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The whole and the part are general attributes of nature. By means of an overlapping
decomposition}aggregationmethod, this paper proposed a way and procedure to show how
a system is decomposed and then aggregated into a new expanded system. In this expanded
system, the original one is viewed and treated as two levels: the whole system and its
subsystems. We hence "nd a methodology that can provide us with the information about
a system and its speci"ed subsystems, and the relationship between the whole and the parts.
This paper shows an application of the standpoint and the method to stability problems of
a complicated rotor-bearing system. A numerical example is also given to show the
uniqueness and superiority of the methodology. It is believed that the proposed method
provides us with a powerful and #exible tool to analyze the dynamic behavior for the
complicated rotor-bearing system. It can also be used in other similar compound dynamic
systems.

( 2000 Academic Press
1. INTRODUCTION

The complicated rotor-bearing system here denotes a rotor dynamic system with at least
three features: (1) it is supported by hydrodynamic lubricated bearings, (2) the dimension of
the system can be very large, and (3) it runs above at least its "rst critical speed. The role of
the hydrodynamic lubricated bearing is emphasized because it is not only the source of
damping for the system but also the cause of instability and its dynamic behavior is in
essence non-linear. Therefore, the contradiction between the stability and instability
emerges from time to time. To some extent, the stability of this kind of system should "rst be
emphasized and solved.

However, in Rotodynamics the role of the hydrodynamic lubricated bearing is often
simpli"ed as a non-linear spring and damping element, while in Tribology, the bearing and
a simpli"ed rotor are thought to constitute a complete dynamic system. Since the problems
to be solved for this kind of system are traditionally focused on searching the behavior of
the overall system, the analysis methods aiming at the entire system such as the mode
superposition method or the eigenvalue analysis method are widely used. The amount of
literature on this topic is abundant. However, along with the progress in the understanding
of the dynamic characteristics of hydrodynamic lubricated bearings and the requirement for
gaining an insight into the stability of the system, the following questions are posed:

(1) How does the dynamic behavior of the bearing subsystem a!ect that of the whole
system?
0022-460X/00/400741#19 $35.00/0 ( 2000 Academic Press
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(2) What are the interconnections between the system and its bearing subsystems, and
which one most in#uences the behavior of the entire system?

Obviously, according to the problems to be solved, the focus of the studies should be
placed not only on the whole system but also its subsystems. However, these tasks are
di$cult to tackle by the traditional analysis methods mentioned before. In the search for
a proper analysis method, the stability theory of large-scale dynamic systems provides us
with an alternative way to tackle the problems. By adopting the classical decomposition}
aggregation method, Zhang and Zhu [1, 2] decomposed the rotor-bearing system into
bearing and rotor subsystems and studied its stability and dynamic performances. However,
the analysis results often tend to be conservative. Therefore, in the application of the
method onto the rotor-bearing system in which the rotor and the bearings are in fact
strongly coupled to each other, there exists the di$culty to handle the interconnection
between the decomposed subsystems. The superiority of the method does not fully show up.

On the other hand, the gist of the classical decomposition}aggregation method is that the
information on the system is obtained by means of its subsystems. However, in many
practical engineering problems like the rotor-bearing system, the relationship of the system
with its subsystems is to be investigated. For instance, we want to know the relationship
between the dynamic behavior of the whole rotor-bearing system and that of some bearing
subsystems. Therefore, a decomposing}aggregation of new signi"cance is needed which is
able to retain the advantages of the classical method and overcome its drawbacks when
applied to the rotor-bearing system.

By adopting the idea of an overlapping decomposition}aggregation approach suggested
by Ikeda and Siljak [3}5], the author developed the method and analyzed with it the
dynamic relationship between the system and its subsystems. According to the problems to
be investigated, the author views the rotor-bearing system as comprising two levels, namely,
the whole system and the subsystems, no matter what kind of couplings the system has
between its interconnected subsystems. The relationship of dynamic behavior between the
system and its decomposed subsystems is stressed and studied, and the dynamic status of
the system and its decomposed subsystems can be obtained simultaneously in this new
method. The paper presents in detail how the author's standpoint and goal can be realized.
The study shows that the proposed methodology successfully achieves the required goals
and results. The approach overcomes the shortcomings of the classical decomposition}
aggregation method in the study of the stability of a rotor-bearing system. It is believed that
the methodology is also adapted to similar dynamic issues from similar compound dynamic
systems.

2. STABILITY OF ROTOR-BEARING SYSTEM

In Tribology the simplest mechanical model of a hydrodynamic lubricated bearing can be
depicted by a rigid rotor acting on a hydrodynamic force generated within the lubricating
oil, as illustrated in Figure 1. In general, the dynamic force generated from the
hydrodynamic oil "lm of bearing is in essence non-linear. The stability analysis for this kind
of system is therefore of theoretical and practical signi"cance. On the other hand, the
dynamic behavior of the rotor-bearing system strongly depends on the revolution speed of
the rotor. For some range of the rotor speeds, Zhang [6, 7] proposed a mathematical model
for this kind of #uid dynamic force:
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b
#r (X

b
), (1)



Figure 1. Con"guration of hydrodynamic lubricated bearing system.
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where X
b
"(x y xR yR )T. A

b
3R4]4 is a constant matrix, and r(X

b
) is non-linear function of

X
b
with orders equal to or higher than 2.

Therefore, the stability of the above rotor-bearing dynamic system in the vicinity of its
equilibrium X

b
"0 can be evaluated by its linearized system according to Liapunov's "rst

approximation theorem [8]
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b
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b
x5 #(S

b
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)x"0, (2)

where x"(x y)T, S
b
"ST

b
, F

b
"!FT

b
and M

b
'0.

As we know, because of the existence of the constant matrix F
b
, the famous KTC criterion

of the stability theory fails to evaluate its stability. Alternatively, the Liapunov second
method will be used here to study the stability described by equation (2). And
understandably, for some special cases when the non-linear part of equation (1) can be
accessed explicitly and the Liapunov function can be constructed, the stability problems of
some non-linear systems can also be tackled by the method [9]. But, the construction of the
general Liapunov-type function for a general non-linear dynamic system is not usually an
easy task.

On the other hand, when a rotor-bearing system operates above its "rst critical speed, the
rotor cannot be treated as a rigid one. By means of the "nite element method or the transfer
matrix method, etc., modern Rotordynamics can set-up n-dimensional equations of motion
for a rotor system with even complicated con"gurations. The "rst approximation of the
system can have the form

MxK#Cx5 #Kx"P (t), M, C, K3Rn]n, x3Rn]J
`

, (3)

where K"S#F denotes the sti!ness matrix of the system, P(t) the external force vector
and x(t) the displacement vector of the system with J

`
3[0,#R).

As a Liapunov function for a linearized dynamic system is easily constructed, the
n-dimensional linearized rotor-bearing system with s!1 (s'2) hydrodynamic lubricated
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bearings is accordingly taken as an example here to explain the methodology. Obviously,
the stability of the system described by equations (3) can be determined by the stability of its
equilibrium x,0, i.e.,

MxK#Cx5 #Kx"0, (4)

and equation (4) can be transformed and expressed in state space as

X0 "AX, (5)

where

X"G
x5
xH, X3RN]J

`
. (6)

N"2n and the system matrix A is only related to M, C, K of the original system and can be
expressed in state space as

A"C
!M~1C

I

!M~1K

O D , A3RN]N, (7)

where I denotes the unit matrix, and M'0.
According to the Liapunov stability theory [8], the stability of motion for the linear

system of equation (5) can be evaluated by the Liapunov second method. This is, if there
exists a symmetric and positive matrix H satisfying

ATH#HA"!I (8)

the system is exponentially stable.
For the stable system, the degree of its stability status can be estimated by the stability

degree de"ned by

a)minC!
<Q (X, t)

<(X, t)D , (9)

where < (X, t) denotes the Liapunov function. For the linearized system, the Liapunov
function can be chosen as

<(X, t)"XTHX, (10)

and in this case, the stability degree of the system is

a"
1

j
M

(H)
, (11)

where j
M

(H) is the maximum eigenvalue of the symmetric and positive Liapunov
matrix H.



Figure 2. Con"guration of complicated rotor-bearing systems with lumped-mass model.
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Stability degree is also a measure of the speed of a stable system approaching its
equilibrium. It plays a similar role to the damping ratio or decay rate in vibration
theory. Therefore, this characteristic index expresses a dynamic performance of the system
as well.

3. ROTOR-BEARING SYSTEM AND ITS BEARING SUBSYSTEMS

In order to investigate the relationship between a system and its subsystems,
the subsystems to be studied should "rst be speci"ed and abstracted from this system.
The author think there exists at least one rule to decompose a subsystem from the
system. That is, a subsystem abstracted from a system must constitute a complete dynamic
entity.

Figure 2 illustrates intuitively the concept of the whole system and its subsystems. The
simple lumped-mass model of the rotor-bearing system is used here, in which the parts of
the system included in a dashed-line frame demonstrate the bearing subsystems. The
methodology will be systematically explained in several procedures of the following
sections.

3.1. SUBSYSTEMS BY OVERLAPPING DECOMPOSITION

The subsystems denoted here have a general meaning. They denote not only the
subsystems with practical entities from the realistic system, but also those of only
mathematical signi"cance corresponding to an expanded system by an overlapping-
decomposition procedure.
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3.1.1. Procedure 1. Identi,cation of bearing subsystems

At "rst, the identi"cation of the bearing subsystems from an original rotor-bearing
system should be made. Due to the structure of the rotor-bearing system, as illustrated in
Figure 2, the system matrix A of equation (5) can be rearranged as

A"

A
1

0 2 0 A
1s

0 A
2

2 F F

F F } 2 2

0 2 2 A
s~1

A
s~1s

A
s1

2 2 A
ss~1

A
s

, (12)

where A
i
, i"1, 2,2, s!1 represent the ith bearing subsystem and

A
i
"C

!M~1
i

C
i

I
i

!M~1
i

K
i

0 D , i"1, 2,2, s!1. (13)

It can be seen that subsystem matrices A
i
satisfy the rule described before. Therefore, the

isolated bearing subsystem can be expressed by

x5
i
"A

i
x
i
, i"1, 2,2, s!1. (14)

The system matrix A can then be expressed as

A"C
A

11
A

21

A
12

A
22
D , (15)

where

A
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}
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, A
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"[A
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], (17)

A
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"A

s
. (18)
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Therefore, the equation of motion of equation (5) can be expressed in state space as

C
X0

1
X0

2
D"C

A
11

A
21

A
12

A
22
D C

X
1

X
2
D . (19)

The identi"cation of the bearing subsystems obviously depends on the researcher's
experience although the purely mathematical decomposition is theoretically available. The
author suggests a principle for the identi"cation or decomposition of a bearing subsystem
from the rotor-bearing system: the bearing subsystem should be identi"ed by its loading
distribution.

3.1.2. Procedure 2. Overlapping decomposition

According to the methodology of overlapping decomposition}aggregation [3], the
original system should be expanded into a new system in line with the subsystems to be
studied. As we treat the entire system as one of two levels, the original rotor-bearing system
is required to be included in the expanded system. To this end, suppose the new state
variable Z:

Z"

X
1

X
1

X
2

, (20)

such that

Z"TX, (21)

X"C
X

1
X

2
D , (22)

where

T"

I
1

0

I
1

0

0 I
2

. (23)

Here, I
1

and I
2

denote the unit matrix with the dimension corresponding to the related
subspaces respectively.

Thus, the new system is expanded from the original system as

Z0 "A1 Z A1 3RN]N, Z3RNM ]J̀ , (24)

where NM "2n
1
#n

2
, n

1
and n

2
denote the dimensions of the subspace X

1
and X

2
,

respectively, and the new system matrix A1 :

A1 "TAT~1#B, (25)

where T~1 denotes the generalized inverse matrix of T and matrix B is the complemented
matrix related with system matrix A1 .
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If we take the generalized inverse matrix T~1 in equation (25) as the pseudo-matrix, i.e.,

T~1"TI"(TTT)~1TT,

"

1

2
I
1

1

2
I
2

0

0 0 I
2

, (26)

we have

TAT1"

1

2
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11

1

2
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11
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2
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11

1

2
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11
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12
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2
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21
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2
A

21
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. (27)

3.1.3 Procedure 3. Selection of complementary matrix

According to the requirements, the complementary matrix B is chosen so that the
subsystems and original overall system in the expanded space can best approach its entity,
and the new expansion system is made the most &&simpli"ed''. We select:

B"

1

2
A

11
!

1

2
A

11
0

!

1

2
A

11

1

2
A

11
0

!

1

2
A

21

1

2
A

21
0

. (28)

It can be easily proved that such a selected complementary matrix B satis"es the selection
criterion of the overlapping decomposition}aggregation method [3, 4], i.e.,

TIBkT"0, k"1, 2,2, N1 . (29)

Obviously, the selection of this complementary matrix also depends on the researcher's
experience. However, the advantage of this method is as follows. Substituting equations (27)
and (28) into equation (25), the system matrix A1 of the expansion system becomes

A1 "

A
11

0 A
12

0 A
11

A
12

0 A
21

A
22

. (30)

Referring equations (16) and (17), if we denote

A1
i
"A

i
,

A1
s
"A,

A1
is
"[0, A

is
],

i"1, 2,2, s!1,
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the expanded system matrix A1 can be rewritten as

A"

A1
1

0 2 0 A1
1s

0 } F F

F } F F

0 2 2 A1
s~1

A1
s~1s

0 2 2 0 A1
s

. (31)

It can be recognized now that the original rotor-bearing system A has been expanded
into system A1 . The submatrix A1

s
of the expanded system is in fact the original overall

system.
It should have been recognized that the structure of the expanded system matrix

A1 depends on the selections of the complementary matrix B and generalized inverse
matrix T~1.

3.1.4. Procedure 4. Isolated subsystems

Following the classical decomposition procedure, the expanded dynamic system of
equation (24) can be decomposed into

Z0
i
"A1

i
Z

i
#

s
+
j/1iOj

A1
ij
Z

j
, i"1, 2,2, s. (32)

The isolated subsystems of the expansion system can be obtained [10]:

Z0
i
"A1

i
Z

i
, i"1, 2,2, s, (33)

and the stability of these isolated subsystems can be evaluated by the criterion and
procedure described in section 2 of this paper.

The following explains the meaning of the above procedures.
When Ikeda and Siljak developed the overlapping decomposition to study their own

problems, their methodology adopted is the same as that of the classical
decomposition}aggregation method, that is, the information of the whole system is
obtained by obtaining that of its subsystems. The point of consideration is still placed on the
overlapped subsystems.

This study adopts the method of Ikeda and Siljak's overlapping decomposition,
but the gist is de"nitely di!erent. Here, the system is viewed as comprising two levels:
the highest level is the original entire system itself and the second level is its
subsystems. That is, in line with the problem to be solved, the system is considered to
comprise two levels at the same time. But, the result illustrated in equation (30) for the
rotor-bearing system by overlapping decomposition}aggregation appears a little
unexpected in that it provides us with additional information: not only the information of
the di!erent levels of this dynamic system, but also the information of interconnection
between them. The detailed study of this interconnection can be referred to in other studies
of the author [6].
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3.2. AGGREGATION OF THE SYSTEM

3.2.1. Procedure 5. Stability of isolated subsystems

Due to the requirement in engineering applications, it is required that each isolated
subsystem presented by equation (33) satis"es the stability requirement (otherwise, re-adjust
the subsystem to achieve the required stability). Then, according to the Liapunov stability
theory, there exists the Liapunov function for each of these subsystems. Particularly, for the
linearized system of our example, we can choose the Liapunov functions for each subsystem
of equation (33) as

V
i
(Z

i
, t)"(ZT

i
H

i
Z

i
)1@2, i"1, 2,2, s, (34)

where H
i
is the Liapunov matrix.

And it can also be proved that the following inequalities exist [8]:
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E[gradV
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(H
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j
E)j1@2

M
(AT

ij
A

ij
) ) EZ

j
E,

i"1, 2,2, s, (35)

where j
m
, j

M
denote the minimum and maximum eigenvalues of the matrix.

Now, it can be recognized that the Liapunov direct method itself is in nature an
aggregation process as the stability of each subsystem can be represented by a single
Liapunov function. Furthermore, the aggregated system can also be evaluated by the
Liapunov function. In this study, the vector Liapunov function will be used, and then, based
on the comparison principle, the stability of the expanded system can be estimated.

3.2.2. Procedure 6. Aggregation

To conduct the aggregation of the system, assume that the test function for the
aggregation system is

<(Z, t)"
s
+
i/1

d
i
<
i
(Z

i
, t), d

i
'0. (36)

Taking the time derivative of < (Z, t) along the solutions of interconnected subsystems
equation (32) and substituting equations (34) and (35) into the correspondent variables of
<Q (Z, t), we have
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1
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The aggregation matrix W1 for the expanded rotor-bearing system is then obtained:

W1 "(-
ij
)s]s

"

!0)5j~1
M

(H
1
) 0 2 j1@2

M
(H

1
)j1@2

M
(AT
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A
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(H)

0 } F F
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A
s~1s
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0 2 2 !0)5j~1
M

(H)

.

(38)

Comparing equation (38) with equation (31), it can be recognized that the structure of the
aggregated matrix W1 is closely related to that of the expanded system matrix A1 .

Take vector Liapunov function as

V(Z, t)"[<
1
(Z

1
, t)<

2
(Z

2
, t)2<

s
(Z

s
, t)]T. (39)

According to the stability theory and the comparison principle [10, 11], there exists

V0 (Z, t))W1 V(Z, t), (40)

which guarantees the Liapunov stability of equation (24) if the aggregation matrix
W1 satis"es

-
ij
(0 i"j, j"1, 2,2, s. (41)

and

(!1)k K
-

11
2 -

1k
2 2 2

-
k1

2 -
kk
K'0 ∀k"1, 2,2, s. (42)

We have mentioned in the Introduction that the classical decomposition} aggregation
method is not so successfully applied to rotor-bearing systems because of the strong



Figure 3. Multi-degree-of-freedom rotor-bearing system.
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interconnection between subsystems. However, the aggregation matrix of equation (38)
from the overlapping decomposition}aggregation procedure suggests that the
interconnection between subsystems in expansion space has no e!ect on their aggregation
process. The method then overcomes the di$culty of the classical method in its application
to rotor-bearing system. Moreover, the aggregation matrix W1 provides us with not only the
information of every bearing system and the entire system, but also the relationship between
them.

3.2.3. Procedure 7. Stability degree

To evaluate the degree of stability for each of the isolated subsystems in the expanded
space, which include the original rotor-bearing system, the stability degree is used

a
i
"

1

j
M
(H

i
)
, i"1, 2,2, s, (43)

where Liapunov matrix H
i
satis"es

A1 T
i
H

i
#H

i
A1

i
"!I

i
. (44)

It is noted that the largest dimension of matrix A1
i
in equation (44) is merely that of the

original rotor-bearing system.

4. NUMERICAL EXAMPLES

The single-span rotor-bearing con"guration is taken as our numerical example, which is
shown in Figure 3. The rotor is assumed to be elastic. The con"guration of the
hydrodynamic bearings are taken as: the diameter of the bearing d"0)2 m, the
width/length ratio of the bearing l/d"0)5, and the clearance/radius ratio of the bearing
t
min

"C
min

/r"0)004. The lamina #ow of the lubrication oil in the bearing is assumed and
its viscosity g is taken as 0)0042 Pa s. The hydrodynamic lubricated bearing is assumed as
the isothermal.

The governing equation of motion for this rotor-bearing system in state space takes the
form

X0 "AX,
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where the system matrix A denotes
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0 0 0 0

0 0
k
3

m
2

0

0 0 0
k
3

m
2

0 0 0 0

0 0 0 0

,

where c
xx

, c
xy

, c
yx

, c
yy

denote the linearized bearing damping coe$cients, k
xx

, k
xy

, k
yx

,
k
yy

the sti!ness, and c the damping acting on the rotor, k
1
, k

2
, k

3
the sti!ness coe$cients of

the di!erent rotor segments, and m
1
, m

2
, m

3
, m

4
the lumped masses of the rotor.

The expanded rotor-bearing system by overlapping decomposition}aggregation is

Z0 "A1 Z,

where the expanded system matrix A1 has the form

A1 "

A
i

0 A1
1s

0 A
2

A1
2s

0 0 A

, A1
1s
"[0 F A

13
]4]16 , A1

2s
"[0 F A

23
]4]16

and A
1
, A

2
denote the two bearing subsystems and A denotes the original system.

Table 1 shows the analytical results of the system stability. The two cylindrical bearings
are assumed to bear di!erent loading distribution, which is often the case of the multi-span
rotor-bearing system. Evidently, by the proposed method, not only the stability state of the
whole system can be obtained, but also the stability status of the speci"ed subsystems. That
is, the information on the two levels of the system can be obtained simultaneously.
Moreover, the selection and decomposition of a subsystem depends only on the choice of
the researcher in the example. This feature is of great signi"cance.

Table 2 presents the results of the stability analyses when the two bearing subsystems are
of di!erent types, but bear on the same load. As we can see, when one of the cylindrical
bearing subsystems is replaced by either the three-lobe bearing or the elliptical bearing
subsystems, the stability of the system is improved. That is, both the stability threshold
speed and the degree of stability of the system are increased. Since the stability performance
of these bearing subsystems is, as we know, better than the cylindrical one, these results are
expected. The methodology developed here provides a way of knowing the changes of the
system and its subsystems at the same time. It is de"nitely of both theoretical and practical
signi"cance.

Table 3 provides the analytical results when the two bearing subsystems bear
on di!erent loads while the loading of the cylindrical bearing subsystem is unchanged. This
example also suggests the case of multi-bearing-rotor systems. The data show that the
stability of the cylindrical bearing subsystem has no changes, but along with the change of



TABLE 1

Stability of the rotor-cylindrical bearing system

Speed of rotor Stability degree Stability degree Stability degree Eccentric ratio Eccentric ratio
(r.p.m.) of bearing of bearing of the system of bearing 1 of bearing 2

subsystem 1 subsystem 2 (]10~2)

1000 0)358 0)410 0)426 0)300 0)400
2000 0)247 0)310 0)751 0)172 0)250
3000 0)169 0)226 1)048 0)119 0)178
3500 0)140 0)190 0)566 0)103 0)156
3625 0)133 0)181 0)134 0)099 0)151
3658 0)131 0)179 0)017 0)098 0)150
3660 0)131 0)179 0)002 0)098 0)149

'3660 Unstable
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TABLE 2

Stability of the rotor system with di+erent bearing types*

System Stability degree of Stability degree of Stability degree of Stability threshold
bearing subsystem bearing subsystem system (r.p.m)
1 (eccentric ratio) 2 (eccentric ratio) (]10~2)

Cylindrical bearing 0)577 0)577 0)190 3389
&cylindrical bearing (0)647) (0)647)

Cylindrical bearing 0)577 1)291 0)238 9037
&three lube bearing (0)647) (0)4331)

Cylindrical bearing
&elliptical bearing 0)577 1)143 0)232 6152

(m"0)5) (0)647) (0)434)

Cylindrical bearing
&elliptical bearing

(m"3/4) 0)577 1)206 0)238 15668
(0)647) (0)1889)

*The data of degree of stability are obtained at 2000 r.p.m.
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TABLE 3

Stability of the rotor system with di+erent loading and bearing types*

System Stability degree of Stability degree of Stability degree of Stability threshold
bearing subsystem bearing subsystem system (r.p.m)
1 (eccentric ratio) 2 (eccentric ratio) (]10~2)

Cylindric 0)969 1)662 0)435 8242
&three lobe (0)429) (0)280)

Cylindric 0)969 1)246 0)386 5869
&elliptical (0)429) (0)244)
(m"0)5)

Cylindric 0)969 1)222 0)418 8740
&elliptical (0)429) (0)107)
(m"2/3)

Cylindric
&elliptical 0)969 1)264 0)419 14121
(m"3/4) (0)429) (0)057)

*The data of degree of stability are obtained at 5500 r.p.m.
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the other bearing, both the stability of the whole system and that of the replaced bearing
subsystem are obviously improved. From the data, we can also distinguish the stability
performance of di!erent bearing types and know the changes and improvements of system
performance by knowing the changes of the subsystems. Again, with the help of the
methodology, we can analyze the stability of the entire system and subsystems, and we can
also know the changes of the stability of the entire system along with the changes of its
subsystems and their interconnections. The proposed method provides us with the most
#exible way to investigate what we want to know. It is believed that this superiority is
hardly accessible by other traditional methods.

5. CONCLUSIONS

The whole and the part are general attributes of nature. A rotor-bearing compound
system that is overlappingly decomposed into di!erent levels is a concrete re#ection of this
thought. The methodology developed in this study provides us with a powerful analysis tool
to study some aspects of the performance of dynamic system. The following conclusions can
be drawn:

(1) The dynamic system can be viewed as comprising two levels*the whole system and
its subsystems*simultaneously by using the method proposed here if it is required in
a study;

(2) With the method, the stability of the system and its speci"ed subsystems can be
studied at the same time. Information on the interconnection between the system and
its subsystems can also be obtained.

(3) Theoretically, the subsystem could be decomposed from a purely mathematical point
of view. In practice, the physical entity ought to be considered in the decomposition of
subsystems from a system.

The overlapping decomposition}aggregation method itself is based on the general
comparison principle of di!erential equation theory and Liapunov stability theory.
Therefore, the methodology presented in this paper is adapted to non-linear problems. But,
the construction of Liapunov-type functions for a general non-linear system is di$cult.
However, it is hopefully possible that we may "nd the Liapunov function for some special
non-linear problems [9]. Further studies on this aspect are worthwhile.
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