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The e!ectiveness of planet phasing to suppress planetary gear vibration in certain
harmonics of the mesh frequency is examined based on the physical forces acting at the
sun}planet and ring}planet meshes. The analysis does not rely on assumptions of the nature
of the dynamic excitation (e.g., static transmission error or time-varying mesh sti!ness) or on
an underlying dynamic model. Instead, the inherent system symmetries imply distinct
relationships between the forces at the multiple meshes. These relationships lead naturally to
simple rules for when a particular harmonic of mesh frequency is suppressed in the dynamic
response. An important implication is that certain expected resonances when a mesh
frequency harmonic and a natural frequency coincide are suppressed. Systems with equal
planet spacing and those with unequally spaced, diametrically opposed planets are
considered. In both cases, a substantial number of mesh frequency harmonics are suppressed
naturally without optimization of the phasing. The phenomena are demonstrated with
a dynamic "nite element/contact mechanics simulation. ( 2000 Academic Press
1. INTRODUCTION

The dynamic response of planetary gears (Figure 1) is of fundamental importance in
helicopters, automotive transmissions, aircraft engines, and a variety of industrial
machinery. The complex, dynamic forces at the sun}planet and ring}planet meshes are the
source of the vibration. Modelling of the dynamic tooth forces remains an important issue
that has not been resolved even for single-mesh gear pairs. The multiple meshes of planetary
gears further complicate the dynamic modelling. Consequently, dynamic analyses of
planetary gears are less developed than for other single-mesh gear con"gurations. In
particular, experimental veri"cation of the existing analytical models is especially limited.
As a result, design options to minimize noise and loads in planetary gears have developed
empirically without strong analytical or experimental foundation. These design strategies
include tooth-shape modi"cations, gear geometry adjustments (pitch, contact ratio, etc.),
reduction of manufacturing tolerances, use of &&#oating'' sun, ring, or carrier components,
and vibration isolation concepts. A particular strategy is the use of planet phasing, where the
planet con"guration and tooth numbers are chosen such that self-equilibration of the mesh
forces reduces the net forces and torques on the sun, ring, and carrier, thereby reducing
vibration. This idea was proposed by Schlegel and Mard [1] where experimental
measurements on a spur gear system demonstrated a noise reduction of 11 dB. Seager [2]
gave a more detailed analysis using a static transmission error model of the dynamic
excitation. Palmer and Fuehrer [3] also demonstrate the e!ectiveness of planet phasing and
support their arguments with limited experiments. Kahraman [4] and Kahraman and
022-460X/00/390561#13 $35.00/0 ( 2000 Academic Press



Figure 1. Planetary gear schematic. F
i
denotes the mesh force at the ith sun-planet mesh.
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Blankenship [5] studied the use of planet phasing in the context of helical planetary
systems. These works use the static transmission error to represent the dynamic excitation
in a lumped parameter dynamic model. All of these studies focus on planetary gears with
equally spaced planet gears. Platt and Leopold [6] measured noise reductions for
a particular helical gear design as a result of di!erent phasing designs; no analysis is
presented.

The purpose of this work is to examine the analytical basis for planet phasing in spur
planetary systems and to extend the concept to systems with unequal planet spacing. The
results are developed in terms of the physical mesh forces and are not tied to any
lumped-parameter model. In fact, no attempt is made to characterize the factors a!ecting
the mesh forces (tooth-bending interactions, pro"le modi"cations, contact pressure, etc.) or
quantify their magnitudes. The fundamental issue is that the inherent symmetries of the
planetary design imply distinct relationships between the dynamic forces at the individual
meshes. This approach seems more appealing to physical intuition and makes no
supposition about the use of static transmission error to model the dynamic excitation.
These symmetries lead naturally to speci"c conclusions for the suppression of particular
harmonics of mesh frequency in the net forces and torques on the sun, ring, and carrier.
Simple rules (with clear design application) emerge to suppress expected resonances that
occur when the mesh frequency u

m
or one of its harmonics (lu

m
, l"1, 2, 3,2) coincides

with a system natural frequency.
The unique structure of planetary gear vibration modes is essential in what follows.

Planetary gears with equal sun}planet mesh sti!ness at each mesh, equal ring}planet mesh
sti!ness at each mesh, and equal planet inertia properties have exactly three types of modes
for systems with equally spaced or diametrically opposed planets [7, 8]:

(1) ¹ranslational modes in which the sun, ring, and carrier have only translational motion
and no rotational motion.

(2) Rotational modes in which the sun, ring, and carrier have only rotational motion and no
translational motion.

(3) Planet modes in which the sun, ring, and carrier have no motion and only the planets
de#ect. These exist only for four or more planets.



TABLE 1

Natural frequencies of the four and three planet gear systems

Natural Mode type
frequency
(Hz) Translation Rotation Planet Tanslation Rotation Translation

Four planets 778 1144 1729 1676 1723 2110
Three planets 780 1104 1695 1743 2145

PLANETARY GEAR VIBRATION 563
2. TWO EXAMPLES

To motivate the subsequent analysis, the phenomena are demonstrated "rst using two
examples. The results show how certain modes of a planetary gear are excited to resonance
while others are seemingly immune to resonant excitations. The "ndings in this section are
from a "nite element simulation. In the following section, the computed results are
explained analytically based on symmetry arguments independent of any mathematical
model or computational simulation. The examples are based on the four and three planet
con"gurations of the U.S. Army OH-58 helicopter planetary gear. The system is described
in detail in Krantz [9] and Parker et al. [10], where a comprehensive study of the dynamic
response is conducted. Importantly, nothing in the "nite element simulation predisposes the
dynamic response to the peculiar behavior described below. In particular, no a priori
assumptions are made regarding the spectral content of the dynamic mesh forces; these are
determined by contact analysis at each mesh at each time step. Speci"cally, idealizations of
the dynamic excitation in terms of static transmission error or a speci"ed time-varying mesh
sti!ness are not used.

2.1. FOUR PLANET SYSTEM

The four planet con"guration has unequally spaced planets at the angular orientations
t
i
"0, 91)4, 180, and 271)43. The sun, planet, and ring have the numbers of teeth Z

s
"27,

Z
p
"35, and Z

r
"99. The natural frequencies are given in Table 1. Figure 2 shows the

spectrum of the steady state planet radial de#ection for a range of operating speeds. At all
speeds, the response has frequency content only at mesh frequency and its harmonics,
although this is not imposed in the "nite element model. Resonant response in the "rst
mode ( f

1
"778 Hz), a translational mode, is evident when the mesh frequency or any of its

odd harmonics coincide with f
1
. Expected resonances when even harmonics of mesh

frequency coincide with f
1

are absent. Similar behavior occurs for the translational mode
with natural frequency f

6
"2110 Hz. In contrast, resonant response in the second mode

( f
2
"1144 Hz), a rotational mode, is evident when the mesh frequency or any of its even,

but not odd, harmonics coincide with f
2
. (The resonance excited by the fourth harmonic at

mesh frequency f
m
"286 Hz is small but present. Re"ned increments of mesh frequency in

the simulation would make this more apparent.) Similar behavior for modes 3}5 cannot be
distinguished because of the proximity of their natural frequencies. Analogous "gures for
sun translation and rotation [10] show that sun translation has no spectral content in the
even harmonics of mesh frequency, and rotational mode resonances are absent in the
remaining odd harmonics. The sun rotational response has no spectral content in the odd
harmonics of mesh frequency, and translational mode resonances are absent in the
remaining even harmonics.



Figure 2. Steady state planet radial displacement spectrum for a range of operating speeds for the four planet
system. f

i
denotes the ith natural frequency. Harmonics of the mesh frequency are indicated.

Figure 3. Steady state planet radial de#ection spectrum for a range of operating speeds for the three planet
system. f

i
denotes the ith natural frequency. Harmonics of the mesh frequency are indicated.
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2.2. THREE PLANET SYSTEM

The three planet con"guration uses identical sun, ring, and planet gears as the four planet
system. In contrast to the four planet case, the three planets are equally spaced. Natural
frequencies are given in Table 1. Figure 3 shows the steady state dynamic response of the



Figure 4. Representative forces acting on the sun gear in the lth harmonic of mesh frequency. (a) Forces cancel,
torques add; (b) Forces add, torques cancel; (c) Forces cancel, torques cancel.
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planet radial de#ection. The translational modes ( f
1
"780 and f

5
"2145 Hz) are not

excited to resonance by either odd or even harmonics of mesh frequency at any speed. The
rotational modes ( f

2
"1104 and f

4
"1743 Hz), however, are excited to resonance at the

speeds l f
m
"f

2
for any integer mesh frequency harmonic l. Corresponding results for

the sun [10] show that its rotation has spectral content in all mesh frequency harmonics,
but the sun translation is always zero at all speeds.

3. MESH FORCE ANALYSIS

In general, resonance corresponding to a natural frequency f
n
is excited in the lth mesh

frequency harmonic at a mesh frequency of f
m
"f

n
/l. The above behavior wherein

resonances at certain natural frequencies occur at particular mesh frequency harmonics and
are absent from other mesh frequency harmonics is explained by a mesh force analysis.
These relationships predict whether or not a particular type of mode (translational or
rotational) is excited in a given mesh frequency harmonic.

The basic phenomenon is illustrated in the sketch of Figure 4, which shows three
possibilities for the force distribution in a four planet system. Note that the forces shown are
the lth mesh frequency harmonic in the Fourier decomposition of the dynamic mesh force.
In Figure 4(a), the lth harmonic of the net mesh force/torque on the sun induces rotational
motion of the sun at the frequency of the lth harmonic but not translation. In Figure 4(b),
the lth harmonic of the net mesh force/torque on the sun induces translational motion of the
sun but not rotation. For the case of Figure 4(c), the lth harmonic of the net sun force and
moment vanish and no sun motion occurs in the lth harmonic. Conditions for which these
three behaviors occur for a particular mesh frequency harmonic are derived analytically
below.
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The complex tooth meshing action results in dynamic forces acting on the sun and ring
gears from the planet meshes. (For concreteness, the following discussion examines sun
forces, though the analysis for ring forces is analogous.) These forces are periodic functions
with the fundamental frequency equal to the tooth mesh frequency u

m
"2n f

m
. The force

acting on the sun gear at the ith planet mesh (Figure 1) is expressed using a Fourier series as

F
i
"F

i1
ei
1
#F

i2
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2
, (1)

where
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"
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where ei
1,2

are unit vectors that de"ne the planet i local co-ordinates. Note that the bases
Mei

1
, ei

2
N and Mi, jN both rotate at the carrier speed and retain a "xed angular separation t

i
.

(u
m
t#/

i
) in equation (1) represents the phase angle of the ith planet in its tooth mesh. /

i
is

the initial phase angle of the ith planet mesh and is determined based on the planet
positioning and the number of teeth on the sun gear. In one complete revolution of a planet
gear center around the sun gear, Z

s
tooth mesh cycles are completed. In other words, when

a planet gear revolves by an angle of 2n around the sun gear, the tooth mesh advances by
a phase angle of 2nZ

s
. Accordingly, when a planet gear revolves by an angle of t

i
around

the sun gear, the phase angle by which the tooth mesh advances is

/
i
"t

i
Z

s
, (2)

where t
i
is the initial positioning angle of the ith planet.

The forces acting on the sun gear from the ith planet mesh are evaluated in the carrier
"xed Mi, jN basis as

F
i
"F

ix
i#F

iy
j, C

F
ix

F
iy
D"C

cost
i

sint
i

!sint
i

cost
i
D C

F
i1

F
i2
D . (3)

The net force acting on the sun gear through all N sun-planet meshes is then
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F l
x
and F l

y
represent the lth harmonic components of the net sun gear forces from all planets;

they are key elements in the subsequent development. The "rst term, I, of F l
x
in equation (5)

takes the form
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Similar expressions can be written for other terms of equation (5). The results obtained so
far are valid for general spur planetary gear systems with arbitrarily spaced planets.

3.1. EQUALLY SPACED PLANETS

For systems with equally spaced planets the Fourier coe$cients al
i
, bl

i
, cl

i
, d l

i
in equation

(1) are the same for each planet mesh, that is, al
i
"al with similar expressions for the bl

i
, cl

i
,

d l
i
. To justify this, the forces at one mesh (say, mesh i) must equal those at another mesh (say,

mesh j ) (with the exception of a time lag) if both the geometric con"guration and mesh
phase of all other planets with respect to planet i and j are identical. The geometric
requirement is satis"ed with the equal planet spacing

t
i
"

2n(i!1)

N
. (7)

The mesh phase di!erence between the kth and ith planets is D/
ki
"/

k
!/

i
"Z

s
(t

k
!t

i
).

The phase di!erence between planet i and all other planets relative to planet i are the same
as the mesh phase di!erences between any other planet j and the corresponding planets
relative to planet j. Thus, all planets see identical geometric con"gurations and relative
mesh phases of the surrounding planets, and the mesh forces at all meshes must be the same
(with the exception of a time lag captured by the phase di!erences). The "nite element
results re#ect this conclusion, which is based solely on symmetry arguments.
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Substitution of equation (7) into equation (6) yields
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We de"ne a new quantity k as
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where mod(a/b) means the integer remainder of the integer division of a and b. Rearranging
equation (8) with use of equation (9) gives
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The following identities hold for integer values of m:
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With these identities, all terms in equation (10) reduce to zero for kO1 and N!1 and the
"rst term of equation (5) vanishes. Similar operations reduce all other terms of F l

x
and F l

y
in

equation (5) to zero for kO1, N!1. Hence, components F l
x
and F l

y
of the net force acting

on the sun gear in the lth harmonic vanish for kO1 and N!1. For k"1 or N!1, I in
equation (10) and other terms in equation (5) do not vanish. In these cases, the lth harmonic
of the net sun force is non-zero.

The net torque acting on the sun gear through the N sun-planet meshes is
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TABLE 2

Conditions for suppression of the lth mesh frequency harmonic of the net sun force and torque
for a planetary gear system with equally spaced planets. ¹he third column indicates which
sun/ring/carrier responses occur and which mode types are excited/suppressed in the lth mesh

frequency harmonic

k"mod lth Mesh frequency harmonic of the
(lZ

s
/N) excitation on the sun/ring/carrier Comments on dynamic response

0 Fl
x
, F l

y
"0 Translational response/modes suppressed

¹ lO0 Rotational response/modes excited

1, N!1 Fl
x
, F l

y
O0 Translational response/modes excited

¹ lO0 Rotational response/modes suppressed

kO0, 1, Fl
x
, F l

y
"0 Rotational and translational

N!1 ¹ lO0 response/modes suppressed
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where ¹ l is the lth harmonic of the net sun torque. Equation (13) is valid for general
planetary gears with arbitrarily spaced planets. For equally spaced planets, substitution of
equation (7) into equation (13) gives
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Recalling that cl
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and using equation (9), equation (14) gives
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With the identities of equation (11), the net torque acting on the sun gear in the lth harmonic
vanishes for kO0. The net sun torque has a non-zero lth harmonic for k"0.

The ring and carrier forces and torques behave exactly as the sun. To see this, the absence
of any net force on the sun in the lth harmonic implies there is no sun translation and thus
no response in any translational modes at this harmonic. Because translational modes are
the only modes involving ring or carrier translation, there is no ring or carrier translation in
the lth harmonic. This implies that the lth harmonic of the net force on these components
vanishes. Similar arguments based on rotational modes hold for torques and rotational
responses. These conclusions can be obtained for the ring gear directly from a mesh force
analysis like that conducted for the sun, but a carrier analysis involves the forces at the
planet bearings.

The above "ndings, which are summarized in Table 2, lead to immediate conclusions for
the response of equally spaced planet systems. The spectral content of the sun/ring/carrier
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translation will contain only mesh frequency harmonics for which the net sun/ring/carrier
force is non-zero, that is, k"1 or N!1. Likewise, the sun/ring/carrier rotation will
contain only harmonics for which the net sun/ring/carrier torque is non-zero, that is,
k"0. These conclusions explain the presence of all harmonics in the sun rotation and the
absence of any sun translation for the example three planet system where
k"mod(27l/3)"0 for any l [10]. The planet response contains all mesh frequency
harmonics, in general, as the net force and torque on each planet in each harmonic is
non-zero (Figure 3).

Vanishing of the lth harmonic of the net forces and torques on the sun, ring, and carrier
has important implications for the excitation or suppression of resonant response. While
one would expect resonance when lu

m
"u

n
, where u

n
is a natural frequency, no resonance

will be excited by the lth harmonic if (Table 2): (1) u
n
corresponds to a translational mode

and kO1, N!1; (2) u
n
corresponds to a rotational mode and kO0; or (3) u

n
corresponds

to a translational or a rotational mode and kO0, 1, N!1.
These rules correspond to the three cases depicted in Figure 4. They are consistent with

Kahraman [4]. For the example three planet system where k"0 for any l, no resonances
are excited for the translational modes. This is evident in the planet de#ection (Figure 3)
where resonances at f

1
"780 and f

5
"2145 Hz are absent. In contrast, rotational mode

resonances are excited in all harmonics (Figure 3).

3.2. DIAMETRICALLY OPPOSED PLANETS

One can extend the prior analysis to address planetary gears with unequally spaced
planets. Again, relationships between the Fourier coe$cients for the forces acting on the sun
gear through di!erent planet meshes are essential. For instance, the four planet system in
the example has diametrically opposed planets with t
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mesh phase angles of the fourth, "rst and second planets relative to the third planet are
identical. Thus, planets 1 and 3 see the same geometric con"gurations and relative mesh
phasing of the surrounding planets. Consequently, their mesh forces must be the same
except for a time lag, and their Fourier coe$cients are identical (e.g., al

3
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1
). Similar

reasoning applies for the second and fourth planets (e.g., al
4
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2
). As with equally spaced

planet systems, the "nite element simulations con"rm these results derived from symmetry
arguments.
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Other terms of F l
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reduce in a similar way. The lth harmonic of the net sun force vanishes

for even values of lZ
s
. For odd values of lZ

s
, equation (16) and similar expressions for the

other terms of equation (5) do not reduce to zero, and a non-zero net force acts in the lth
harmonic. Reduction of the lth harmonic of the net sun torque (13) gives
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where only the "rst term is shown explicitly but the d l
i
term reduces in the same way. The lth

harmonic of the net sun torque vanishes for odd values of lZ
s
but not for even values of lZ

s
.

Because diametrically opposed planet systems also have only translational, rotational, and
planet modes [8], reasoning analogous to that for equally spaced planets shows that net
ring and carrier forces and torques have identical spectral content as the sun. The above
results are summarized in Table 3.

The foregoing development extends to general planetary gears with M"N/2 pairs of
planets on diametral axes. In this case, t

M`i
"t

i
#n for 1)i)M. For such systems, the

sun, ring, and carrier translation have response only in the mesh frequency harmonics where
lZ

s
is odd; sun, ring, and carrier rotation have response only in the mesh frequency

harmonics where lZ
s
is even. As with equally spaced planet systems, resonances in certain

modes are suppressed for some mesh frequency harmonics. The rules are (Table 3): (1)
translational mode resonances are excited in the lth harmonic if lZ

s
is odd and suppressed if

lZ
s
is even, and (2) rotational mode resonances are excited in the lth harmonic if lZ

s
is even

and suppressed if lZ
s
is odd. Considering Figure 2, the presence of odd harmonic resonances

in the translational modes f
1

and f
6

and the absence of even harmonic resonances in these
modes are examples of the "rst rule. Resonances for the rotational mode f

2
in Figure

2 demonstrate the second rule.

4. DISCUSSION AND SUMMARY

Planet phasing provides an e!ective means to reduce planetary gear vibration.
A signi"cant advantage is its cost-e!ectiveness as no additional manufacturing processes
are needed. The simple rules (Tables 2 and 3) for when a given type of mode (translational or
rotational) is excited by a particular mesh frequency harmonic are derived solely from



TABLE 3

Conditions for suppression of the lth mesh frequency harmonic of the net sun force and torque
for a planetary gear system with pairs of diametrically opposed planets. ¹he third column
indicates which sun/ring/carrier responses occur and which mode types are excited/suppressed

in the lth mesh frequency harmonic

lth Mesh frequency harmonic of the
lZ

s
excitation on the sun/ring/carrier Comments on dynamic response

Even Fl
x
, F l

y
"0 Translational response/modes suppressed

¹ lO0 Rotational response/modes excited

Odd Fl
x
, F l

y
O0 Translational response/modes excited

¹ l"0 Rotational response/modes suppressed
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system symmetries that imply distinct relationships between the forces at the sun}planet
and ring}planet meshes. No assumptions are made on the use of static transmission error to
model the dynamic excitation. Additionally, the results are independent of any analytical
model. They apply for general epicyclic spur gears. The phenomena associated with phasing
are evident in two example problems based on a dynamic "nite element/contact mechanics
simulation. A distinction of this simulation compared to prior works is that it does not
impose the phasing predictions on the response by assuming particular spectral content in
the dynamic excitations or equal forces at the multiple meshes. In this sense, the simulation
genuinely veri"es the phasing analysis without recourse to any analytical assumptions.

The ability to suppress particular resonance conditions is particularly important. The
conditions in Tables 2 and 3 to suppress translational and rotational mode resonances are
easily achieved. For example, diametrically opposed planet spacing with any number
of planets suppresses either tanslational or rotational mode resonances (but not both) in
any given mesh frequency harmonic l. For such systems with an even number of sun gear
teeth, all translational mode resonances are suppressed in all harmonics; no rotational
mode resonances are suppressed. With an odd number of sun gear teeth, translational mode
resonances are suppressed for all even mesh frequency harmonics, and rotational mode
resonances are suppressed for all odd mesh frequency harmonics. More suppression is
possible in equally spaced planet systems, where at least one of the translational or
rotational mode resonances (and both if kO0, 1, N!1) are suppressed for any given mesh
frequency harmonic l. For example, if Z

s
/N is an integer, k"0 and all translational mode

resonances are suppressed in all harmonics. For both planet spacing conditions, potential
resonances in at least half of the mesh frequency harmonics are suppressed without any attempt
to optimize the phasing.

Planet phasing can not suppress all potential resonances. It may be most e!ective for
narrow speed ranges as suppression of all resonances in a wide mesh frequency range is not
feasible. Designers may also base their phasing choices on which type of resonant response
(translational or rotational mode) is considered most damaging for noise, tooth loads,
bearing forces, etc.

The conditions in Tables 2 and 3 imply more than the suppression of resonances in
a given harmonic. They indicate when the sun, ring, and carrier translation/rotation
are absent in a given mesh frequency harmonic. For example, results in reference [10] show
the absence of even harmonics in the sun translation and the absence of odd harmonics in
the sun rotation for the diametrically opposed four planet system. The ring and carrier have
the same character.
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