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The dynamics of underwater towing of #exible cylindrical structures belongs to the class
of #uid}structure interaction problems commonly referred to as `cylinders in axial #owa.
The serious concern in such towing operations is the various types of hydroelastic
instabilities exhibited by the structure at certain critical tow speeds. In practice, reliable
prediction of tow con"gurations and stability characteristics of such towed systems can lead
to optimum deployment of cable scope and control of tow speed. The present investigation is
concerned with the development of a comprehensive linear "nite element method for the
dynamics of the #exible towed cylinder with focus on the stability behaviour. The "nite
element approximation is derived from a variational statement of the problem based on
Hamilton's principle. The various structure- and #uid-related matrices as well as matrices
resulting from boundary terms have been derived, resulting in a complex unsymmetric
eigenvalue problem. Exhaustive validation and convergence studies show that the
comparisons between "nite element and analytical results are almost exact. Using the "nite
element code, the hydroelastic instability of a ship-towed array system has been analyzed.
The e!ect of cable scope and shape of the downstream end on stability have been examined.

( 2000 Academic Press
1. INTRODUCTION

The dynamics of a slender #exible (i.e., elastic) cylinder surrounded by a #owing #uid with
constant velocity with the #ow direction coinciding with the undisturbed centroidal axis of
the cylinder is an established #uid}structure interaction problem which has a
well-developed literature [1, 2]. Speci"cally, when the cylinder is towed underwater by
a tow rope or is cantilevered with a drougue attached at the free end, the system has
non-conservative end (or follower) forces as against no such force when both the ends of the
cylinder are transversely restrained against displacement. This problem is of concern in the
present investigation. A comprehensive theoretical model of this problem was presented in
reference [3] within the framework of small amplitude motions (i.e., linear behavior) of the
cylinder modelled by elementary (Euler}Bernoulli) beam theory, linearized hydrodynamic
force models based on cross-#ow principle and an uniform virtual mass of the cylinder over
its entire length. The governing equation of motion is a single equation involving the
transverse (i.e., lateral) displacement of the cylinder as the variable.
0022-460X/00/410119#25 $35.00/0 ( 2000 Academic Press
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Two aspects, which signi"cantly a!ect the instability behaviour of cantilevered and towed
cylinders in axial #ow, are the shape of the downstream end and the imposed tension at this
end. The e!ect of the tapered end shape is incorporated by means of an empirical constant
in a lumped end force term in the free end boundary condition. This shape can be looked
upon, theoretically speaking, ranging from &&fully streamlined'' to &&blunt''. The end tension
can always be lumped at the free end based upon the chosen hydrodynamic formulation or
prescribed at the end if known from experimental data. The end shape constant however is
di$cult to ascertain experimentally and is usually adjusted to match theory with
experiments. A blunt end as well as an end tension can vastly improve the stability of the
system. These two e!ects therefore always merited extensive discussion in the literature.

The analytical solution methods used in the literature are the &&beam eigenfunction
expansion method'' (BEEM) and the &&power series method'' (PSM). However, these
methods cannot treat the problem of a string in axial #ow, which represents a limiting case
of #exible cylinder with zero #exural rigidity. For this case, treated in a few papers [4, 5],
alternative analytical solutions which involve Bessel functions have been used.

Recently, a "nite element method had been presented [6] to treat the &&cylinder in axial
#ow'' problem for cylinders with both ends supported. Therefore, towing problems, which
involve the signi"cant e!ect of the shapes of the up- and downstream ends, tow rope pull
and drougue force at the downstream end on stability, cannot be solved by this method. In
the present work, a "nite element method is developed for such systems, which has not been
hitherto attempted in the literature. This is done from the variational statement in the form
of Hamilton's principle. The element matrices are obtained in closed form and the "nite
element system of equations is solved using the determinant search technique. The system
with both ends supported becomes a special case of the present formulation.

In any practical problem of ship-towed cylindrical structure, which could be a seismic
streamer, a sonar array or a #exible barge for liquid cargo transport, hydroelastic instability of
any kind is detrimental to the safety and operability of the systems. Its prediction is therefore
crucial in practice. Analytical methods cannot be used for these problems since they are based
on an equilibrium con"guration where the both the tow rope and the towed cylinder are
assumed to be in a single horizontal line at all tow speeds, whereas in ship towing problem, the
tow rope (from ship's winch to the towed cylinder at a certain depth below water surface) is not
horizontal. Besides, the non-uniformity of elastic as well as hydrodynamic properties along the
length is inevitable (in fact sometimes desirable by design, e.g., non-constant diameter arrays)
defying analytical solution. Need to develop a "nite element method is therefore obvious.

One of the earliest applications of the "nite element method to non-conservative
problems was devoted to stability of beams using Hamilton principle as basis and the
dynamic criterion of stability [7]. A similar formulation was applied to the Beck problem
[8]. There have been a few studies on the application of the "nite element method to the
non-conservative problem of pipes conveying #uids. In reference [9], the "nite element
method was applied to slender pipe conveying #uids. In reference [10], it was demonstrated
that the formulation employing Timoshenko beam elements exhibited a good comparison
with closed-form solution. In reference [11], the "nite element method was employed to
study the feedback control of cantilevered pipes aspirating #uid.

2. GOVERNING EQUATION

The derivation of the equation of motion is recapitulated in this section closely following
the treatment in reference [3] before considering its variational form to facilitate the "nite
element approximation.



Figure 1. De"nition sketches of the cylinder: (a) clamped}free; (b) towed}free; (c) hydrodynamic loading.

FINITE ELEMENT METHOD TOWED CYLINDRICAL STRUCTURES 121
Consider a #exible, long circular cylinder submerged underwater in a constant velocity
#ow "eld directed along the undisturbed axis of the cylinder (Figure 1(a) and 1(b)). The
upstream end of the cylinder is at x"0 and the downstream end at x"¸ and its small
transverse (y direction) displacement is v(x, t). The cylinder motion is therefore restricted to
the xy plane. The angle / (Figure 1(c)), which is the instantaneous angle made by the
tangent to the cylinder axis at a point with the x-axis (or; vector), is assumed small and so
is L//Lx, so that no cross-#ow separation takes place. The physical boundaries of the #uid
domain are assumed to be su$ciently away from the cylinder so that they do not in#uence
the problem.

The momentum (in the y direction) associated with the velocity v is M(Dv/Dt)
per unit length of the cylinder and the rate of change of this momentum results
in an equal and opposite (i.e., in !y direction) inertial force F

A
on the

cylinder [12]
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Figure 2. Forces and moments on an element of the cylinder: (a) interior element; (b) element at the downstream
end.
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where Dv/Dt is the resultant relative velocity between the cylinder and the #uid. The viscous
forces are given by [13]
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expressions can be linearized by setting sin2/"0, sin/"/ and
cos/"1. In all numerical calculations in the literature, it is almost always assumed that
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Linearization of equation (2) yields
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Now consider an element of the cylinder of length dx (see Figure 2(a)), on which in addition
to Q and MM , the other forces are (i) axial tension ¹ (x) directed along elastic line of the
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cylinder, (ii) the transverse viscous force F
N

dx, (iii) the tangential viscous force F
T
dx, (iv)

the transverse #uid inertial force F
A
dx and (v) the transverse structure inertial force

m(L2v/Lt2) dx. The x-equilibrium (to the "rst order) is L¹/Lx#F
T
"0, which on integration

between x to ¸ results in
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For the case when both the ends are supported, let the initial tension be ¹
0
, which

involves an axial movement of the downstream support. Once the #ow sets in, the support
movement is not allowed so that the overall extension of the cylinder is zero under the
frictional forces of the #uid. This requires ¹ (0)#¹(¸)"2¹
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which when used in equation
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and in view of the above, equation (5) becomes
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For the case when the downstream end is free, the end tension ¹ (¸) can be due to ¹
b2

and
¹

E
. The latter can be imposed in practice by a drogue (Figure 2(b)). Thus
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The base drag is usually taken to be proportional to o;2A with appropriate base drag
coe$cients for upstream and downstream ends:
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Both these base drags are directed along the instantaneous axis of the cylinder. However,
¹

E
(say imposed by a drogue), may be considered as a constant directional force, the

direction being parallel to ; (or x-axis). The tension equations (5) and (7) can be combined
as
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The transverse equilibrium of the element in Figure 2(a) yields
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The moment equilibrium is Q"LMM /Lx which, in view of moment}curvature relation
MM "!EIL2v/Lx2 results in
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The last term of equation (11) may be written, in view of equations (4) and (10), as
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Now in view of equations (1), (4), (10) and (13), equation (11) yields the governing di!erential
equation [3]
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The possible boundary conditions associated with this equation at the upstream and
downstream ends of the cylinder are (i) simply supported (or pinned), (ii) clamped (or "xed),
(iii) free and (iv) towed end (i.e., a free end attached to a tow rope). For the latter two
conditions, the end shape is assumed to be either blunt or tapered. In case of a tapered end
(up or downstream), the taper is assumed over a small length (l

1
, l
2
@¸, see Figures 1(a) and

1(b)) so that one can de"ne
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The possible combination of boundary conditions at the two ends are (i) pinned}pinned, (ii)
clamped}clamped (iii) pinned}clamped, (iv) clamped}pinned, (v) clamped}free, (vi)
pinned}free, (vii) towed}free or (viii) free}free. The pinned and the clamped conditions are
given by
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For a free end, however, the e!ect of taper at both ends must be accounted for since this
signi"cantly a!ects the dynamics and the stability of the cylinder. This has been proposed
as [3]
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where f
i
"0 for blunt and f

i
"1 for fully streamlined shapes. For a towed end, P enters into

the boundary condition (see Figure 1), which equals the tension in the cylinder at the end
x"0 plus the form drag at this end (see equations (5), (8) and (9)):
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Following reference [3], the boundary condition at the towed end (x"0) is given by
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where the term Pv/s is the vertical component of the tow rope pull. The equation of motion
(14) and the boundary conditions given by equations (16), (17) and (19) constitute the
statement of the towed cylinder problem.
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3. VARIATIONAL FORMULATION

Variational statement of a continuum mechanics problem is the most convenient and
natural starting point in constructing its "nite element approximation. In this section,
Hamilton's principle will be used for this purpose. The Hamilton's principle may be written
as
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The kinetic energy ¹M
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The transverse component of the axial #ow velocity ; is ;(Lv/Lx) and therefore the total
transverse velocity is Lv/Lt#;Lv/Lx (see equation (1)). Therefore, the kinetic energy ¹M
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The taper at an end (up or downstream) which is assumed to be short can be visualized as
a lumped structural mass without any rotatory inertia, as well as a lumped added mass.
Thus, the kinetic energy ¹M

3
is given by
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The expressions for <M
1

and <M
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are given by
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The work done by F
T

and F
N

during variation dv is given by
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In addition to the above, the terms representing (i) the e!ect of end shapes (up and
downstream) on the system dynamics (ii) the e!ect of the tow rope pull at the upstream end,
(iii) the e!ect of the base drags (up and downstream ends) and (iv) the e!ect of the drag due
to drougue (downstream end) should also be included. However, instead of doing this
formally in a rigorous manner, advantage is taken of the already known boundary
conditions presented in reference [3] which are given by equations (17) and (19) and their
variational forms are directly used in developing their "nite element approximations. Thus,
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Hamilton's principle for the present problem may be written as
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where the "rst end may be supported or towed or free, the second end may be supported or
free with a drogue attached to it (see Figure 2(b)). A possible form of m6

i
as used in the

literature (see equation (17)) is
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The indicated variation of various terms and their integration appearing in equation (24)
can now be carried out using &&by-part'' integration. These are recorded below term by term.
The by-part integration operation with respect to t gives rise to two &&end'' terms, one
each at times t

1
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2
. These terms can be discarded by assuming suitable initial

conditions. So, without loss of generality, such terms have been left out in the following
expressions:
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Figure 3. Two-dimensional beam element.
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Using equations (26) in equation (24), one obtains
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The variation dv being arbitrary, the expression in the square bracket in equation (27) yields
the equation of motion:
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It can be readily veri"ed that equation (28) is identical to equation (14) in view of equations
(4) and (13). The boundary conditions are given by equations (16), (17) and (19).

4. FINITE ELEMENT APPROXIMATION

The "nite element approximation of the problem will be developed here from Hamilton's
principle. The "nite element chosen is a two-noded straight uniform two-dimensional beam
element with two bending degrees of freedom in the xy plane at each node. The beam
element of length l is shown in Figure 3 and its displacement "eld is given by [14]
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where sN"xN /l. The various terms appearing in Hamilton's principle given by equation (24)
will be treated below with appropriate substitutions from equation (29). However, since
several terms result in well known standard matrices of this elementary beam element, these
are not treated in detail. Substituting equation (21a) in equation (24) and using equation
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(29), the integral involving ¹M
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Substituting "rst of equation (22) into equation (24) and using equation (29), the integral
involving <M
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The integrals involving ¹
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Similarly, using second of equation (22) gives
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Substituting equation (21b) into equation (24) and using equation (29), the integral
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In all the above equations where indices i and j are repeated, double-summation convention
is implied. Consider now the term involving=
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In view of the above, the integral in equation (23), on using equation (29) may be written as
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Using equation (29) in the second integral in equation (24), which is de"ned at the end x"0,
yields
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0
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], (30h)

where the "rst term in the second step above drops out due to initial conditions. Similarly,
the third integral in equation (24), de"ned at the end x"l gives
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where the su$x l indicates location x"l.
The boundary terms that contribute to equation (24) can be inferred from the boundary

conditions (17a,b) and (19). The contributions of the #uid dynamic terms and the
component of the tow rope pull will be developed now. At the end x"0, using equation
(29), we get from equation (17a) or (19)
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Similarly, at the end x"l, we get from equation (17b),
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The contribution of the term involving two rope pull P in equation (19) can be written as
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where the su$x 0 indicates location x"0. Substituting equations (30) into equation (24)
and rearranging and noting that du

i
is arbitrary, one obtains the element equations of

motion, which can be assembled by standrad procedures. Thus, the global equations of
motion may be written as

[m]MuK N#[c]Mu5 N#[k]MuN"M0N; C[m]"+
el

[me], [c]"+
el

[ce], [k]"+
el

[ke]D , (31)

where MuN is the vector of all degrees of freedom in the structure and +
el

denotes "nite
element assemblage operation over all elements. The element mass, damping and sti!ness
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matrices [me], [ce] and [ke] are given by
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The various matrices above are
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It should be noted that the matrices mL (1)
ij

, cL (1)
ij

, kK (1)
ij

and kK (p)
ij

are non-trivial only for the
element whose x"0 end is the upstream end of the structure. Similarly the matrices mL (2)

ij
,

cL (2)
ij

and kK (2)
ij

are non-trivial only for the element whose x"l end is the downstream (free)
end of the structure. The various matrices are: mN (1)

ij
is the structural mass matrix, mN (2)

ij
is the

added mass matrix, cN (1)
ij

is the viscous #uid damping matrix, cN (2)
ij

is the inviscid #uid damping
matrix, kM (1)

ij
is the elastic sti!ness matrix, kM (2)

ij
is the geometric sti!ness matrix, kM (3)

ij
is the

inviscid #uid sti!ness matrix and kM (4)
ij

is the viscous #uid sti!ness matrix. The various
shape-function-related parts of these matrices which are not common are given below:
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In view of equation (34), it may be seen that c6 (2)
ij

is a skew symmetric matrix and kM (4)
ij

is an
unsymmetric with kM (4)

ij
"!kM (4)

ij
for iOj. Carrying out harmonic decomposition (i.e.,

u
j
"u

j0
exp (iut)) of the "nite element equations of motion given by equation (31), one

obtains the following quadratic eigenproblem:

[!u2[m]#iu[c]#[k]] MuN"0. (35)

The eigenvalues are obtained as the roots of the determinantal equation

det [!u2[m]#iu [c]#[k]]"0. (36)

The roots u are complex with the property that if u is a root, then !u* is also a root (a*
denoting complex conjugate). The real part of u represents the frequency of oscillation and
the imaginary part of u represents the damping induced by #uid #ow. Thus, a positive
Im(u) indicates damped motion and hence a stable system, whereas a negative Im(u)
indicates instability.

5. COMPUTER IMPLEMENTATION

The subroutine tree of the development FE code is shown in Figure 4. The description of
the functions of the various subroutines is given below in brief.

1. S1 reads the degrees of freedom (d.o.f.) and co-ordinates of the nodes and also assigns
equation numbers to these degrees of freedom.

2. S2 reads data sets of material, sectional and hydrodynamic properties of all elements
used. Then it reads element connectivity data in an element loop and calls S3}S10 to
calculate various element matrices. It also calls S11 for transformation of these element
matrices and S12 to calculate end tensions based on a formula, if any. In the absence of



Figure 4. Subroutine tree of "nite element code.
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any such formula, the values of the end tensions of an element are read along with
element data. These values are then user supplied. The point matrices for the free and
elements are also calculated in this routine. It then sums up all the matrices
appropriately (i.e., sti!ness, mass and damping matrices) and writes them on a scratch
unit.

3. S3 calculates the elastic sti!ness matrix, S4 the geometric sti!ness matrix for linearly
varying axial load, S5 the inviscid #uid sti!ness matrix, S6 the viscous #uid sti!ness
matrix, S7 the inviscid #uid damping matrix, S8 the viscous #uid damping matrix, S9
the structural mass matrix and S10 the added mass matrix.

4. S11 transforms an element matrix in element co-ordinate system to global co-ordinate
system.

5. S12 implements a user-selected formula to calculate tension at a node (point) based on
its coordinates.

6. S13 reads the nodal masses, if any.
7. S14 adds the nodal masses to the global mass matrix.
8. S15 is the assembly routine.
9. S16 is the controlling routine for the task of eigenvalue extraction by determinant

search using Newton}Raphson iteration scheme. The iteration loop is set up in this
routine which calls S17 for complex determinant evaluation and S18 for
Newton}Raphson iteration for complex roots.

10. S19 calculates eigenvector for a successfully computed complex eigenvalue.

The program is fairly compact consisting of about 1000 FORTRAN statements and has
been written with the aim of achieving least computational time as well as su$ciently
general memory management scheme. A tolerance of 1E}05 on roots gives good accuracy
and requires about 10}15 iterations to converge for most cases. For relatively large
determinants, a determinant scaling technique was required to avoid over#ow and this was
implemented in the code. All calculations were done is double precision.

6. VALIDATION AND CONVERGENCE STUDIES

First three validation problems, which are worked out using the FE code developed, have
been chosen from the literature. These are concerned with one clamped}free [15] and two
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towed}free [3] boundary conditions. For the purpose of validation, the "nite element
results are compared with those obtained from the analytical method of solution, namely
the power series method, which also have been coded. The details of this method are
available is reference [6] for pinned}pinned and clamped}clamped boundary conditions.
For completeness, the extension to clamped}free and towed}free boundary conditions
has been provided in Appendix A, which closely follows and complements the treatment in
reference [6]. Original references may be consulted for more details of these example
problems. Comparison of complex frequencies for a few #ow velocities in each case
are presented in Table 1. The convergence of the "nite element method is brought out in
Table 2 for two of these problems. These and other results are given in non-dimensional
form.

In the case if rigid towed}free cylinder, which is a limiting case of an elastic one, two
lowest modes with frequencies u

0
"u

1
"0 at u"0 are referred to as the zeroth and "rst

modes, respectively, and at very low speeds these are associated with rigid body motion. The
zeroth mode does not have a real part and the instability due to this mode is referred to as
&&yawing motion''. The comparison for this case is given in Table 3.

As can be seen from Tables 1 and 3, the comparison between the analytical and the "nite
element results are as good as they could probably be, leaving very little to discuss. The
convergence results in Table 2 and more of similar studies for many cases which were
carried out, yield the following conclusions:

(a) For lower #ow velocities, 10 elements are required for accurate results.
(b) For higher #ow velocities and for higher modes of practical interest, 16 elements are

required.
(c) A 2}4-element model gives reasonably good results for the "rst two modes.

To sum up, a 4-element model can be used for the "rst two roots, a 10-element model for
all roots at lower #ow velocities and a 16-element model for all situations that could be of
practical interest.

The "nite element model can also be used for string, i.e., cylinders with zero bending
rigidity for which the earlier analytical theory (for "nite to in"nite bending rigidity) fails. In
this connection, the work of reference [4] on strings in axial #ow is of interest. In this work
it was proved (without numerical result) that a neutrally buoyant pinned}free string is
stable under any one of the two conditions which are: (i) the external tension at the free and
exceeds the value of M;2 or (ii) the slenderness ratio (e) exceeds the value of n/(2C

f
).

To validate these conditions numerically, an example has been chosen and the results for
this case are presented in Table 4 wherein three values of ec

f
(namely 1, 1)5 and 0)5) and two

di!erent #ow velocities (namely 1 and 3 m/s) were considered. The dimensional complex
eigenfrequencies of the lowest two modes for both tapered and blunt ends are presented. It
can be observed that for a value of ec

f
"1, the roots are negative indicating that string is

unstable for both streamlined as well as blunt ends, but when an external tension
(¹

0
"M;2"2)01 and 18)13 N for ;"1 and 3 m/s respectively) is applied, the roots are

positive and hence the string is stable and satis"es one of the conditions. At a higher value of
ec

f
"1)5 and at;"3 m/s, the string is again unstable and an external tension ¹

0
"M;2

has been applied to regain the stability of the string. On the other hand, for a value of
ec

f
"2)05, the string remains quite stable for a blunt end for both the #ow velocities

and there is no necessity for any external tension to make it stable. This satis"es the
second condition. Therefore, these results bear out the validity of these conditions
appropriately and also demonstrate the capability of the FEM to treat the string in axial
#ow problems.



TABLE 1

Comparison of frequencies from analytical and ,nite element methods for various -ow
velocities

u X (Analytical) X (Finite element)

(a) Clamped}free cylinder: b"0)5, ec
f
"1, f

2
"0)8, c

b2
"0, s6

e2
"0)01

0 3)4543#i0)0 3)4543#i0)0
21)6592#i0)0 21)6592#i0)0
60)6737#i0)0 60)6758#i0)0

2 0)0#i1)5620 0)0#i1)5620
0)0#i0)3000 0)0#i0)3001

20)3157#i0)8408 20)3158#i0)8408
59)3765#i0)8224 59)3788#i0)8222

4 0)0!i2)6115 0)0!i2)6115
0)0#i7)2446 0)0#i7)2446

15)8984#i1)4120 15)8986#i1)4120
55)3831#i1)5744 55)3863#i1)5746

(b) ¹owed}free cylinder: b"0)5, K"1, ec
N
"ec

T
"1, f

1
"f

2
"1, c

b1
"c

b2
"0, s6

e1
"s6

e2
"0)01

1 0)0!i1)7934 0)0!i1)7934
0)0#i2)5089 0)0#i2)5089

0)9496#i0)0035 0)9496#i0)0035
20)8952#i0)1556 20)8952#i0)1556
58)9768#i0)1604 58)9787#i0)1604

3 0)0!i3)8169 0)0!i3)8063
0)0#i6)8490 0)0#i6)8499

2)9147#i0)5276 2)9147#i0)5276
14)4695!i0)1619 14)4696!i0)1619
55)0706#i0)3531 55)0730#i0)3531

6 5)6156!i0)2184 5)6156!i0)2185
4)6183!i13)0935 4)6186!i13)0949

39)5282!i1)3510 39)5322!i1)3509

(c) ¹owed}free cylinder: b"0)5, K"1, ec
N
"ec

T
"1, f

1
"f

2
"0)7, c

b1
"0, c

b2
"0)3,

s6
e1
"s6

e2
"0)01

1 0)0#i1)9071 0)0#i1)9071
1)3502!i0)1449 1)3502!i0)1449

21)2766#i0)1574 21)2767#i0)1574
59)4644#i0)1623 59)4664#i0)1623

3 0)0#i4)9562 0)0#i4)9562
0)0!i1)7075 0)0!i1)7075

4)1357#i0)1129 4)1357#i0)1129
17)9166#i0)1109 17)9167#i0)1109
57)1038#i0)3810 57)1064#i0)3810

6 5)8443!i1)3503 5)8443!i1)3503
5)2949#i13)5007 5)2950#i13)5008

48)3901!i0)3799 48)3946!i0)3798!

Note: Number of elements used are between 10 and 16.
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TABLE 2

Convergence study of ,nite element solution

Method X

(a) Clamped}free cylinder: b"0)5, ec
f
"1, f

2
"0)8, c

b2
"0, s6

e2
"0)01

u"1 u"3
ANL 2)9513#i0)4491 0)0!i2)1421

21)3269#i0)4269 18)5673#i1)2084
60)3508#i0)4143 57)7325#i1)2143

FE(2) 2)9533#i0)4497 0)0!i2)1442
21)5309#i0)4317 18)9947#i1)2424
73)3809#i0)4733 71)6192#i1)3967

FE(4) 2)9515#i0)4491 0)01!i1)4212
21)3522#i0)4280 19)5290#i1)2297
60)8095#i0)4198 59)2159#i1)2341

FE(8) 2)9513#i0)4491 0)0!i2)1421
21)3286#i0)4270 18)5700#i1)2087
60)3864#i0)4148 57)7765#i1)2160

FE(16) 2)9513#i0)4491 0)0!i2)1421
21)3270#i0)4269 18)5675#i1)2084
60)3531#i0)4144 57)7354#i1)2144

(b) ¹owed}free cylinder: b"0)5, K"1, ec
N
"ec

T
"1, f

1
"f

2
"1, c

b1
"c

b2
"0

s6
e1
"s6

e2
"0)01

u"2 u"4
ANL 0)0!i3)2819 2)5740!i0)9693

0)0#i4)8984 8)5926!i5)2939
1)9188#i0)0703 51)4341#i0)2627

18)7973#i0)2348
57)5404#i0)2923

FE(2) 0)0!i3)2821 2)4905!i0)9648
0)0#i4)9012 9)0262!i5)1416

1)9188#i0)0698 60)6192#i0)2565
18)9903#i0)2455
65)7997#i0)2897

FE(4) 0)0!i3)2819 2)5685!i0)9691
0)0#i4)8986 8)6234!i5)2885

1)9188#i0)0702 51)9877#i0)2727
18)8246#i0)2353
57)9238#i0)2933

0)0!i3)2817 2)5736!i0)9693
FE(8) 0)0#i4)8985 8)5946!i5)2936

1)9188#i0)0702 51)4789#i0)2632
18)7992#i0)2342
57)5742#i0)2923

FE(16) 0)0!i3)2819 2)5739!i0)9693
0)0#i4)8984 8)5927!i5)2939

1)9188#i0)0703 51)4369#i0)2627
18)7973#i0)2348
57)5425#i0)2923
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TABLE 3

Rigid body mode and -exible mode frequencies by analtyical and FEM:
b"0.5, ec

N
"ec

T
"1, f

1
"1, c

b1
"0, c

b2
"1!f

2
, K"1, s6

e1
"s6

e2
"0)01

Rigid body Flexible body (u"0.7)

Zeroth mode Zeroth mode
First mode First mode

f
2

X
1

X
2

X
3

X
1

X
2

X
3

1)0 0#i1)955 0!i0)757 0)583!i0)356 0#i1)934 0!i0)735 0)584!i0)347
(0#i1)956) (0!i0)761) (0)582!i0)356) (0#i1)934) (0!i0)735) (0)584!i0)348)

0)8 0#i1)946 0!i0)304 0)835!i0)390 0#i1)931 0!i0)292 0)833!i0)375
(0#i1)949) (0!i0)301) (0)836!i0)392) (0#i1)931) (0!i0)292) (0)833!i0)376)

0)4 0#i1)958 0!i0)084 1)144!i0)202 0#i1)947 0!i0)087 1)136!i0)189
(0#i1)961) (0!i0)084) (1)146!i0)203) (0#i1)947) (0!i0)087) (1)136!i0)190)

0)0 0#i2)031 0#i0)423 1)279!i0)014 0#i2)023 0#i0)419 1)273!i0)004
(0#i2)034) (0#i0)424) (1)281!i0)015) (0#i2)023) (0#i0)419) (1)273!i0)005)

Note: Analytical results from reference [3], recomputed using PSM. Present FE results are shown in the
parenthesis.

TABLE 4

Numerical veri,cation of stability criteria for a neutrally buoyant pinned}free string in axial
-ow by FEM: ¸"1 m, D"0.05 m

u (rad/s)

f
2
"0)8, c

b2
"0 f

2
"0)2, c

b2
"0)8 ¹

0
"M;2

ec
f

; (m/s) (Tapered end) (Blunt end) (Blunt end)

1 1 0!i1)1003 0!i0)5087 0)6613#i0)3986
1)1678!i1)1062 6)9042!i0)6080 1)9866#i0)4049

3 0!i3)3009 0!i1)5262 2)2386#i1)2322
3)4463!i33)2992 12)7311!i1)0844 6)7203#i1)2485

1)5 1 0!i0)8265 0!i0)5087 *

12)3226!i5)8014 6)9042!i0)6080 *

3 0!i2)4793 0!i1)5262 2)4283#i1)4371
15)5771!i2)3263 12)7311!i1)0844 7)3215#i1)4661

2)05 1 0!i0)2588 0#i0)9280 *

8)4180!i9)1079 5)1112#i6)1696

3 0!i0)8006 0#i4)0696 *

6)4408!i1)1882 9)5351#i9)8320

136 S. K. BHATTACHARYYA E¹ A¸.
7. APPLICATION TO SHIP-TOWED CABLE}ARRAY SYSTEM

In this section, an important practical problem of ship-towed neutrally buoyant
instrumented array module attached to a negatively buoyant tow cable is considered using
the "nite element code developed. In many practical situations, a tail rope or a drogue is



Figure 5. De"nition sketch of a ship towed array system.
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attached to the free end of the array to reduce the undulation or &&snaking'' motion. This
aspect is also studied. Attempt is made to investigate the stability of the towed array system
under constant tow speed by examining its free modes that grow or decay with time. The
critical tow speed of this system is predicted, which is the most important information
required for the operation of such a system. Such a practical structure cannot be handled by
analytical methods because of the variability of the structural and the hydrodynamic
parameters of di!erent modules making up the array and the curved equilibrium
con"guration of a ship-towed array. The "nite element method is therefore ideally suited for
such problems.

A de"nition sketch of a towed cable-array system is schematically shown in Figure 5. The
segment AB is the tow cable of diameter D

C
, the segment BC is the towed array of diameter

D
A

followed by the segment CD which is a tail rope of diameter D
R
. Consider a point P on

the system. It can be located either on the cable or on the array. The vertical and horizontal
distances of point P from A are called depth and trail of the point P respectively. The tail
rope at the downstream end of the module provides certain magnitude of tension to keep
the array free from &&snaking''.

The steady state tow con"guration of this system has been obtained by a "nite element
analysis using a beam/cable element. This involves the equilibrium of hydrodynamic,
hydrostatic, inertial and elastic forces acting on various parts of the system for a given ship
tow speed. This analysis also provides the axial force of the towed cable}array system along
their lengths, which serve as input for the stability analysis. The steady state con"guration
obtained for each tow speed can be analyzed using the FE code to assess its stability.

In this study, a typical towed array system has been chosen whose physical properties are
given in Table 5. The towed system is assumed to be "xed at the onboard winch and free at
its downstream end. The free end is assumed to be streamlined with parameters f

2
"1 and

c
b2
"0. The assumption of a streamlined end is consistent with the operational requirement

of minimum #ow noise in such systems. The steady state con"guration was obtained for
a few selected operating tow speeds and typical set of results is shown in Figure 6. For
example, Figure 6(a) gives the operating depth versus the trail distance for a system as well
as the axial force (i.e., tension) distribution along its length for four values of tow speeds in
the operational range. It may be seen that the depth of operation varies form 10 to 29 m in
this speed range. The axial force is an important parameter in the design of winch. It may be
seen that the axial force varies between 3 and 15 kN in the speed range considered. The
critical angles of tow for 8, 12, 16 and 20 knots (1 knot"0)5144 m/s) were obtained as 19,
13, 10 and 83 respectively. The stability results are also given in Table 5 showing that as the



TABLE 5

Stability behaviour of ship towed array system

Cable Length Tow speed (knots)
scope (m) of array

(m) 8 12 16 20

100 150 S S D D
500 150 S S S S

Notes: 1. D*Divergence, S*stable.
2. Diameter of cable and array are 0)032 and 0)088 m respectively.
3. Mass per unit length of cable and array are 39)84 and 61)22 N/m respectively.
4. Submerged weight of cable and array are 31)75 and 0 N/m respectively. The array is neutrally

buoyant.
5. Normal drag coe$cient of cable and array are 1 and 0)8 respectively.
6. Tangential drag coe$cient of cable and array are 0)015 and 0)0025 respectively.
7. Young's modulus (E) of cable and array are 0)45]1011 and 0)08]1011 N/m2 respectively.

Figure 6. Tow curves of ship towed array systems: (a) cable scope"100 m, array length"150 m; (b) cable
scope"500 m, array length"150 m.
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speed increases, the system with 100 m cable scope becomes unstable by divergence in the
speed range of 12(;(16 knots, whereas the system with much longer cable scope (500
m) remains stable in the entire speed range considered. For a desired operating depth, the
parameters of cable scope and tow speed can therefore be selected from such analysis so as
to avoid instability.

8. CONCLUSION

A comprehensive "nite element method has been developed for `towed cylinders in axial
#owa problems for the "rst time. This is useful in predicting various instabilities, which
occur in underwater towing of #exible cylindrical structures. The Hamilton's principle for
such a non-conservative system is developed comprehensively for the "rst time. The "nite
element approximation is developed based on Hamilton's principle. A computer code has
been implemented and several validation examples worked out showing &&almost exact''
performance of the method. Convergence properties of the method have been studied
and practical modelling recommendations suggested. The developed code has been
employed to study an example problem of underwater towing by ships. In doing this,
various practical aspects of the problem are looked into, thereby demonstrating the
versatility of the method.
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APPENDIX A. POWER SERIES METHOD

Following the presentation in reference [6], the non-dimensional di!erential equation in
space co-ordinates m[>"> (m)] is written as

>@@@@#a>@@#bm>@@#c>@#e>"0 (0(m(1), (A1)

where a, b, c and e are constant coe$cients and >@"d>/dm, etc. The boundary conditions
are

clamped}free:

>">@"0 at m"0, >@@">@@@#j>@#p>"0 at m"1, (A2)

towed}free:

>@@">@@@#j
1
>@#p

1
>"0 at m"0, >@@">@@@#j

2
>@#p

2
>"0 at m"1. (A3)

The solution of equation (A1) is assumed as

> (m)"
=
+
n/0

A
n
mn. (A4)

The various required derivatives are

>@"
=
+
n/0

nA
n
mn~1, >@@"

=
+
n/0

n (n!1)A
n
mn~2, >@@@"

=
+
n/0

n (n!1) (n!2)A
n
mn~3.

(A5)

Use of equations (A2)}(A4) gives
clamped}free:

A
0
"A
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"2A

2
#6A

3
#

=
+
n/4

n(n!1)A
n
"(2j#p)A

2
#(6#3j#p)A

3

#

=
+
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[n (n!1) (n!2)#nj#p]A
n
"0, (A6)

towed}free:

A
2
"6A

3
#j

1
A

1
#p

1
A

0
"6A
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#

=
+
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nA
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(A
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=
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n/4

A
n
"0. (A7)

Subsituting equation (A4) into equation (A1) and collecting terms of like powers of m, one
obtains

n (n!1) (n!2) (n!3)A
n
#a(n!2) (n!3)A

n~2

#[b (n!3) (n!4)#c (n!3)]A
n~3

#eA
n~4

"0. (A8)
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One writes this relation as

A
n
"f

1n
A

n~2
#f

2n
A

n~3
#f

3n
A

n~4
, (A9a)

where

f
1n
"!

a

n(n!1)
, f

2n
"!

b(n!3) (n!4)#c (n!3)

n (n!1) (n!2) (n!3)
,

f
3n
"!

e

n (n!1) (n!2) (n!3)
. (A9b}d)

In view of equation (A8), one obtains for various cases,
clamped}free:

A
n
"G

n
A

2
#H

n
A

3
, (A10a)

towed}free:

A
n
"F

n
A

0
#G

n
A

1
#H

n
A

3
, (A10b)

where for clamped}free case upto n"3

G
2
"H

3
"1, G

1
"H

1
"H

2
"G

3
"0, (A11a)

and for towed}free case upto n"4
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1
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3
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Using equations (A10a) or equation (A10b) in equation (A9a) one obtains

G
n
"f

1n
G

n~2
#f

2n
G

n~3
#f

3n
G

n~4
, (A12a)

H
n
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H
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H
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H

n~4
. (A12b)
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1n
F
n~2

#f
2n

F
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#f
3n

F
n~4

. (A12c)

Using these recursive relations in equations (A6), (A7) and (A11) in conjunction with either
equation (A10a) or equation (A10b), one obtains a system of equations

[a
ij
] MB

j
N"M0N, (A13)

where for a clamped}free cylinder
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and for a towed}free cylinder
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For non-trivial solution one requires

f (X)"Da
ij
D"0. (A15)

The number of terms (n) in equation (A4) determines the convergence of roots of equation
(A15). However, since the root computation of this 2]2 or 3]3 determinantal equation is
extremely fast in computer, a large n makes little di!erence in computer time. In all
calculations, typically n"100 have been used, which is a su$ciently high value for all cases
for accurate convergence.

APPENDIX B: NOMENCLATURE

A cross-sectional area of cylinder
A(x) cross-sectional area over length of taper
C

D
normal drag coe$cient

C
b1

,C
b2

coe$cients of base drag at upstream and downstream ends respectively
C

N
,C

T
,C

f
coe$cients of normal, tangential and frictional drag respectively

SC
N
, C

T
,C

f
,

C
b1

,C
b2

T "Sc
N
, c

T
, c

f
, c

b1
, c

b2
Tn/4

D outer diameter of cylinder
E Young's modulus of cylinder material
F
A

#uid inertial force per unit length on cylinder in the !y direction
F
N
,F

T
normal and tangential viscous forces per unit length on cylinder respectively

f
1
, f

2
shape coe$cients at upstream and downstream ends respectively

I moment of inertia of cylinder cross-section about centroidal axis
¸ length of cylinder
l
1
, l
2

short lengths of taper at upstream and downstream ends respectively
M added mass per unit length of cylinder
MM sectional bending moment
m mass per unit length of cylinder
m6

i
sum of structural mass and hydrodynamic added mass of tapered end
i ("1: upstream, "2: downstream)

N
*

beam shape functions
P tow rope pull
Q sectional shear force
Q

i
generalized beam element forces corresponding to u

i
s tow rope length at upstream end
¹ Axial tension on cylinder
¹

0
Initial tension on cylinder

¹
b1

,¹
b2

base or form drag at upstream and downstream (free) ends respectively
¹

E
externally imposed end tension at free downstream end of cylinder
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¹M total kinetic energy of system
¹M

1
kinetic energy of structural mass

¹M
2

kinetic energy due to M associated with total transverse velocity
¹M

3
kinetic energy of lumped mass at ends due to taper

t time
t
1
, t

2
instances of t at which system con"gurations are known

; tow speed (or constant #ow velocity along cylinder axis)
u
i

degrees of freedom of beam element
v transverse displacement of cylinder (in the y direction)
<M potential energy of the system, which includes strain energy and potential of

conservative external forces
<M

1
bending strain energy of beam

<M
2

potential energy due to action of axial force and rotation of beam
d=

nc
virtual work done by non-conservative forces (not included in <M )

x,y co-ordinate system with x as undeformed centroidal axis of horizontal cylinder
x6 , y6 beam local co-ordinate system
o #uid density
/ angle of incidence
c "0 (end free to slide axially), "1 (supported end, no axial stretching)
e slenderness ratio of (¸/D) of cylinder
d symbol for variation
k nondimensional tow speed (";¸JM/EI)
b mass ratio of cylinder ("M/(m#M))
K nondimensional tow rope length ("s/¸)
u circular frequency
X nondimensional frequency ("u¸2J(M#m)/EI)
s6
ei

nondimensional e!ective length of taper ("s
ei
/¸), see Equation (15), at upstream

(i"1) and downstream (i"2) ends
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