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1. INTRODUCTION

In this paper, the free vibration of a rectangular isotropic plate in contact with #uid is
investigated. It is well known that the #uid motion is in#uenced by the plate vibration and
generates an important increase of kinetic energy of the whole system. Therefore, the
natural frequencies of the plate in contact with the #uid can be determined by calculating
the added virtual mass incremental factor (AVMI factor) which represents the kinetic
energy due to the #uid. Lamb [1] calculated the change in natural frequency of a thin
circular plate "xed along its boundary and placed in the aperture of an in"nitely rigid wall
in contact with water, then Powell and Roberts [2] veri"ed the theoretical results of Lamb's
work by conducting experiments. All the work mentioned above assumed the boundary
condition that the outside of the circular plates is an in"nitely rigid wall which cannot be
applied to circular plates immersed in water or placed on a free surface since the outside
boundary conditions di!er from the rigid-wall condition. Kwak and Kim [3, 4] investigated
the above problem and solved the mixed boundary problem by using Hankel transform.
The purpose of this study is to calculate the natural frequencies of a rectangular isotropic
plate for general boundary conditions, which is in contact with #uid.

2. PROBLEM FORMULATION

Consider the physical model of an isotropic rectangular plate in contact with #uid stated
as in Figure 1, where 2a and 2b represent the width and length of the rectangular plate, and
h is the thickness respectively. F denotes the #uid domain, S

1
denotes the surface between

the #uid and an in"nite rigid wall and S
2
denotes the surface between the #uid and the plate,

also S
=

denotes the surface at in"nity.
The governing equation of the free vibration of a rectangular isotropic plate in contact

with #uid neglecting the e!ects of rotatory inertia and transverse shear deformation can be
written as follows:

D(+4w)#(o
P
h#M

f
)
L2w

Lt2
"0, (1)

where w is the transverse de#ection of the plate, D is the bending sti!ness coe$cient, o
P

is
the mass density of the plate h is the thickness of the plate and M

f
denotes the #uid-added

mass.
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Figure 1. The rectangular plate in contact with #uid.
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For undamped free-vibration analysis in the air, equation (1) becomes

D(+4w)#o
P
h

L2w

Lt2
"0. (2)

The solution of equation (2) can be obtained by using separation of variables and is
represented by the following form:
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where

¹(t)"sin ut (4)

and X
m
(x), >

n
(y) are the orthogonal mode shape functions which satisfy the boundary

conditions in the x and y directions respectively. It is quite well known that the natural
frequency u can be determined from the boundary conditions of the plate.

Now consider the rectangular plate that is in contact with liquid on one side only, the
#uid is assumed to be incompressible and inviscid respectively. The #uid #ow is considered
as irrotational under plate vibration only so that its velocity potential can be expressed as

; (x, y, z, t)"/ (x, y, z)¹Q (t), (5)

where / is the spatial distribution of the velocity potential and &&z'' denotes the derivative
with respect to time.

Now it should be noted that u is not the natural frequency of the plate in the air but
rather the natural frequency of the plate in contact with the #uid. According to the
assumption of the #uid, / must satisfy the Laplace equation
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#
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"0 in F, (6)



LETTERS TO THE EDITOR 549
where F denotes the #uid domain. As in Figure 1, S
1

denotes the surface between the #uid and
an in"nite rigid wall and S

2
denotes the surface between the #uid and the plate, also S

=
denotes

the surface at in"nity. The condition of the rigid wall on S
1
, can be described as follows:

L/(x, y, z)

Lz K
z/0

"0 on S
1
. (7)

Also, the interaction between the #uid and the plate can be represented by the following
equation:

L/(x, y, z)

Lz K
z/0

"!=M (x, y) on S
2
, (8)

where=M represents the &&wet'' mode shape of the plate vibrating in contact with the #uid.
Furthermore, we must impose the conditions that the velocity potential / and the velocities
L//Lx, L//Ly and L//Lz approach zero on S

=
, i.e.,

/,
L/
Lx

,
L/
Ly

,
L/
Lz

, P0 as x, y, zPR on S
=

. (9)

In this paper, the &&wet''mode shape of the plate in contact with the #uid is assumed to be
the same as the &&dry'' mode shape of the plate when vibrating in the air. The above
assumption was veri"ed by several researchers [5], therefore, the approximation
=M (x, y)"=(x, y) will be adopted in the following derivations.

Let us denote the double Fourier transform as follows:

/N (m, g, z)"P
=

~=
P

=

~=

/(x, y, z)e`*(mx`gy) dx dy. (10)

Applying double Fourier transform on equation (6) and using the boundary conditions
speci"ed in equation (9), then the velocity potential /(x, y, z) can be expressed as

/ (x, y, z)"A
1

2nB
2

P
=
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P

=
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/N (m, g, z)e~*(mx`gy) dm dg (11)
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A(m, g) e~(m2`g2)12z e~*(mx`gy) dm dg

and A(m, g) can be calculated as follows based on the boundary conditions in equations (7)
and (8):

A(m, g)"(m2#g2)~1@2 P
b

~b
P

a

~a

X
m
(x)>

n
(y)e`*(mx`gy) dxdy. (12)

It should be noted that generally A (m, g) is a complex function of both m and g.
Based on the previous assumption that the wet mode shapes are almost equivalent to dry

mode shapes, the natural frequency of the plate in contact with #uid u
f

can be determined
from the following equation [3]:

u
fmn
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where u
amn

is the natural frequency of the plate in the air and b
mn

is the AVMI factor that
denotes the ratio between the reference kinetic energy of #uid induced by the plate vibration
and that of the plate which can be written as

b
mn
"

¹
F

¹
P

. (14)

The reference kinetic energy of the #uid can be obtained as follows from its boundary
motion by using the assumption on the irrotational movement of the #uid #ow:
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Substituting equations (7), (8) and (11) into equation (15) gives
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To evaluate the above multiple integral, reverse the order of integration, then equation
(16) can be simpli"ed to
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where * is the complex conjugate and A(m, g) can always be determined from equation (12)
provided that the dry mode shapes of the plate are known.

The reference kinetic energy of the plate can be obtained as
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Therefore, b
mn

(AVMI factor) can be evaluated from equation (14) after ¹
F

and ¹
P

are
computed and eventually u

fmn
can be determined from equation (13).

3. NUMERICAL EXAMPLE

We now investigate b
mn

(AVMI factor) of a rectangular isotropic plate in contact with
#uid to illustrate the previous formulations. In this study, the following material parameters
of a rectangular plate are selected as follows:

h"0)05m, o
P
"2)44]103 kg/m3, o

f
"1000 kg/m3.
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The units of length 2a and width 2b of the plate are speci"ed in meters throughout all the
numerical analysis.

Tables 1 and 2 present the values of added virtual mass incremental factor (AVMI factor)
for a square plate with the simply supported boundary condition. Tables 3 and 4 show the
values of a square plate with the clamped boundary condition. In these tables, we can detect
that the value of b

11
is much lager than those of the other modes for both boundary

conditions. This means b
11

plays a dominant role as far as the AVMI factor is considered;
meanwhile we can see that b

mn
decreases with the mode order. This implies that the e!ect of

#uid also decreases with mode order. In general, AVMI factor b
mn

of the higher mode
number is smaller than that of the lower mode number because the #uid movement stroke
TABLE 4

¹he values of b
mn

for even mode in a clamped square plate

b
mn

m"2 m"4 m"6 m"8

n"2 1)9393 1)2467 0)8917 0)6862
n"4 1)2467 0)9510 0)7461 0)6044
n"6 0)8917 0)7461 0)6265 0)5313
n"8 0)6862 0)6044 0)5313 0)4671

TABLE 3

¹he values of b
mn

for odd mode in a clamped square plate

b
mn

m"1 m"3 m"5 m"7

n"1 5)9219 2)2449 1)3381 0)9433
n"3 2)2449 1)3528 0)9657 0)7398
n"5 1)3381 0)9657 0)7690 0)6289
n"7 0)9433 0)7398 0)6289 0)5401

TABLE 2

¹he values of b
mn

for even mode in a simply supported square plate

b
mn

m"2 m"4 m"6 m"8

n"2 2)1696 1)3110 0)9105 0)6902
n"4 1)3110 0)9939 0)7695 0)6165
n"6 0)9105 0)7695 0)6449 0)5438
n"8 0)6902 0)6165 0)5438 0)4775

TABLE 1

¹he values of b
mn

for odd mode in a simply supported square plate

b
mn

m"1 m"3 m"5 m"7

n"1 6)9526 2)2540 1)3045 0)9124
n"3 2)2540 1)3938 0)9835 0)7442
n"5 1)3045 0)9835 0)7878 0)6409
n"7 0)9124 0)7442 0)6409 0)5508



TABLE 5

¹he values of b
11

for di+erent plates with various length and width in the simply supported case

b
11

a"1 a"2 a"3 a"4 a"5

b"1 6)9526 9)6576 11)4467 12)8104 13)9284
b"2 9)6576 14)2525 17)4782 20)0078 22)1128
b"3 11)4467 17)4782 21)8967 25)4431 28)4376
b"4 12)8104 20)0078 25)4431 29)8882 33)6886
b"5 13)9284 22)1128 28)4376 33)6886 38)8859

TABLE 6

¹he values of b
11

for di+erent plates with various length and width in the clamped case

b
11

a"1 a"2 a"3 a"4 a"5

b"1 5)9219 8)2130 9)7213 10)8658 11)8002
b"2 8)2130 12)0969 14)8124 16)9321 18)6890
b"3 9)7213 14)8124 18)5249 21)4921 23)9877
b"4 10)8658 16)9321 21)4921 25)2059 28)3688
b"5 11)8002 18)6890 23)9877 28)3688 32)1399

TABLE 7

¹he comparison of b
mn

for simply supported and clamped
plates in a square isotropic plate

a"b"1 Simply supported Clamped

b
11

6)9526 5)9219
b
22

2)1696 1)9393
b
33

1)3938 1)3528
b
44

0)9939 0)9510
b
55

0)7878 0)7690
b
66

0)6449 0)6265
b
77

0)5508 0)5401
b
88

0)4775 0)4671
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of the lower mode number is larger than that of the higher one. Therefore, as the mode
number increases, the #uid movement stroke will be reduced which will result in the
reduction of the added mass and AVMI factor. We can also obtain the similar phenomenon
described in the free vibration of a liquid-"lled circular cylindrical shell [6].

In Table 5, the values of b
11

for di!erent plates with various length and width in the
simply supported plate are presented. Table 6 shows the values of b

11
for di!erent plates

with various lengths and widths in the clamped case. As we can see, the values of b
11

are
symmetric about a and b. It is reasonable because the case of a"1; b"2 is absolutely the
same as that of a"2; b"1 physically speaking. Also we can state that the value of b

11
will

be increased if we enlarge the width or length of the plate, besides, the large area of the plate
will have the larger values of b

11
.

Table 7 is the comparison of b
nn

for simply supported and clamped plates. As expected,
the AVMI factor for simply supported case is always larger than that for the clamped case in
all modes.
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4. CONCLUSIONS

In this paper, the free vibration of a rectangular isotropic plate in contact with the #uid is
investigated. It is well known that the #uid motion is in#uenced by the plate vibration and
generates a remarkable increase of kinetic energy of the whole system. Therefore, the
natural frequencies of the plate in contact with the #uid can be determined by calculating
the AVMI factor, which represents the kinetic energy due to the #uid. Furthermore, it has
been veri"ed experimentally that only small changes in the wet mode shapes occur under
#uid movement which enable us to assume that the wet mode shapes are almost equivalent
to the dry mode shapes. The proposed approach can be adopted as a guidance to the
engineer who are engaged in the vibration analysis and the design of the rectangular
isotropic plates coupled with #uid. Also it should be noted that the presented approach can
be used for any arbitrary shapes of plate with general boundary conditions provided that
the natural frequencies of the plate in the air has been calculated.
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