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FORCED AXI-SYMMETRIC RESPONSE OF POLAR
ORTHOTROPIC LINEARLY TAPERED CIRCULAR PLATES
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(Received 9 September 1998, and in ,nal form 28 February 2000)

Forced axi-symmetric vibrations of polar orthotropic linearly tapered circular plates are
discussed on the basis of classical plate theory. Ritz method has been employed to obtain the
solutions. The de#ection function and the bending moments for forced vibrations of the
plate are presented for various values of taper parameter and rigidity ratio. A comparison of
results with those available in literature shows an excellent agreement.
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1. INTRODUCTION

Circular plates of variable thickness are widely used in various engineering structures and
machines. The study of dynamic response of these plates derived from polar orthotropic
theory is of great practical importance due to the increasing use of plates sti!ened in radial
and circumferential directions and plates fabricated out of modern composites. The
consideration of thickness variation together with orthotropy meets the desirability of light
weight along with high speci"c strength and sti!ness.

Although free vibration problem of polar orthotropic circular and annular plates of
variable thickness has been studied by a number of research workers [1}9], the authors
have not come across any paper dealing with forced vibration of polar orthotropic plates of
variable thickness. The study of dynamic response of circular plates is essential due to their
use in design of machine parts such as diaphragm of turbines, pistons of engines and
transducers.

Forced vibration analysis of isotropic, circular, rectangular, and annular plates of
uniform thickness has been presented by Reismann [10, 11], Mcleod and Bishop [12],
Donaldson [13], Laura and Duran [14] and Laura et al. [15}18] etc. Laura et al. [19]
studied the dynamic behaviour of isotropic circular plates with stepped thickness and
elastically restrained edge. Forced axisymmetric response of isotropic circular plate has also
been studied by Chandrasekharan Kanukkasseril [20], while Beaudan and Reismann [21]
analyzed forced #exural motion of isotropic uniform rectangular plates taking into account
viscous damping. Leissa [22}24] and Leissa and Chern [25] analysed forced vibration of
plates with and without damping. Some recent researches on forced vibration of isotropic
plates are presented by Weisensel and Schlack [26, 27]. Most recently, Gupta and Goel
[28, 29] have studied forced axisymmetric and asymmetric vibrations of linearly tapered
isotropic circular plates.

The present paper analyses forced axisymmetric response of polar orthotropic circular
plates of linearly varying thickness with elastically restrained edge using Ritz method. The
plate is subjected to a P (r) cosut type excitation for three types of loadings (i) when load is
distributed uniformly over the entire plate, (ii) when load is distributed uniformly on the
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Figure 1.

annular region extending from r
0

to r
1
, and (iii) when load is distributed uniformly on the

disk extending from 0 to r
1
, the total load on the plate being constant for all the cases.

Numerical results for amplitudes of displacement at the centre are obtained for all the
three types of loadings for di!erent values of taper parameter, rigidity ratio and #exibility
parameter. Results are also presented graphically for transverse de#ection, radial and
tangential bending moments for di!erent values of plate parameters. Results for radial and
tangential bending moments can be obtained for circumferentially sti!ened plates (Eh'E

r
),

but not for radially sti!ened plates (Eh(E
r
) because in this case in"nite stress is developed

at the centre ([1], p. 372). The transverse de#ection and bending moments for clamped and
simply supported isotropic plates of uniform thickness are obtained as special cases, which
on comparison with published results are found to match exactly.

2. ENERGY EXPRESSION

Consider a thin circular plate of radius a, thickness h"h(r), elastically restrained against
rotation and subjected to P(r) cosut type of excitation extending from r"r

0
to r"r

1
. Let

(r, h) be the polar co-ordinates of any point on neutral surface of the plate referred to the
centre of the plate as origin (Figure 1).

The maximum kinetic energy of the plate is given by
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where w is the transverse de#ection, o the mass density, and u the frequency in radians per
second. The maximum strain energy of the plate is given by
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where 1/k
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is the rotational #exibility of the springs and D
r
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r
h3/12(1!lhlr),

Dh(r)"Ehh3/12(1!lhlr) are the #exural rigidities of the plate.
The work done by external force P (r) acting on the plate in the direction parallel to z-axis

is given by
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3. METHOD OF SOLUTION: RITZ METHOD

Ritz method requires that the functional
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be minimized.
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where A
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and c
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(Leissa [22], p. 14), given by
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The choice of functions approximating the de#ection function in equation (5) is based upon
the static de#ection of polar orthotropic circular plates [1, p. 372], which has faster rate of
convergence [7] as compared to polynomial co-ordinate functions [15}19]. The functional
J(w) given by (4) on introduction of non-dimensional variables and using relation (5)
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becomes
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The minimization of the functional J(=) given by equation (8) requires
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The solution of the system of equations (10) gives the values of A
i
and hence the transverse

de#ection= and the radial and tangential bending moments
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are computed.

4. NUMERICAL RESULTS

Numerical results have been calculated for forced vibration of polar orthotropic plates
for various values of taper parameter a ("0;$0)3), rigidity ratio Eh/Er

("1)00, 2)00, 5)00)
and #exibility parameter K

(
("0, 10, 1020+R). The natural frequencies for free vibrations

are obtained by putting P(r)"0. In case of forced vibration the non-dimensional frequency
parameter is taken as X"gX

00
for X(X

00
and X"X

00
#g(X

01
!X

00
) for
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Figure 2. De#ection versus R. *****, a"!0)3; j j j j j, a"0)0; mmmmm, a"0)3.

X
00
(X(X

01
. The normalized de#ection and bending moments are obtained for g"0)2,

Poisson's ratio lh of the plate being "xed as 0)3.

5. DISCUSSION

In case of forced vibration problems the de#ection and bending moments are of great
interest to know from the design point of view. The results are presented graphically for
transverse de#ection and bending moments (radial as well as tangential) for various values
of plate parameters i.e., E

0
/E

r
("1)0, 5)0), a ("0;$0)3), K

(
("0)0, 10, 1020+R) and

g"0)2. The radial and tangential bending moments at the centre of the plate (R"0) are
zero for orthotropic plates, whereas they are non zero in case of isotropic plates. For other
values of radial co-ordinate R, the bending moments are found to be dependent on the
orthotropic nature of the plate, i.e., whether the plate is radially sti!ened or
circumferentially sti!ened. Numerical results for radial bending moment M

r
/q

0
a2 and

tangential bending moment Mh/q0
a2 are given for Eh'E

r
, i.e., only for circumferentially

sti!ened plates and not for radially sti!ened plates, i.e., Eh(E
r
, because in this case in"nite

stress is developed at the centre [28, p. 372]. The function assumed here to approximate
transverse de#ection is based upon the static de#ection for polar orthotropic circular plates
[28, p. 370]. The results for de#ection and bending moments are presented for orthotropy
parameter Eh/Er

("5)0), taper parameter a ("0;$0)3) and #exibility parameter K
(

("0,
10, 1020+R) for various types of loadings i.e.,

(a) when load is distributed uniformly over the entire plate, presented in Figures 2}4;
(b) when load is distributed uniformly on the annular region extending from r

0
"0)3 to

r
1
"0)7, presented in Figures 5}7;
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Figure 3. Radial bending moment versus R. -------, K
0
"0 (SS); } } }} , K

0
"10 and **, K

0
"1020 (Cl);

*****, a"!0)3; j j j j j, a"0)0; mmmmm, a"0)3.

Figure 4. Tangential bending moment versus R. *****, a"!0)3; j j j j j, a"0)0; mmmmm, a"0)3.

(c) when load is distributed uniformly on the disk extending from r
0
"0 to r

1
"0)5,

presented in Figures 8}10;

the total load on the plate being constant for all the cases.
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Figure 5. De#ection versus R. *****, a"!0)3; j j j j j, a"0)0; mmmmm, a"0)3.

Figure 6. Radial bending moment versus R. *****, a"!0)3; j j j j j, a"0)0; mmmmm, a"0)3.

Figures 2}5 present the de#ection function and bending moments (radial as well as
tangential) for simply supported edge (SS, i.e., K

(
"0), K

(
("10) and clamped edge (C1, i.e.,

K
(
"1020+R) conditions. Figure 2 presents the de#ection=/(a4q

0
/D

r0
) at various points

of the plate along radius for taper parameter a ("0;$0)3). The de#ection is maximum at
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Figure 7. Tangential bending moment versus R. *****, a"!0)3; j j j j j, a"0)0; mmmmm, a"0)3.

Figure 8. De#ection versus R. *****, a"!0)3; j j j j j, a"0)0; mmmmm, a"0)3.

the centre for all the three types of loading irrespective of plate parameters. Further, the
de#ection for a simply supported plate is found to be greater than that for a clamped edge
plate having other plate parameters "xed. The "gure also demonstrates that the de#ection
for a uniform plate is greater than a centrally thinner plate but less than that for centrally
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Figure 9. Radial bending moment versus R. *****, a"!0)3; j j j j j, a"0)0; mmmmm, a"0)3.

Figure 10. Tangential bending moment versus R. *****, a"!0)3; j j j j j, a"0)0; mmmmm, a"0)3.

thicker plate for all the edge conditions. The radial and tangential bending moments,
M

r
/q

0
a2 and Mh/q0

a2 are presented in Figures 3}4 respectively. The behaviour of tangential
bending moment is similar to that for a radial bending moment except for R'0)7 in case of
simply supported plate. Figures 5}7 represent de#ection and radial as well as tangential
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TABLE 1

¹he amplitude of dimensionless displacement =/(a4q
0
/D

r0
) at the centre as a function of rigidity ratio Eh/Er

, taper parameter a, -exibility
parameter K

(
and loadings

K
(

Rigidity ratio Eh/Er
"2)0 Rigidity ratio Eh/Er

"5)0

X(X
00

X
00

(X(X
01

X(X
00

X
00

(X(X
01

a"!0)3 a"0)3 a"!0)3 a"0)3 a"!0)3 a"0)3 a"!0)3 a"0)3

0)0 X 1)4713 0)9881 13)5565 9)4119 2)1068 1)3173 17)6390 11)7519
Disk 0)012606 0)032875 !0)004395 !0)010756 !0)005661 0)017034 !0)002533 !0)006582
Annular 0)014821 0)040901 !0)006485 !0)016054 0)006775 0)021834 !0)003911 !0)010205
Uniform 0)025723 0)070918 !0)011014 !0)027873 0)011736 0)037899 !0)006682 !0)017904

10)0 X 2)2332 1)6247 17)5278 13)1683 3)3688 2)0996 21)3514 15)6403
Disk 0)006617 0)015104 !0)003837 !0)008191 0)003752 0)009294 !0)002336 !0)005268
Annular 0)006876 0)016334 !0)005224 !0)011052 0)004085 0)010603 !0)003364 !0)007487
Uniform 0)011712 0)026827 !0)008489 !0)17600 0)006904 0)017309 !0)005489 !0)011995

1020 X 2)8525 1)7415 21)6267 14)0486 3)4948 2)1065 25)9158 16)6680
Disk 0)004758 0)013692 !0)003257 !0)007619 0)002822 0)008458 !0)002033 !0)004916
Annular 0)004405 0)014378 !0)003993 !0)010017 0)002772 0)009388 !0)002660 !0)006823
Uniform 0)007354 0)023316 !0)006098 !0)015556 0)004542 0)015080 !0)004039 !0)010623
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Figure 11. De#ection and bending moment for -----, K
(
"0 (SS); **, K

(
"1020 (Cl); j j j j j From

reference [17].

TABLE 2

Comparison of displacement=/(a4q
0
/D

r0
) for simply supported

circular plate of linearly varying thickness for lh"0)25

a Reference [17] Present

!0)5708 0)1817 0)1815
0)0 0)06568 0)0656

!0)33333 0)1143 0)1127

bending moments for the ring loading. The de#ection in this case is found to be small
at each point as compared to that of uniform loading over the entire plate. The de#ec-
tion in case of full plate loading is found to be more pronounced than that for disk or
ring type loading, which can be seen from Figures 2, 5 and 8. The behaviour of radial
and tangential bending moments for disk loading is observed to be greater than that
for a ring loading but less than that for a uniformly loaded plate (Figures 3}4, 6}7 and 9
and 10).

Table 1 depicts the transverse de#ection =/(a4q
0
/D

r0
) at the centre for di!erent

values of rigidity ratio Eh/Er
, taper parameter a, #exibility parameter K

(
and di!erent

types of loadings. The table shows that the absolute value of transverse de#ection for
taper parameter a"!0)3 is less than that for taper parameter a"0)3 for X(X

00
as well as X

00
(X(X

01
. The transverse de#ection decreases as the #exibility

parameter K
(

increases. Further it can be observed that the transverse de#ection
decreases as the rigidity ratio Eh/Er

increases, whatever be the other plate
parameters.

A comparison of results for the de#ection and bending moments for simply supported
and clamped edge conditions obtained by Laura [17] using Galerkin's method for
uniformly loaded plate of constant thickness is presented in Figure 11 for X/X

00
"0)7. The

"gure shows that the results are in excellent agreement. Tables 2 and 3 compare the results
well with those of Laura et al. [17, 19].
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TABLE 3

Comparison of amplitude of dimensionless displacement and radial bending moment at the centre as a function of g ("X(X
00

) and
("X

00
(X(X

01
) for uniform isotropic plates

X(X
00

X
00

(X(X
01

=/(a4q
0
/D

r0
) M

r
/a2q

0
=/(a4q

0
/D

r0
) M

r
/a2q

0

g Reference [19] Present Reference [19] Present Reference [19] Present Reference [19] Present

K
(
"1020:R,

X
00

" 0)2 0)01630 0)01630 0)085 0)08524 0)011 0)01181 0)084 0)08468
10)2158 0)4 0)01872 0)01872 0)099 0)09952 0)0055 0)00553 0)051 0)05121
X

01
" 0)6 0)02479 0)02479 0)135 0)13533 0)0040 0)00404 0)039 0)03840

39)771 0)8 0)04461 0)04461 0)253 0)25281 0)0044 0)00446 0)080 0)08001

K
(
"0 0)2 0)06640 0)06640 0)215 0)21554 0)0226 0)02263 0)094 0)09407

X
00

" 0)4 0)07603 0)07603 0)248 0)24874 0)0094 0)00946 0)052 0)05224
4)9351 0)6 0)10010 0)10010 0)331 0)33179 0)0062 0)006238 0)049 0)04948
X

01
" 0)8 0)17875 0)17877 0)603 0)60332 0)0063 0)006329 0)076 0)07653

29)721
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