beam subjected to axial and distributed tangential loads has been presented.
Two sets of governing equations are used in the formulation. In the "rst set, the axial and
tangential loads are taken as perpendicular to the shearing force but in the second set, it is
assumed that the axial force is tangential to the axis of the beam-column. For both cases, the
two governing di!erential equations were reduced into one fourth order ordinary
di!erential equation with variable coe$cients. For di!erent boundary conditions, the
parameters of the frequency equation were determined by substituting the homogeneous
solution into the associated boundary conditions. By applying the Frobenius method, the
exact fundamental solution was found. Comparisons between the results from the two sets
of frequency equations have been made for typical examples of uniform and non-uniform
beams. The di!erences between the natural frequencies become signi"cant for beams
subjected to high loads and for high modes of vibration. The in#uences of the geometrical
non-uniformity, end masses, axial force and tangential load on the natural frequencies and
critical load of the beams have been investigated.
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APPENDIX: NOMENCLATURE

A(x) cross-sectional area of the beam
E(x) modulus of elasticity of beam material
G(x) shear modulus of beam material
I(x) area moment inertia of the beam
J(x) mass moment of inertia of the beam per unit length
J
m

rotatory inertia attached at one or both ends of the beam
K

T
, Kh translational and rotational spring constants, respectively

¸ length of the beam
M concentrated mass attached at one or both ends of the beam
M

b
total mass of the beam

m(x) mass of the beam per unit length
p(f) dimensionless axial force, S(f)/Q(0)
Q(x) beam shear rigidity, iG(x)A(x)
q(f) dimensionless shear rigidity, Q(f)/Q(0)
q tangential load
R(x) beam bending rigidity, E(x)I(x)
r(f) dimensionless bending rigidity, R(f)/R(0)
S(x) axial force
s(f) dimensionless mass, m(f)/m(0)
l(f) dimensionless mass moment inertia, J(f)/J (0)
x length variable of the beam
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> beam lateral displacement
y dimensionless displacement, >/¸
a dimensionless rotatory inertia of the attached mass(es), J

m
/[m(0)¸3]

b
T
, bh dimensionless translational and rotational spring constants, respectively, K

T
¸3/R(0),

Kh¸/R(0)
c dimensionless concentrated mass, M/[m(0)¸]
d dimensionless ratio of bending rigidity to shear rigidity at x"0, R(0)/[Q(0)¸2]
g dimensionless ratio of mass moment inertia to mass at x"0, J (0)/[m(0)¸2]
i shear correction factor of the beam
j taper ratio of the beam
k dimensionless ratio of the attached mass to total mass of the beam, M/M

bf dimensionless distance to the left end of the beam, x/¸
u angular frequency of beam vibration
t angle of rotation due to bending
X2 dimensionless frequency, m (0)u2¸4/R(0)
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