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It is well known that the presence of cracks will a!ect the dynamic characteristics of the
vibrating plate. Such a problem is complicated because it combines the "eld of vibration
analysis and fracture mechanics. In this study, an optical system called the AF-ESPI method
with the out-of-plane displacement measurement is employed to investigate the vibration
characteristics of a free circular plate with a radial crack emanating from the edge. The
boundary conditions along the circular edge are free. As compared with the "lm recording
and optical reconstruction procedures used for holographic interferometry, the
interferometric fringes of AF-ESPI are produced instantly by a video recording system.
Based on the fact that clear fringe patterns will appear only at resonant frequencies, both
resonant frequencies and corresponding mode shapes can be obtained experimentally at the
same time by the proposed AF-ESPI method. Numerical "nite element calculations are also
performed and the results are compared with the experimental measurements. Good
agreements are obtained for both results. The vibrating mode shapes obtained in this study
can be classi"ed into two types, symmetric and antisymmetric modes with respect to the
crack line. The in#uence of crack length on resonant frequencies is also investigated in terms
of the dimensionless frequency parameter (j2) versus crack length ratio (a/D). We "nd that if
the crack face displacement is out of phase, i.e., the antisymmetric type, a large value of stress
intensity factor may be induced and the cracked circular plate will be dangerous, from the
fracture mechanics point of view. However, there are some resonant frequencies for which
the crack face displacements are completely in phase, i.e., the symmetric type, which yields
a zero stress intensity factor and the cracked plate will be safe.

( 2000 Academic Press
1. INTRODUCTION

Holographic interferometry opened new worlds of research by making possible accurate,
global measurement of small dynamic surface displacements in a two-step process for
a wide variety of objects. For this purpose, di!erent methods of holographic interferometry
have been developed for vibration analysis, which have allowed the gathering of a large
amount of practical and theoretical information. Unfortunately, the slow and cumbersome
process of "lm development limits the application of holographic vibration analysis in
industry. Electronic speckle pattern interferometry (ESPI), which was "rst proposed by
2-460X/00/390637#20 $35.00/0 ( 2000 Academic Press
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Butters and Leendertz [1] to investigate the out-of-plane vibration behavior, is a full-"eld,
non-contact, and real-time measurement technique of deformation for structures subjected
to various kinds of loadings. As compared with the traditional holographic interferometry
[2], the interferometric fringe patterns of ESPI are recorded by video camera which can
eliminate the time-consuming chemical development and speed up the process. Since the
interferometric image is recorded and updated at the video camera every 1

30
s, ESPI is faster

in operation and more insensitive to environment than holography. However, this method
cannot reach the high image quality of holographic interferometry due to the low resolution
of the video camera system. But for practical applications, these disadvantages are
outweighed by the high sampling rate of the video camera. Based on the reasons mentioned
above, ESPI has become a powerful technique for many academic researches and
engineering applications. The most widely used experimental set-up to study dynamic
responses by ESPI is the time-averaged vibration ESPI method [3]. The disadvantage of
this method is that the interferometric fringes represent the amplitude but not the phase of
the vibration. To overcome this shortcoming, the phase-modulation method, using the
reference beam modulation technique, was developed to determine the relative phase of
displacement [4, 5]. Shellabear and Tyrer [6] used ESPI to make three-dimensional
vibration measurements. Three di!erent illumination geometries were constructed, and the
orthogonal components of vibration amplitude and mode shape were determined. For the
purpose of reducing the noise coming from environment, the subtraction method was
developed [7, 8]. The subtraction method di!ers from the time-averaged method in that
the reference frame is recorded before vibration and is continuously subtracted from
the incoming frames after vibration. However, the interferometric fringe visibility of the
subtraction method is not good enough for quantitative measurement. In order to increase
the visibility of the fringe pattern and reduce the environmental noise simultaneously, an
amplitude-#uctuation ESPI (AF-ESPI) method was proposed by Wang et al. [9] for
out-of-plane vibration measurement. In the amplitude-#uctuation ESPI method, the
reference frame is recorded in a vibrating state and subtracted from the incoming frame.
Consequently, it combines the advantages of the time-averaged and subtraction methods,
i.e., good visibility and noise reduction. Ma and Huang [10, 11] used the AF-ESPI method
to investigate the three-dimensional vibrations of piezoelectric rectangular parallelepipeds
and cylinders, both the resonant frequencies and mode shapes were presented and discussed
in detail.

The problem of free vibration of a circular plate was "rst investigated by Poisson [12] in
1829 and there has been a great amount of subsequent researches and literature [13]. John
and Airey [14] proposed a general method for solving the roots of equations involving
Bessel functions. From calculating the roots, the radii of nodal circles as well as mode
shapes of vibrations were determined for "xed and free circumferential plates. Wah [15]
studied the vibration of circular plates with a large initial tension or compression of varying
magnitude for the cases of simply supported and clamped edges. According to the
Poisson}Kirchho! theory, the exact solution and numerical results were presented.
Eversman and Dodson Jr. [16] treated the problem of the transverse vibration of a centrally
clamped spinning circular disk. For di!erent inner/outer radii ratios, the numerical
calculation was carried out from zero to two nodal diameters and from zero to two nodal
circles. Itao and Crandall [17] tabulated the natural modes and natural frequencies for the
"rst 701 modes of an isotropic thin circular plate with a free edge. However, the natural
frequencies which were calculated based on the classical plate theory could not be
determined accurately for the higher modes. Taking account of both rotatory inertia and
shear deformation of the plates, Irie et al. [18] employed the Mindlin plate theory to obtain
more accurate results. Stavsky and Loewy [19] considered the axisymmetric vibration of
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isotropic composite circular plates with clamped edges. Combining the transcendental
frequency equation with the characteristics cubic equation, the frequency variation versus
layer thickness could be obtained and examples of steel}aluminum composite plates were
presented. Marchand et al. [20] used free vibration of plates to determine the material
constants for a circular ceramic plate on the basis of the Mindlin plate theory. There are
approximately 200 technical publications accumulated in the literature [21}23] for the free
vibration characteristics of complete circular and annular plate with various support
conditions along the circumferential boundaries. Leissa et al. [24] studied the vibration
behavior for completely free circular plates with V-notches. Due to the bending moment
singularities, the theoretical analysis included two sets of admissible functions,
algebraic-trigonometric polynomials and corner functions, to enhance the convergence and
represent the corner singularity. The non-dimensional frequency parameters of plates for
various notch angles and depths were investigated by means of numerical calculations and
some mode shapes were also presented. Besides, the problem of plates with radial cracks
was included when the notch angles approach zero. McGee et al. [25] employed a similar
method, as mentioned above, to investigate the free vibration for thin circular plates with
clamped V-notches. Ramesh et al. [26] considered the vibration of an annular plate with
periodic radial cracks and investigated the in#uences of the number and length of cracks on
natural frequencies. Both the rap and shaker table tests were performed and the modes were
classi"ed according to the number of nodal diameters and nodal circles. However, there are
very few experimental results, especially for the full-"eld measurement of mode shapes,
available in the literature.

The study of the vibration behavior of a plate with cracks is a problem of great practical
interest. It is known that the presence of cracks will a!ect the dynamic characteristics of the
plates for both resonant frequencies and mode shapes. Such a problem is complicated
because it combines the "eld of vibration analysis and fracture mechanics. Only a few
papers have been published on the vibration analysis of "nite cracked plate. In this paper,
the optical method based on the amplitude-#uctuation ESPI (AF-ESPI) is employed to
study experimentally the resonant characteristics of free vibration circular plates with radial
cracks. The boundary conditions along the circular edge are free. The advantage of using
AF-ESPI method is that both resonant frequencies and the corresponding mode shapes can
be obtained simultaneously from the experimental investigation. This is a great aid to our
study of the in#uence of the crack length on the vibration behavior. In addition to the
AF-ESPI experimental technique, numerical computations based on a "nite element
package are also presented and good agreements of resonant frequencies and mode shapes
are found for both results. Furthermore, crack face opening displacements are calculated to
study the fracture problem induced by the resonant vibration. It is interesting to "nd that at
some resonant frequencies the crack face displacements are symmetric modes, which causes
a zero stress intensity factor, and the cracked plate will be safe from the fracture mechanics
point of view.

2. OPTICAL AF-ESPI METHOD FOR VIBRATION MEASUREMENT

The optical arrangement of ESPI method for out-of-plane vibrating measurement is
shown schematically in Figure 1. If the image of the specimen is taken at the stress-free state,
the light intensity detected by a CCD camera can be expressed by the time-averaged
method as
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Figure 1. Schematic diagram of the ESPI set-up for out-of-plane displacement measurement.
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where I
A

is the object light intensity, I
B

the reference light intensity, q the CCD refreshing
time, and / the phase di!erence between object and reference light.

Assuming that the specimen vibrates at a resonant frequency, then the light intensity
taken by the CCD camera can be represented as
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where j is the wavelength of laser, h the angle between object light and observation
direction, A the vibration amplitude, and u the angular frequency.

Let C"(2n/j) (1#cos h) and assume that q"2mn/u, where m is an integer; then
equation (2) can be expressed as
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where J
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is a zero-order Bessel function of the "rst kind. When these two images (I
0
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1
)

are subtracted and recti"ed by the image processing system, i.e., subtracting equation (1)
from equation (3), the resulting image intensity can be expressed as
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The expression of light intensity of the image shown in equation (4) is called the subtraction
method, and the reference image is recorded before loading is applied.

Instead of using the subtraction method, the AF-ESPI method is employed in this study
by taking two images after the specimen vibrates and assuming that the vibration amplitude
of the second image has changed from A to A#DA. The light intensity of the second image
will be
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Expanding equation (5) by using Taylor series and neglecting higher order terms, we have
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When these two images (I
1

and I
2
) are subtracted and recti"ed by the image processing

system, i.e., subtracting equation (3) from equation (6), the resulting image intensity can be
expressed as
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Compared with the subtraction method, the reference image is recorded and subtracted
at the vibrating state by the AF-ESPI method. As indicated in equations (4) and (7), the
dominant function of the AF-ESPI method is DJ

0
(CA)D and that of the subtraction method is

DJ
0
(CA)!1D. Owing to the discrepancy between the dominant functions, the nodal lines of

vibrating interferometric patterns obtained by the AF-ESPI method are the brightness lines
and those by the subtraction method are the darkness lines. These characteristics of the
AF-ESPI method can be used as a qualitative observation or quantitative analysis for the
fringe patterns. Furthermore, the sensitivity and fringe visibility of the AF-ESPI method are
better than these of the subtraction method. It can be veri"ed that the number of fringes
presented by the AF-ESPI method is about twice that by the subtraction method under the
assumption of same vibration amplitude. In addition to the theory of out-of-plane
measurement mentioned above, the in-plane vibration measurement by the AF-ESPI
method can also be derived in a similar way [11].

3. EXPERIMENTAL RESULTS AND NUMERICAL ANALYSIS FOR
CRACKED CIRCULAR PLATES

An aluminum circular plate (6061T6) with a radial crack emanating from the edge is used
in this study for experimental investigations and numerical calculations, the material
properties of the cracked plate are mass density o"2700 kg/m3, Young's modulus
E"70 Gpa and the Poisson ratio l"0)33. The geometric dimensions of the cracked
circular plate are shown in Figure 2 where the crack length a is taken to be 10, 20, 30, 40 and
50 mm in the analysis. The boundary conditions along the circular edge are free.
A self-arranged AF-ESPI optical system as shown in Figure 1 is employed to perform the
out-of-plane vibration measurement for the resonant frequency and the corresponding
mode shape. As shown in Figure 1, a 30 mW He}Ne laser with wavelength j"632)8 nm is
used as the coherent light source. The laser beams is divided into two parts, the reference
and object beams, by a beamsplitter. The object beam travels to the specimen and then
re#ects to the CCD camera (Pulnix company). The reference beam is directed to the CCD
camera via a mirror and the reference plate. It is important to note that the optical path and
the light intensity of these two beams should maintain identically in the experimental set-up.
In order to increase the intensity of light re#ection of specimens and the contrast of fringe
patterns, the surfaces of plates are coated with white paint which is mixed with "ne seaweed
powder. The cracked circular plate is excited by a piezostack actuator (PI company) which
is attached behind the specimen, and the specimen is placed on a sponge to simulate the
traction-free boundary condition. To achieve the sinusoidal output, a function generator
HP33120A (Hewlett Packard) connected to a power ampli"er (NF corporation) is used.
Numerical results of resonant frequencies and mode shapes are calculated by ABAQUS



Figure 2. Geometric dimension and con"guration of the cracked circular plate.
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"nite element package [27] in which eight-node two-dimensional shell elements (S8R5) are
selected to analyze the problem. By placing the "rst node near the crack tip away from the
regular position at one quarter of the distance to the second point, named &&quarter-point''
method, the square root singularity will be manipulated near the crack tip.

Table 1 shows the experimental and numerical results of resonant frequencies of the "rst
10 modes for cracked circular plates with di!erent crack lengths. We can see that these two
results are quite consistent. For convenience, we note that C10 represents the circular plate
with crack length 10 mm and C0 is the circular plate without crack. The theoretical results
of the resonant frequencies are available for the C0 plate and are included in Table 1 to
validate the FEM results. The analytical results of the "rst six resonant frequencies obtained
by Leissa et al. [24, Table 4] for C10, C20 and C40 plates are also represented in Table 1.
The di!erence between the results obtained by Leissa et al. [24] and the FEM is about 1 per
cent. Since the weight of the specimen increases slightly by the attached actuator, the
resonant frequencies obtained from experimental measurement turn out to be lower than
the numerical results. For conciseness, only experimental results of mode shapes for circular
plate without crack, with short crack (crack length 20 mm) and long crack (crack length
50 mm) are presented. Figures 3}5 are the "rst 10 mode shapes for both experimental
measurements and numerical simulations. For the "nite element calculations, the contours
of constant displacement for resonant mode shapes are plotted in order to compare with the
experimental observation. In Figures 3}5, we indicate the phase of displacement in "nite
element results as &&#'' or &&!'' sign, the regions of the same sign represent the motion in
phase and nodal lines are located between &&#'' and &&!'' signs. The brightest fringes on
experimental results represent the nodal lines of the vibrating cracked plate at resonant
frequencies. The rest of the fringes for AF-ESPI are contours of constant amplitudes of
displacement. A good agreement is found between the experimental and numerical results
for both the resonant frequencies and the mode shapes.

In order to discuss the in#uence of the crack length on the resonant frequency, the
resonant frequency f is expressed in terms of a non-dimensional frequency parameter
j2 given by
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TABLE 1

First 10 resonant frequencies obtained from AF-ESPI and FEM for cracked circular plates

Mode C0 C10 C20 C30 C40 C50

AF-ESPI FEM Theory AF-ESPI FEM AF-ESPI FEM AF-ESPI FEM AF-ESPI FEM AF-ESPI FEM
(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

1 792 814 815 784*
802*

716*
734*

563* 576* 407*
417*

297* 306*(811*) (743*) (423*)

2 1374 1400 1405 788
803

748
768

703 714 627
646

553 569(811) (777) (656)

3 1805 1893 1896 1361
1397

1348
1361

1206 1243 1130
1158

1095 1121(1375) (1343) (1170)

4 3110 3171 3177 1785*
1838*

1490*
1522*

1241* 1279* 1162*
1187*

1102* 1124*(1855*) (1543*) (1183*)

5 3240 3327 3334 1818
1848

1723
1766

1692 1728 1665
1725

1678 1718(1865) (1783) (1732)

6 4965 5112 5121 3054*
3119*

2467*
2540*

2295* 2352* 2187*
2251*

1812* 1868*(3105*) (2564*) (2272*)
7 5326 5436 5458 3092 3149 2906 2975 2765 2843 2619* 2697* 2331* 2403*
8 5780 5922 5965 3150* 3208* 3085* 3172* 3021* 3104* 2738 2802 2733 2799
9 7035 7250 7156 3200 3240 3148 3219 3142 3213 3105 3203 3108 3201

10 7910 8154 8195 4632* 4725* 3937* 3982* 3752* 3824* 3562* 3677* 3551* 3657*

*represents the antisymmetric types, and ( ) represents the data taken from Leissa et al. [24].
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where D is the diameter and h is the thickness of the cracked circular plate. Figure 6 shows
the dependence of resonant frequency (j2) on non-dimensional crack length (a/D) for
cracked circular plates. As expected from the fact that the sti!ness of the cracked plate
decreases as the crack length increases, all the resonant frequencies decrease with increasing
Figure 3. Mode shapes of the circular plate without crack obtained by AF-ESPI and FEM.



Figure 3. Continued.
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crack length. We can "nd in Figure 6 that the frequencies decrease drastically for modes 1, 4,
6 and 10 which correspond to the pure antisymmetric type of mode shape as indicated in
Table 1. An anti-symmetric mode means that the displacements are out of phase for two
regions divided by the central line along the crack. For pure symmetric types, such as modes
2, 3, 5 and 9, the resonant frequencies show only a slight dependence on the crack length. It
is worth noting that symmetric types almost maintain similar mode shapes for di!erent
crack lengths as shown in Figures 4 and 5. However, it is interesting to indicate that modes



Figure 3. Continued.
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7 and 8 change the characteristics of mode shapes from symmetric (antisymmetric) type to
antisymmetric (symmetric) type as the crack length increases, and we call it the mixed type.
The variation of resonant frequencies for mixed type will lie between the pure antisymmetric
and symmetric cases as mentioned above.

Finally, the crack face displacement and the crack opening displacement (COD) for
di!erent resonant frequencies and crack lengths of the cracked circular plates are
investigated and the results are shown in Figures 7 and 8. In these "gures, the out-of-plane
displacement w and COD along the crack face are normalized with w

max
which is the

maximum displacement in the whole plate, the distance from the crack face to the crack tip
is denoted as x and is normalized with the crack length a. From a fracture mechanics point
of view, the out-of-plane displacement will induce a mode III (antiplane mode) type of
fracture problem. A large value of COD will induce a large stress intensity factor which will
initiate crack propagation and the cracked plate will be dangerous. Figures 7(a) and 7(b)
show the crack face displacement of the C20 plate for 10 modes; there are "ve modes (modes
2, 3, 5, 7 and 9) that the two crack faces are completely in phase, and "ve modes (modes 1, 4,
6, 8 and 10) are out of phase. Figure 7(c) shows the result of the crack opening displacement
(i.e., the di!erence of the displacement between upper and lower crack faces) for the C20
plate. We can see that if the crack face displacements are in phase then the COD will be zero
and the COD varies almost linearly along the crack face for the case of out of phase. For
long crack, i.e., C50 plate, the results are shown in Figures 8(a)}8(c). There are also "ve
modes (modes 2, 3, 5, 8 and 9) in phase and "ve modes (modes 1, 4, 6, 7 and 10) out of phase,
and the COD is zero for the case of in phase. It is also indicated that if the displacement is
zero at some points in the crack face, then the nodal line will intersect with that point. This
phenomenon can be illustrated by experimental results in Figures 4 and 5. It is worth noting
that if the displacement of crack faces is out of phase, then the crack tip is always located at
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the nodal line. Note that for the C50 plate the crack faces cross each other for modes 6,
7 and 10 at about x/a"0)9, 0)6 and 0)16 respectively. From fracture mechanics point of
view, the dangerous cases are modes 1, 4, and 6 since they have large values of COD. It is
concluded that the COD is zero when the displacement of crack faces is in phase (i.e., modes
2, 3, 5, 7 and 9 for the C20 plate and modes 2, 3, 5, 8 and 9 for the C50 plate) and the stress
intensity factor will be zero, which implies that the crack will not propagate in these
resonant frequencies for the cracked circular plate.
Figure 4. Mode shapes of the C20 plate obtained by AF-ESPI and FEM.



Figure 4. Continued.
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Because the existence of a crack will destroy the axisymmetric characteristics and
introduce a new free boundary of the circular plate, the nodal lines of the cracked circular
plate are no longer simply composed of diameters and circles as in the case of a circular
plate without crack. It is interesting to note that resonant mode shapes of the symmetric
types for the cracked circular plate are safe from the fracture mechanics point of view due to
the zero COD value. Consequently, the cracked plate will be dangerous for those resonant
frequencies in which the crack face displacement is out of phase, i.e., the mode shape is of the
antisymmetric type.
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4. CONCLUSIONS

It has been shown that the optical ESPI method has the advantages of non-contact and
full-"eld measurement, submicron sensitivity, validity of both static deformation and dynamic
vibration, and direct digital image output. A self-arranged amplitude-#uctuation ESPI optical
set-up with good visibility and noise reduction has been established in this study to obtain the
resonant frequencies and the corresponding mode shapes of free vibrating cracked circular
plate at the same time. Compared with the spectrum analysis or modal analysis method,
AF-ESPI is more convenient in experimental operation. Numerical calculations of resonant
frequencies and mode shapes based on a "nite element package are also performed and
good agreements are obtained when compared with experimental measurements. The
in#uence of the crack length on the vibration behavior of the cracked circular plate is
discussed in detail. The resonant frequencies for antisymmetric types decrease more
violently than that for symmetric types as the crack length increases. However, the
symmetric types almost maintain similar mode shapes and have small variation of resonant
frequencies for di!erent crack lengths. Finally, the displacement and COD along the crack
face are also investigated. It is interesting to "nd that the displacements at some modes are
completely in phase which makes zero COD (i.e., modes 2, 3, 5, 7 and 9 for the C20 plate;
modes 2, 3, 5, 8 and 9 for the C50 plate), and the stress intensity factor will be zero which
implies that we have no fracture problem at these resonant frequencies.
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Figure 5. Mode shapes of the C50 plate obtained by AF-ESPI and FEM.
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Figure 5. Continued.
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Figure 5. Continued.

Figure 6. The resonant frequencies obtained from AF-ESPI and FEM for cracked circular plates with di!erent
crack lengths. m, experiment; n FEM.
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Figure 7. (a), (b) The normalized displacement (w/w
max

) and (c) COD/w
max

values of the crack faces for the C20
plate:*#*Mode 1;*e*Mode 2;*h*Mode 3;*d*Mode 4;*n*Mode 5;*w*Mode 6;*m*Mode 7;
*** Mode 8; *r* Mode 9; *m* Mode 10.
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Figure 7. Continued.

Figure 8. (a), (b) The normalized displacement (w/w
max

) and (c) COD/w
max

values of the crack faces for the C50
plate:*#*Mode 1;*e*Mode 2;*h*Mode 3;*d*Mode 4;*n*Mode 5;*w*Mode 6;*m*Mode 7;
*** Mode 8; *r* Mode 9; *m* Mode 10.
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Figure 8. Continued.
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