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This paper presents numerical study about the influence of the shear flexibility, due to
either bending and warping, on the out-of-plane free vibration of continuous horizontally
curved thin-walled beams with both open and closed sections. This study was made by
means of a recently developed finite element formulation for shear deformable curved
thin-walled beams. The model is briefly reviewed and is used to obtain natural frequencies of
continuous I-beams and box beams. A parametric study was performed in order to elucidate
the influence of shear deformability, on the dynamic behavior of continuous thin-walled
curved beams, for different slenderness ratios, cross-sectional characteristics and boundary
conditions.
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1. INTRODUCTION

Many designers of engineering structures such as piping systems, highway bridges and
machine elements take advantage of the high strength-to-weight ratio of thin-walled beams.
Hence, extensive research on the dynamic behavior of these members has been made.
Chidamparam and Leissa [1] classified most of the recent available papers concerning the
dynamics of curved beams, some of them dealing with thin-walled beams. In the 1960s
Vlasov [2] presented a dynamic theory of curved thin-walled beams, which was used
successfully in several applications. Snyder and Wilson [3] used Vlasov’s theory to study
the dynamics of continuous curved thin-walled beams. They solved the equations by means
of a closed-form solution, in order to provide numerical information for these structural
members, which may be considered as a first approach in the design of highway, rail, rapid
transit and guideway structures. Other researchers employed Vlasov’s theory and used
numerical approaches (like differential quadrature method) to find natural frequencies of
thin-walled curved beams with open sections [4].

However, Vlasov’s theory does not consider shear deformability which should have
remarkable importance when vibrations associated with higher modes have to be
determined. A few papers deal with vibrations of shear deformable curved thin-walled
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beams. Kawakami et al. [5] studied the in-plane and out-of-plane vibrations of curved
thin-walled considering shear effects associated to the lateral motion although neglecting
the warping shear deformability. On the other hand, Fu and Hsu [6] analyzed statics of
thin-walled beams taking into account warping shear effect, but not the bending shear
flexibility. According to the author’s knowledge there are only a few studies dealing with
vibrations of curved thin-walled beams that consider the shear effect in a full form [7-9].
On the other hand, Piovan et al. [10] developed a theory which includes shear effects for the
case of bisymmetrical H-sectional shape subjected to initial stresses. While the out-of-plane
vibration analysis of curved thin-walled beams over multiple supports have been performed
by many authors [3, 1-13], analysis including shear flexibility is, according to the authors’
knowledge, non-existent.

The main objective of this paper is to elucidate the role of the shear flexibility, due to both
bending and warping, on the out-of-plane free vibration behavior of continuous
horizontally curved thin-walled beams with several end supports.

To accomplish this purpose a finite element formulation, recently developed by the
authors [8, 10], for the dynamic analysis of shear flexible thin-walled curved beams is
employed.

The present finite element solution is applied to uniform thin-walled curved beams with
three spans of equal lengths. H-cross-sectional shape and rectangular closed sections are
considered. The first six free-vibration frequencies and the corresponding mode shapes are
calculated over a range of geometrical parameters such as horizontal radius of curvature
and angular openings. A convergence study is also performed on the finite element
employed in order to enhance its quality.

From the numerical study, conclusions are obtained with respect to the influence of the
shear deformability for different slenderness ratios and cross-sectional characteristics.

2. MATHEMATICAL MODEL

The out-of-plane vibration for horizontally curved beams shown in Figure 1 is
considered. As it may be seen, R denotes the radius of curvature at the centroid, L is the
length of the beam between outer supports, e, is the thickness of the walls, b and h are the
width and height of the section, and « is the angle between outer supports. Also, it may be
seen in Figure 1 that a right-hand co-ordinate system is used. Axes y and z are principal
centroidal axes of the beam cross-section and x is tangent to the curved axis of this member.
The assumptions of the model follow concepts of Cortinez et al. [8] and Cortinez and Rossi

(2) ®

Figure 1. Analyzed beams: (a) H cross-section, (b) closed cross-section.
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[14] and they are as follows. The original cross-section of the beam is preserved; the stress
tensor is considered as a composition of a Saint Venant pure torsion state and a membranal
state. The variation of curvature through the thickness is neglected for shear deformations.
Then the displacement field can be written in the form [§]

u, =—y0,(x,t) + w(0(x, t) + 0.(x, t)/R),

u, = Uc(x> t) - Zd)(xa t)z U, = y(l’)(X, t)5 (1)

where v, is the vertical displacement of the centroid, ¢ is the torsional rotation, 0, is the
flexural rotation around the centroidal axis z, 0 is a measure of the warping along the beam,
o is the warping function given by expressions (2) and (3) for the H-cross-section and
rectangular closed section respectively [2, 15]:

w=D—ers witthlJ dsjrds, w=§(r—1//)ds, 2, 3)
0 m Jo 0
where r is the distance from the shear center to the tangent at a point in the middle line of
the wall, m is the length of the cross-sectional thin wall and y is the shear strain due to Saint
Venant torsion normalized with respect to d¢p/dx according to Krenk and Gunneskov [15].
It has to be noted that expressions (1) reduce to Vlasov’s displacement field used by Yang
and Kuo [16] if the internal restraints 6, = dv./0x and 0 = 0¢/0x are predetermined.
Therefore, the present model contains Vlasov’s theory as a special case. When the restraints
mentioned above are not imposed the shearing strain components are not zero in the
middle line of the walls, as indicated by Cortinez and Rossi [8]. Thus the model allows shear
deformability. The derivation of present model may be followed in a detailed form in
references [8, 10].

The differential equations, which govern the out-of plane free vibration of the curved
beam are [8]

00, %0,

=By o 4
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L vl 5
u QyRa+R+p[zaz+Rat] , 5
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where Q,, M., B, T, and T,, denote shear force, bending moment, bimoment,
flexural-torsional moment and Saint Venant torsion moment respectively. These
generalized stresses are expressed in terms of the generalized displacement (1) as
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where A is the cross-sectional area, I, and I, are moments of inertia with respect to axes
x and y, respectively, C,, is the warping constant, J is the torsion constant, I, is the polar
moment of inertia and K, and K,, are shear rigidity factors deduced by Cortinez and Rossi
[14, 17].

The boundary conditions at a simple support are zero vertical deflection (v, = 0),
zero torsional rotation (¢ =0), zero flexural moment (M, =0) and zero bimoment
(B = 0), although taking into account equations (8b,c) they can be expressed in condensed
form in equation (9). For a clamped support the boundary conditions are shown in
expression (10):

00 00
A 0
ox  0x ’

ve=¢ = ve=¢=0,=0=0. 9, 10)

A finite element based on the present model was developed in references [8, 10]. This
element may be considered a generalization for curved beams of an earlier finite developed
for straight beams by Cortinez and Rossi [14]. The vector that contains the nodal
unknowns is denoted by ¢ and it is

q= {Ucla les ¢1: 919 Ueas sz, (f)z, 02}T~ (11)

For the out-of-plane vibration displacement field may be interpolated as indicated by
equations (12a-d), where coefficients b; and d; are indeterminate functions depending on
time:

b
Ve="bo + b % + by%% + b3 %2, az:b1+ﬁ123+2b2>z+3b3>z2, (12a, b)

d
d=dy+d % +dr 2 +dy%, 0=d, + Pads | 2d,% + 3d;%%, (12¢, d)
with
- X 12EI, 12ECy,
_X - ik 13
X lea ﬁl GKylga ﬁ3 Glega ( )

where [, is the element length. The element interpolated with the displacement field (12a-d)
is shear locking free and it could be reduced, as a limiting case, to a Vlasov element [8, 10].
This is possible when a large shear rigidity (say K,,, K, — 10?°) is imposed in the stiffness
matrix, and on the other hand, when flexure and warping rotary inertias are neglected (say
Cy = I, = 0) in the mass matrix. Also, this curved element reduces to the straight beam
finite element of Cortinez and Rossi [14] when R — co.

Carrying out the conventional steps of the finite element method for free-vibration
problems, one arrives at the expression

[K — Q*M]Q* =0, (14)
where K is the global matrix, M is the global mass matrix, Q* is the displacement vector

independent of time, Q = 2xf'is the circular frequency of vibration and f'is the frequency
(measured in Hz).
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BCG,

Figure 2. Diagram of the continuous beam studied, with the boundary conditions (BC;) considered [, Iy, I, %,
o, 0 are lengths and subtended angles of each span. « is the subtended angle between outer supports.

TaBLE 1

Properties of the sections used in the numerical studies

Property Open H-section Closed-section
Cross-sectional area: A (m?) 2-40E — 02 2-40E — 02
Inertia moment: I, (m*) 7-47E — 04 5-33E —04
Polar moment: I, (m*) 9-61E — 04 7-20E — 04
Warping constant: C,, (m°) 8:55E — 06 3-53E — 07
Torsion constant: J (m*) 3-20E — 06 4-26E — 04
Flexural shear rigidity factor: K, (m?) 7-03E — 03 1-46E — 02
Torsion shear rigidity factor: K,, (m*) 5-54E — 04 5-33E—-05
Longitudinal modulus of elasticity: E (N/m?) 2-10E + 11 2-10E + 11
Transversal modulus of elasticity: G (N/m?) 8-07E + 10 8-:07E + 10
Mass density: p (kg/m?) 7830 7830

3. GEOMETRICAL MODELS

A general diagram of the continuous beam studied here is shown in Figure 2. It consists of
three circular spans of length [,, I, I. (thus, L = [, + [, + L), with four supports, where the
inner ones are simply supported and the outer ones may be simply supported or clamped.
For this general outline, two particular cases of outer boundary conditions were selected:
simply supported at both ends (SS-SS) and clamped at both ends (C-C). The spans have
equal length (I, = I, = I.). The dimensions for the open section H were b = h = 0-40 m,
whereas for the boxed rectangular section b = h/2 = 0-20 m. For both sections the same
wall thickness e, = 0-02 m were employed. The material properties for both sections as well
as sectional features are listed in Table 1.

4. NUMERICAL RESULTS

4.1. CONVERGENCE CHECK

In order to check the element performance, a set of comparative tests was performed with
analytical results, as well as convergence studies. In Table 2, a convergence check of the first
six frequencies (measured in Hz) is given for the outer boundary conditions SS-SS with



TABLE 2

Convergence checks of the first six frequencies (Hz). Results with shear flexibility are depicted in column (a). Results without shear flexibility in

column (b)
Column a «=45 R=2m Column b «=45 R=2m
Elements . Elements .
Analytical Analytical
f 21 45 81 [9] f 21 45 81 [9]
1 1567-79 1559-17 1557-53 1557-17 1 2391-58 2391-60 2390-79 2395-49
2 157627 156834 1566-65 — 2 3058-87 305884 3057-80 —
3 1585-68 1577-13 1575-50 — 3 363947 363947 3639-57 363301
4 1768-83 1761-14 176001 1759-21 4 4396-88 4396-57 4395-12 —
5 1846-58 1838-54 1837-02 — 5 453927 4539-17 4539-31 —
6 2041-15 203072 202873 — 6 6309-17 6308-54 6308-68 —
«=90° R=4m «=90° R=4m
f 21 45 81 [9] f 21 45 81 [9]
1 13861 137-57 137:31 13724 1 14507 14508 14503 14506
2 192-31 191-32 191-12 — 2 219-01 219-02 21893 —
3 28757 28624 28609 — 3 337:31 33729 337-15 —
4 309-81 30891 308-69 308-58 4 378-54 378:56 378:53 378-45
5 327-85 32680 32654 — 5 44543 445-45 44543 —
6 36724 36576 365-47 — 6 605-57 605-56 605-56 —
a=120° R=8m a«=120° R=8m
f 21 45 81 [9] f 21 45 81 [9]
1 1299 12:38 1225 1218 1 12-26 12-26 12-26 12-26
2 29-55 29-13 29-04 — 2 30-36 30-35 30-35 —
3 53-32 52-81 5270 — 3 55-58 55-56 55-56 —
4 87-35 85-81 8547 85-31 4 88-14 88-06 88-06 88-06
5 101-68 101-29 101-20 — 5 105-14 105-14 105-15 —
6 105-83 104-47 104-18 — 6 110-53 110-43 110-42 —

901
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Figure 3. Modes of the analytical results taken from reference [97: (a) third frequency of a single-span beam,
(b) sixth frequency of a single span beam.

TABLE 3

Comparisons with non-dimensional frequencies: 1, reference [3]; 11, present model

o(deg) Parameters Model Py D D3 D Ds Do
45 C =005 1 0975 1-265 1-861 3987 4548 5584
¢ =0-005 11 0976 1265 1-862 3988 4548 5584

D =0001  |pim — Pig)/Piqy (%)  0-10 0-00 0-05 0-03 0-00 0-00
c=2 1 0992 1-275 1-866 3-993 4:552 5587
¢ =0-005 11 0992 1-275 1-866 3-993 4:552 5587

D = 0-01 |Piary — Piwl/Piry (Y0) 000 0-00 0-00 0-00 0-00 0-00
90 C =005 1 0-844 1-166 1798 3-901 4477 5529
¢ =0005 11 0-845 1-167 1-798 3-903 4479 5531

D =0001 |pyu — Piwl/Piy (Vo) 011 0-09 0-00 0-05 0-04 0-03
C=2 1 0967 1-254 1-850 3968 4530 5-567
¢ =0-005 II 0967 1-254 1-850 3968 4530  5-568

D =001 |Piary — Pil/Piry (Y0) 000 0-00 0-00 0-00 0-00 0-02
180 C =005 1 0-523 0-899 1-568 3377 4030 5157
¢ =0-005 11 0-523 0-899 1:569 3-381 4034 5160

D =0001  |pjwy — Pial/Piay (%)  0-00 0-00 0-06 0-12 0-10 0-06
=2 1 0-866 11171 1-785 3-866 4438 5486
¢ =0-005 11 0-866 11171 1-785 3-866 4438 5486

several values of angular spacing . Comparisons were carried out with analytical results
obtained with the methodology used in reference [9] (for a single span curved H-beam with
the same outer angular spacing o). The Column ‘a’ shows results allowing shear flexibility
whereas Column ‘b’ shows results without shear flexibility, but allowing rotary inertia. As it
may be appreciated, convergence is good enough even with 21 element, i.e., seven elements
over each span. In Table 2 the frequencies, which were compared with the analytical method
[97, have the sinusoidal modes shown in Figures 3(a) and 3(b) respectively. These two modes
are referred to the vertical displacement v, and they correspond, respectively, to the third

and sixth modes of the single span curved H-beam studied in reference [9].

4.2. COMPARISON WITH VLASOV MODELS

In Table 3 comparisons with the non-dimensional frequencies (actually p; =

Q. /(pAl})/(n*EL,)) of reference [3] are presented. Results are given for outer angular
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spacing (o) of 45,90 and 180° (i.e., 15, 30 and 60° on each span) and with the outer boundary
conditions SS-SS. It is important to point out that the mathematical model studied in
reference [ 3] is the classical Vlasov model for curved beams, i.e., a model that does not allow
rotary inertia and shear flexibility, moreover these equation were solved with a closed-form
solution.

For each angular spacing, two different sets of the dimensionless parameter {C, &, D}
(which are defined in reference [3]) were selected. Then C = GJ/(EI,) is the ratio between
the torsional and flexural rigidities, £ =r,/R is the ratio between the polar radius of
gyration and the horizontal radius of curvature and finally D = EC,,/(EI.R?) is a parameter
related to warping and flexible rigidities.

In order to reproduce frequencies as accurately as possible a large number of elements
was adopted for each calculation. Therefore, models with 81 elements without shear
flexibility were prepared for this task. Then in Table 3, it is possible to see an excellent
matching in all the cases performed, and the maximum error is 0-12%.

4.3. OPEN H-CROSS SECTION

In Tables 4 and 5 the frequencies for the case of an open H-cross-section are presented.
For these tables, the frequencies were obtained with models of 81 elements of equal length.
In these tables results calculated with the shear flexible model and the Vlasov model are
shown. Table 4 depicts the first frequencies (Hz) for values of o = 90 and 120°, with outer
boundary conditions SS-SS, whereas Table 5 shows the frequencies for the aforementioned
angles but with outer supports C-C.

With the purpose to evaluate the influence of the shear effect on the free vibrational
behavior of the structural members studied, the following quantity & (%) = | fyiaso0 —
Jshearl/fsnear 18 defined as a measure of the difference between the model accounting for shear

TABLE 4

Frequencies (Hz) for beams with an H cross-section and SS-SS outer boundary conditions: 1,
allowance for shear flexibility, rotary and warping inertia, 11, Viasov model

o (deg) h/R Case fi S S fa fs Js
90 0-200 | 519-21 603-73 73877 76779 797-64 903-04
11 645-42 877-16 1309-61 1389-33 1729-87 2477-68
0-100 1 137-31 191-06 28601 308-69 326-54 36541
11 147-66 222:58 342-34 388-43 459-35 629-81
0-050 1 29-83 5321 88-83 119-67 126-29 14221
11 30-39 5674 94-82 12815 13971 170:62
0-025 | 595 13-62 24-79 40-14 49-86 5093
11 596 13-92 25-51 40-85 51-39 51-85
120 0-200 | 282:38 366-02 511-04 565-16 587-06 648-81
11 327-19 48762 75091 853-07 1021-21 1415-31
0-100 1 64-26 109-26 179:67 234-68 244-86 26804
11 67-11 124-00 20543 270-53 299-45 375-48
0-050 1 12-25 29-04 5270 8547 101-20 104-18
11 12-31 3049 55-85 88:92 105-36 111-35
0-025 | 2:36 675 12-88 19-57 2727 3599

II 2:36 6-84 13-09 1972 2794 37-02
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TABLE 5

Frequencies (Hz) for beams with an H cross-section and C-C outer boundary conditions: 1,
allowance for shear flexibility, rotary and warping inertia, 11, Viasov model

o (deg) h/R Case S S S Ja Js Js
90 0-200 1 603-73 73877 797-64 799-96 903-04 990-23
11 877-15 1309-61 1593-28 1729-87 2477-68 2989-80
0-100 1 191-06 28601 32654 338-48 365-41 38873
11 222-58 342-34 41740 459-35 629-81 753-42
0-050 1 5321 88-83 111-07 12629 14221 15221
11 5674 94-82 11872 13971 170-62 196-68
0-025 1 13-62 24-79 3375 49-86 52:12 5533
11 1392 25-51 3514 51-39 53-37 57-54
120 0-200 | 366-02 511-04 57574 587-06 648-81 704:21
11 48762 75091 918-30 1021-21 1415-31 1696-38
0-100 1 109-26 179-67 221-16 224-86 26804 28274
11 124-00 205-43 256:15 299-45 375-48 437-59
0-050 1 29:04 5270 70-70 103-57 104-18 110-65
11 3049 5585 76-31 109-25 111-35 120-28
0-025 | 675 12-88 19-54 27-27 35-99 42-44
11 6-84 13-09 20-19 27-94 37-02 43-92
200 — 240
)
160 180
. 120 .
% %0 q 120 /
O I 1 1 0 1 1
25 75 125 175 25 75 125 175
h/R WR
120 © 150 @
100 | 120
sor 9 |
2 oe0f — %
| e 60 -
a0 | 1 30
] M’———r—""‘f—‘—‘ | |
O25 75 125 175 025 75 125 175
h/R h/IR

Figure 4. Curves of error versus relation h/R for the cases of Tables 4 and 5: (a) Case 90° of Table 4, (b) Case 90°
of Table 5, (c) Case 120° of Table 4, (d) Case 120° of Table 5; ¢%: percent difference; h/R: height-radius ratio.
(- ®—, First frequency; — M-, second frequency; — A -, third frequency; —[1-, fourth frequency; - < -, fifth
frequency; - O -, sixth frequency.)

flexibility and the Vlasov’s model. The curves of ¢ versus //R for each frequency number of
Table 4 and 5 are presented in Figure 4. As it could be clearly seen in Figure 4, for a given
H-cross-section, the differences between frequencies calculated by Vlasov’s model and the
model including shear flexibility rise uniformly with the ratio h/R. These curves show how
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significant is the shear effect on the dynamics of thin-walled open beams. For example, the
first frequency of a deep beam, corresponding to /R = 0-200 and o = 90° with clamped
ends, has a difference of ¢ = 45% (Figure 4(b)), but the sixth frequency of the same case has
a difference of ¢ = 202%. However, in the case of slender beams, say i/R = 0-025 and lower,
these differences are small (less than 3%) for all the frequencies considered.

4.4. CLOSED CROSS-SECTION

In Tables 6 and 7 the frequencies for the case of closed-rectangular cross-section are
presented. These tables exhibit the same pattern as the previous ones, except for the box
section described in Table 1. Thus, Table 6 shows the frequencies (Hz) for the values of o of
90 and 180°, with SS-SS outer boundary conditions, whereas Table 7 shows the frequencies
for the angles mentioned above but with C-C outer supports.

In Figure 5, it is possible to see curves of ¢ versus h/R for the six frequencies of Table 6 and
7. Differences between Vlasov and present models are noticeable. For example, the third
frequency in Figure 6(a) has ¢ = 34% at h/R = 0-100, but the sixth frequency in Figure 5(b)
has ¢ = 99% at h/R = 0-200. However, observing Figure 5 and comparing it with Figure 4,
one may see a very different influence of the shear effect on the dynamics of curved beams
with rectangular closed sections. Some frequencies have a uniform increase of ¢ with h/R
and some other have different behavior. In fact, for a given frequency number, ¢ may
increase with h/R in the whole range, like for example f1, f> and f5 in Figure 5(c), however for
other frequencies ¢ could decrease after certain values of i/R, like f3 in Figure 5(b) or f,, fs
and f, in Figures 5(c) and 5(d). The explanation of this behavior is related to the qualitative
and quantitative variation, with h/R, of the mode characteristics for a given frequency
number. A coupled flexural-torsional mode of the frequency could change to a dominant
torsional mode (where, for a closed section the warping is negligible) depending on the

TABLE 6

Frequencies (Hz) for beams with closed cross-section and SS—SS outer boundary conditions: 1,
allowance for shear flexibility, rotary and warping inertia, 11, Viasov model

o (deg) h/R Case fi S S fa fs Js
90 0-200 | 733-84 811-89 976-16 1236-26 1242-53 1255-64
11 922:78 1114-88 1279-17 1387-89 1540-18 2080-14
0-100 1 22976 279-52 37417 617-05 619-16 623-44
11 25309 331-75 488-50 627-65 63556 657-12
0-050 1 62-34 79-95 114-87 242-36 267-35 308-35
11 64-10 8422 125-61 270-05 307-87 309-24
0-025 | 1595 20-83 3075 6575 74-37 89-97
11 16:07 21-12 31-50 6778 77-53 95-49
180 0-200 | 189-33 248-38 35514 682-41 684-19 688-04
11 202:75 28721 44704 71690 72501 746-58
0-100 1 5113 70-91 108-24 229-83 25637 302-00
11 5216 74-18 11718 253-09 292:42 347-44
0-050 1 13-07 18-46 28-90 62-35 71-33 87-30
11 13-13 18-68 29-53 64-09 74-17 92-37
0-025 | 3-28 4-66 7-36 1595 1841 22-82

II 329 4-68 7-40 16:07 18:59 2316
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TABLE 7

Frequencies (Hz) for beams with closed cross-section and C-C outer boundary conditions: 1,
allowance for shear flexibility, rotary and warping inertia, 11, Viasov model

o (deg) h/R Case S S S Ja Js Js
90 0-200 1 811-89 976:16 1067-47 1242-53 1255-64 1262-95
1I 1113-85 1277-49 1325-59 1540-18 2080-14 249871
0-100 1 279-52 374-17 42521 619-16 623-44 62563
11 33175 488-50 576-98 63556 657-12 687-22
0-050 1 79-95 114-87 13624 267-35 309-01 31041
1I 84-22 125-61 153-32 307-87 310-86 31534
0-025 1 20-83 3075 3723 74-37 89-97 99-36
1I 21-12 31-50 38-47 77-53 95-49 106-89
180 0-200 I 248-38 35514 412:82 684-19 688-04 690-78
1I 28721 447-04 54501 72443 745-98 773:03
0-100 1 70-91 108-24 131-24 25637 302-00 326-86
1I 74-18 117-18 146-16 292:42 348-32 35253
0-050 1 18-46 28-90 3576 71-33 87-30 96-95
11 18-68 29-53 36:86 74-17 92-37 103-98
0-025 I 4-66 7-36 9-16 18-41 22-82 25-59
11 4-68 7-40 923 18-59 23-16 2607

100
80
60

n
. 40
b 20

&%

B2 i e
= ]

R 25 50 75 100 125 150 175 200
iR

WP 1 0 i ! I I 1
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
hiR HR

Figure 5. Curves of error versus relation h/R for the cases of Tables 6 and 7: (a) Case 90° of Table 6, (b) Case 90°
of Table 7, (c) Case 180° of Table 6, (d) Case 180° of Table 7; ¢%: percent difference; h/R: height-radius ratio.
(- ®—, First frequency; - M-, second frequency; — A -, third frequency; —[1-, fourth frequency; - < -, fifth
frequency; - O -, sixth frequency.)

values of h/R for a particular frequency number and geometrical features. Actually, in
Figures 5(c) and (5d) it is possible to appreciate a very different behavior beyond
h/R = 0-100 in frequencies f,, fs and fs;. These frequencies have basically a coupled
flexural-torsional motion, but for h/R = 0200, the motion changes to a predominant
torsional mode.
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Figure 6. Mode shapes of the first frequency (f;) for the beam with closed section, o = 90° and SS-SS outer
boundary conditions A: measure of motion characteristics; v.: vertical displacement, ¢: torsion angle.

Unlike what occurs in the thin-walled open sections, thin-walled closed sections do not
manifest a quite considerable difference between Vlasov and present models, when the
motion is predominantly torsional. In order to explain the behavior of ¢ in Figures
5(a)-5(d), the non-dimensional parameter A = |h/2 ¢ ,ax/Vemax| 1S defined as a measure of the
motion characteristics for a given frequency. That is, values of A quite greater than one
reveal dominant torsional modes, values of A closer to zero correspond to dominant
flexural modes, values of A belonging to the interval (0-1, 1-0) may be accepted as coupled
flexural-torsional modes.

Figures 6-11 depict a sequence of mode shapes at some frequencies showing the
aforementioned qualitative and quantitative variation. Thus, Figures 6-8 show the mode
shapes of variables v, ¢ and the corresponding parameter A for frequencies f;, f, and f3,
respectively, calculated with both models, the case of o = 90° with SS-SS outer boundary
conditions, for /R = 0-05 and 0-20. Then in Figures 6-38, it is possible to appreciate that, for



CURVED THIN-WALLED BEAMS

113

h/R Variable Present model Vlasov model
{f=811-89} {f=1114-88}
0-15E 003
01F | 002
005 F \ 0-01F /
V. 0 0
-0-05 -0-01p /
-0-1F -0-02 \
020 —015 _. N4 Ll ] . —003¢ N ) L L
20 40 60 80 20 40 60 80
{f=811-89} {f=1114-88}
03 E 03 F
02E 02
é 01 ;/ 0-1F
0 0
-0-1F —-0-1F \
—02p -02F \
03¢ 1 1 1 -03E 1 I 1 1
20 40 60 80 20 40 60 80
A A=0-353 A=1-650
{f=79-9508} ) {f=84-227}
075k 075 F
0SE 05
025 025E
\A 0 OF
-025F -0-25 \
—0-5E —05E
0.05 _0.75 -. L P IR Y PRI B AN AT _0.75 E \ 1 1 1 1
20 40 60 80 20 40 60 80
{f=79-9508} {f=284227}
04 L 04F
02f \ 02f
P 0 0
02 F -02 F \
-04 F /I . . -0-4 -
20 40 60 80 20 40 60 80
4 A=0-100 A=0-100

Figure 7. Mode shapes of the second frequency ( f3) for the beam with closed section, o = 90° and SS-SS outer
boundary conditions 4: measure of motion characteristics; v.: vertical displacement, ¢: torsion angle.

a given frequency and a value of h/R, the mode shape of each variable is not different, and it
is the same for both models. Just for instance, the mode shape of v, in the present model is
the same at /R = 0-05 and 0-20, it occurs also in the Vlasov model. However, quantitative
differences appear in the Vlasov model for f5 (Figure 8). This mode is flexural-torsional at
h/R = 005 (i.e., A = 0-320) and it changes to a torsional-dominant mode at h/R = 0-20 (i.e.,
A = 5-250). With little differences, the same response could be observe in Figure 5(b), i.e., for
the same angular opening but with C-C outer boundary conditions.

Figures 9-11 show the mode shapes of variables v, ¢, and the corresponding parameter
A for frequencies fy, f5 and f;, respectively, calculated with Vlasov and present models, but
for o = 180° cases h/R =0-10 and 020 (Table 6). The mode shapes at these three
frequencies change abruptly from a coupled flexural-torsional mode at h/R = 0-10 (i.e.,
A < 1) in both models to a dominant torsional mode at /R = 0-20, except in the case of f;
(Figure 11) where the Vlasov model already has a dominant mode at 4/R = 0-10 (i.e., 4 = 8).
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Figure 8. Mode shapes of the third frequency (f3) for the beam with closed section, & = 90° and SS-SS outer
boundary conditions A: measure of motion characteristics; v.: vertical displacement, ¢: torsion angle.

Also, in this figure it is possible to see a change in the mode shape when one moves from
h/R = 0-10 to 0-20 for a given frequency number.

5. CONCLUSIONS

A finite element analysis of the out-of-plane vibrations of continuous thin-walled curved
beams was performed. Special emphasis was given to the influence of the shear flexibility,
due to bending and warping, over the dynamics of the member. The convergence analysis
and the comparisons with exact results show the very good performance of the element
employed.

It may be concluded from the present analysis that the shear effect is quite noticeable for
frequencies associated with high modes or even with low modes in the case of deep beams.
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Figure 9. Mode shapes of the fourth frequency ( f,) for the beam with closed section, o = 180° and SS-SS outer
boundary conditions A: measure of motion characteristics; v.: vertical displacement, ¢: torsion angle.

Moreover, the shear effect showed different influences depending on the cross-section
type, i.e., if the section is open or closed. The relative difference (¢) between frequencies
obtained with Vlasov and present models, for the case of the H-open section, decreases
uniformly with h/R (Figure 4). However, for the closed section, ¢ decreases uniformly with
h/R only for certain frequencies but for other frequencies the variation of ¢ with h/R is
connected with qualitative and quantitative changes in its dominant mode (which are
distinguished by the introduced parameter A) especially when a flexural-torsional coupled
mode changed to a torsional-dominant mode (Figures 9-11).

From the present study it should be concluded that the shear effect should be taken into
account in the dynamic analysis of these types of structures at least when deep beams or
high modes are considered.
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Figure 10. Mode shapes of the fifth frequency (f5) for the beam with closed section, o = 180° and SS-SS outer

boundary conditions A: measure of motion characteristics; v.: vertical displacement, ¢: torsion angle.
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