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This paper presents an investigation of dynamic interaction of long suspension bridges
with running trains. A three-dimensional "nite element model is used to represent a long
suspension bridge. Each 4-axle vehicle in a train is modelled by a 27-degrees-of-freedom
dynamic system. The dynamic interaction between the bridge and train is realized through
the contact forces between the wheels and track. By applying a mode superposition
technique to the bridge only and taking the measured track irregularities as known
quantities, the number of degrees of freedom (d.o.f.) the bridge}train system is signi"cantly
reduced and the coupled equations of motion are e$ciently solved. The proposed
formulation and the associated computer program are then applied to a real long suspension
bridge carrying a railway within the bridge deck. The dynamic response of the bridge}train
system and the derail and o%oad factors related to the running safety of the train are
computed. The results show that the formulation presented in this paper can well predict
dynamic behaviors of both bridge and train with reasonable computation e!orts. Dynamic
interaction between the long suspension bridge and train is not signi"cant.

( 2000 Academic Press
1. INTRODUCTION

To meet the needs of modern society for advanced transportation systems more and more
long suspension bridges carrying both highway and railway have been built throughout the
world, such as the Minami Bisan Seto suspension bridge in Japan in 1988 [1] and the Tsing
Ma suspension bridge in Hong Kong in 1997 [2]. For such long-span bridge}train systems,
Diana and Cheli [3] pointed out the two fundamental aspects to be investigated: one is the
bridge safety due to train passage and the other is the train runability including the
passenger comfort. Compared with short-span railway bridges, long suspension bridges
bear global deformation at very low frequency and local deformation at relatively high
frequency. The vertical slopes related to the global deformation of the bridge deck and the
lateral slopes of the bridge deck due to track eccentricities and irregularities should be
limited to ensure train runability. The lateral forces given by wheels to track and the change
of vertical forces on wheels and track should also be examined for train runability. On the
other hand, periodic excitations caused by train passage generate local deformation and
fatigue damage to bridge structural elements a!ecting bridge safety. In this connection, the
mechanical model of a bridge}train system should be able to reproduce the details of bridge
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characteristics, train complex con"guration, and contact conditions between wheels and
track. This demand, however, may be seriously constrained by the great computational
e!ort required due to the large size of a suspension bridge and several locomotives and
coaches travelling on the bridge at the same time.

Yasoshima et al. [4] thus studied "rst the behavior of the bridge under moving loads, and
then analyzed the behavior of the train using the obtained responses of the track as inputs.
This approach needs relatively less computational e!ort but it neglects the interaction
between the train and the bridge. Diana and Cheli [3] used the direct numerical integration
method to simultaneously solve the separated equations of motion of the train and bridge
with constraints from the coupled conditions between the two subsystems. However, at
each step of the time-domain analysis the iteration required having a convergent solution
for the coupled system is time consuming. Another approach is to combine the two sets of
equations of motion of both train and bridge and then to use the modal approach to "nd the
solution [3]. In this approach, the mass, sti!ness, damping, and contact force matrices of the
system are time-dependent and of considerable size. Large computational e!orts are thus
unavoidable.

In this paper, a three-dimensional "nite element model is used to represent a long
suspension bridge. Each 4-axle vehicle in a train is modelled by a 27-d.o.f. dynamic system.
The measured track irregularities and the wheel hunting described by a sinusoid function
are used to represent the two most important self-excitations in the coupled train}bridge
system. The degrees of freedom for all wheels are eliminated from the basic coupled
equations of motion to reduce computation e!orts. The mode superposition technique is
then applied to the bridge only. This application further reduces computational e!orts and
also the modal damping values can be properly assigned. To examine the proposed
formulation together with the associated computer program, a real long suspension bridge
carrying a railway within the bridge deck is taken as a case study.

2. BASIC DYNAMIC MODELS

2.1. DYNAMIC MODEL OF TRAIN

A train usually consists of several locomotives, passenger coaches, freight cars, or their
combinations. Each vehicle is in turn composed of a car body, bogies, wheel-sets, and the
connections between the three components. To simplify the analysis but with enough
accuracy, the following assumptions are used in the modelling of the train in this study:

(1) The car body, bogies and wheel-sets in each vehicle are regarded as rigid components,
neglecting their elastic deformation during vibration (see Figure 1).

(2) The connections between the car body and a bogie are represented by two linear
springs and two viscous dashpots of the same properties in either the horizontal
direction or the vertical direction (see Figure 1). The sti!ness and damping coe$cients
are denoted as kh

2ij
and ch

2ij
for the springs and dashpots in the jth bogie of the ith

vehicle in the horizontal direction and kv
2ij

and cv
2ij

for the springs and dashpots in the
jth bogie of the ith vehicle in the vertical direction.

(3) The connections between a bogie and a wheel-set are characterized as two linear
springs and two viscous dashpots of the same properties in either the horizontal
direction (kh

1ij
and ch

1ij
) or the vertical direction (kv

1ij
and cv

1ij
).

With the aforementioned assumptions, the ith vehicle has 5 d.o.f. They are designated by
the lateral displacement >

ci
, roll displacement h

ci
, yaw displacement W

ci
, vertical



Figure 1. Dynamic model of vehicle.
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displacement Z
ci
, and pitch displacement u

ci
, all with respect to the earth. The jth bogie in

the ith vehicle has 5 d.o.f.: the lateral displacement >
tij

, roll displacement h
tij

, yaw
displacement W

tij
, vertical displacement Z

tij
, and pitch displacement u

tij
with respect to the

earth. For the lth wheel in the jth bogie and ith vehicle, only 3 d.o.f. are considered: the
lateral displacement >

wijl
, roll displacement h

wijl
, and vertical displacement Z

wijl
with

respect to the earth.
For a 4-axle 2-bogie vehicle studied in this paper, the total d.o.f. are 27 (see Figure 1). By

assuming that vibration amplitude of each component in a vehicle is small and using the
equilibrium conditions, the equations of motion for the car body and two bogies in the ith
vehicle can be derived as follows:
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where the subscripts c, t
1
, t

2
represent the car body, the front and rear bogies of the vehicle,

respectively, i"1, 2,2, N
v
, and N

v
is the number of vehicles on the bridge. The sub-mass,

sub-damping, and sub-sti!ness matrices are listed in Appendix A. v5
i
, v5

i
, and vK

i
are the

displacement, velocity and acceleration vectors of the ith vehicle respectively. The force
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vector consists of two parts:
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The components in the "rst part, F
cei

, F
t1ei

, and F
t2ei

are the vectors of external forces
(such as wind forces) acting on the car body, the front and rear bogies of the vehicle
respectively. F

t1wi
and F

t2wi
are the vectors of forces transmitted from the wheels through the

primary springs and dashpots to the front and rear bogies respectively. The forces
transmitted from the wheels to the bogies can be expressed in terms of the displacements
and velocities of the wheels.
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where N
wij

is the number of wheel-sets in the jth bogie of the ith vehicle. g
l
is the sign

function with g
l
"1 when the wheel is in the front bogie and g

l
"!1 when it is in the rear

bogie. The explanation of the other terms in equation (3) can be found in Appendix A.

2.2. DYNAMIC MODEL OF SUSPENSION BRIDGE

A long suspension bridge consists mainly of bridge towers, bridge deck, cables,
suspenders, and anchorages. When the bridge carries a railway, the track will be laid on the
bridge deck and the forces from the wheels of a train will be transmitted to the bridge deck
through the track. Since long suspension bridges are considered here, this study assumes
that there is no relative displacement between the track and bridge deck. The elastic e!ects
of the track system are also neglected. The suspension bridge is modelled as
a three-dimensional system using the "nite element method. The equation of motion for the
bridge can be thus expressed as

MXG#CX0 #KX"F, (4)

where M, C, and K are the mass, damping and sti!ness matrices of the bridge; XG , X0 , and
X are the acceleration, velocity and displacement vectors of the bridge, respectively, and F is
the force vector, consisting of two parts:

F"F
e
#F

w
, (5)

where F
e

is the vector of external forces (such as wind forces) acting on the nodes of the
bridge model, and F

w
is the vector of forces from the wheels of a train on the bridge deck

through the track (see Figure 2). The displacements of the bridge deck at any section in the
"nite element analysis are usually identi"ed in terms of the lateral displacement >

b
, vertical

displacement Z
b
, and torsional displacement h

b
at the shear center (or centroid) of the

cross-section. The lateral, vertical and torsional forces given by the lth wheel in the jth bogie
of the ith vehicle corresponding to the deck displacements can be deduced in terms of the



Figure 2. Vehicle forces on bridge deck.
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equilibrium conditions of the wheel and the relative position of the track to the bridge deck
cross-section as
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where m
wijl

and J
wijl

are the mass and the mass moment of the lth wheel, respectively, g is the
acceleration due to gravity, and h

4i
and e

i
are the distances de"ned in Figure 2.

2.3. WHEEL HUNTING AND TRACK IRREGULARITIES

The deviations of the real rail from the ideal rail of perfect geometry are represented
mainly by wheel hunting and track irregularity [5]. They are two important self-excitations
in the bridge}train system in addition to the moving load of the train. In this study, the
wheel hunting displacement (in the lateral direction) is assumed as a sinusoid function with
a certain amplitude and a random phase:

>
h
(t)"A

h
sin A

2n;t

¸
h

#/
hijlB , (7)

where A
h
is the hunting amplitude,¸

h
is the hunting wavelength, /

hijl
is the random phase of

the lth wheel of the jth bogie in the ith vehicle ranging between 0 and 2n, and; is the speed
of the train.

The track irregularities consist of the lateral irregularity >
s
(x), vertical irregularity Z

s
(x),

and rotational irregularity h
s
(x). In this study, the measured track irregularities are used so

that these functions are regarded as known quantities. In consideration of both the wheel
hunting and track irregularities, the relations between the lth wheel displacements and the
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bridge deck displacements can be deduced as
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(8)

where x
ijl

is the co-ordinate of the lth wheel of the jth bogie in the ith vehicle along the
bridge deck.

3. EQUATIONS OF MOTION FOR BRIDGE}TRAIN SYSTEMS

This study concerns the dynamic interaction between the suspension bridge and train,
and no external excitations such as wind or earthquake are included. Equations (1) and (3)
for the train, equations (4) and (6) for the bridge, and equations (7) and (8) thus constitute the
basic equations for the coupled bridge}train system. However, the direct integration of
these equations in the time domain to "nd dynamic responses of both bridge and train is
very cumbersome. The combination of these equations and then the application of mode
superposition method are also very time consuming in the computation. Thus, this study
applies the mode superposition method to the bridge only [6, 7]. The number of mode
shapes of the bridge deck taken into account in the computation should be large enough to
include the e!ects of both the global deformation of the bridge and the local deformation of
the structural elements supporting the track. This decision may be made through
a convergent study of the e!ects of the number of mode shapes or through a comparison
with the measurement data. The mode shape between the deck nodes obtained from the
eigenvalue analysis is determined using the Lagrange interpolation.
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) denote, respectively, the values of the lateral, rotational

and vertical components of the nth bridge mode at the position of the lth wheel of the jth
bogie in the ith vehicle, and let q

n
be the generalized co-ordinate of the nth mode. The

displacement responses of the bridge deck at the same position can be expressed as
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where N
b
is the number of mode shapes concerned. If the mode shapes of the whole bridge

are normalized based on M/nNTMM/nN"1, the equation of motion of the bridge deck related
to the nth mode can be derived based on equation (4) as
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where m
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are, respectively, the damping ratio and the circular frequency of the nth

mode of the bridge, and F
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is the nth generalized force.
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where F
nijl

is the nth generalized force from the lth wheel of the jth bogie of the ith vehicle,
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The expressions for the forces F
hijl

, Fhijl , and F
vijl

can be found in equation (6).
Furthermore, in terms of equation (9), the displacements of the lth wheel (see equation (8))
can be expressed as a function of the generalized co-ordinate and mode shape of the bridge
as well as the known wheel hunting and track irregularities,
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Clearly, the displacements of the wheel need not be included in the equations of motion
for the bridge}train system. This can reduce the computational e!ort signi"cantly.
Substituting equation (13) into equations (6) and (10)}(12) and also substituting equation
(13) into equations (1)}(3), and then carrying out some manipulation, one can derive the
coupled equations of motion for the bridge}train system as follows:
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where the subscripts &&v11 and &&b'' represent the vehicles and bridge respectively. The details
of the submatrices in equation (14) can be found in Appendix B. Equation (14) is actually the
second order linear non-homogeneous di!erential equation with time-varying coe$cients.
These equations are solved using the Newmark implicit integral algorithm with b"1/4 in
this study.

4. CASE STUDY

A computer program is written based on the formulation derived above and is used to
perform a case study. The case study concerns a long suspension bridge carrying a railway
inside the bridge deck (see Figures 3 and 4). The main span of the bridge is 1377 m and the
height of the tower is 206 m, measured from the base level to the tower saddle. The two main
cables of 36 m apart in the north and south are accommodated by the four saddles located
at the top of the tower legs in the main span. On the right side, the main cables are extended
from the tower saddles to the main anchorage through the splay saddles, forming a 300 m
side span. On the left side, the main cables extended from the left tower are held "rst by the
saddles on pier M2 at a horizontal distance of 355)5 m from the left tower and then by the
main anchorage through splay saddles at the abutment. A three-dimensional "nite element
model of the bridge was established and the natural frequencies and mode shapes were
computed. The computed natural frequencies and mode shapes were veri"ed through the
comparison with the measured results and the details can be found in reference [8]. The "rst
20 natural frequencies up to 0)38 Hz and the associated mode shapes are "nally used in this
case study since these natural frequencies and mode shapes have been validated against the
measurement data. The accuracy of higher mode shapes from the computation depends on
the detailed modelling of the deck structures, which are not included in this study. The
damping ratios in the lateral and vertical modes of vibration are taken as 1% while the
damping ratios in the torsional modes of vibration are 0)5%.



Figure 3. Con"guration of suspension bridge used in the case study.

Figure 4. Typical cross-section of bridge deck.

Figure 5. Con"guration of train used in the case study.
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The train concerned in the case study consists of eight passenger coaches. Each coach has
two identical bogies and each bogie is supported by two identical wheel-sets (see Figure 5).
The eight passenger coaches are assumed to be identical in this case study. The average
static axle loads are 10 144 kg (tare) and 13 250 kg (crush). The main parameters of the
coach used in the case study are listed in Table 1. The principal vibration mode frequency of
the coach is about 1)04 Hz in the vertical direction and 0)68 Hz in the lateral direction.

The track vertical, lateral and torsional irregularities are taken into consideration by
using the measured data from one of the main railways in China because no measurement
data are available for the concerned bridge}train system. The length of the measured data is
2500 m and the samples of length 600 m are plotted in Figure 6(a) and (c) for vertical, lateral,
and torsional irregularities respectively. Figure 7 displays the lateral track irregularity
spectrum. It is seen that the spectrum is not a narrow spectrum and the signi"cant



TABLE 1

Main parameters of vehicle used in the case study

Parameter Unit Value Remarks

Full length of a coach (¸) m 22)5
Distance between two bogies (2s) m 15)6
Distance between two wheel-sets (2d) m 2)5
Mass of car body (M

c
) t 50)99 Crush mass

Roll mass moment of car body (J
ch) t m2 154)83 Crush mass moment

Pitch mass moment of car body (J
cu

) t m2 1958)7 Crush mass moment
Yaw mass moment of car body (J

ct) t m2 1875)3 Crush mass moment
Mass of bogie (M

t
) t 4)36

Roll mass moment of bogie (J
ch) t m2 1)47

Pitch mass moment of bogie (J
cu

) t m2 3)43
Yaw mass moment of bogie (J

ct) t m2 5)07
Mass of wheel-set (m

w
) t 1)77

Roll mass moment of wheel-set (J
w
) t m2 0)92

Primary vertical spring sti!ness (kv
1
) kN/m 2976 Each wheel-set

Primary lateral spring sti!ness (kh
1
) kN/m 20000 Each wheel-set

Secondary vertical spring sti!ness (kv
2
) kN/m 1060 Each bogie

Secondary lateral spring sti!ness (kh
2
) kN/m 460 Each bogie

Primary vertical dashpot (cv
1
) kN s/m 15 Each wheel-set

Primary lateral dashpot (ch
1
) kN s/m 15 Each wheel-set

Secondary vertical dashpot (cv
2
) kN s/m 30 Each bogie

Secondary lateral dashpot (ch
2
) kN s/m 30 Each bogie

Distance (h
1
) m 0)98

Distance (h
2
) m 0)36

Distance (h
3
) m 0)07

Distance (h
4
) m 1)25

Distance (a) m 0)98
Distance (b) m 1)12
Distance (B) m 1)435
Distance (e) m 2)05

LONG SPAN BRIDGES WITH RUNNING TRAIN 271
excitation energy ranges between 5)0 and 40)0 m. The e!ect of wheel hunting displacement
on both bridge and vehicle responses is so small that it is neglected in this case study.

4.1. RESPONSE OF BRIDGE

Displayed in Figure 8(a) and 8(b) are the time histories of the lateral displacement and
acceleration responses of the bridge at the middle main-span, respectively, when the train
runs on the bridge at a constant velocity of 70 km/h. It is seen from the response time
histories that when the train runs on the left-side span, the bridge responses at the middle
main-span are quite small. When the train travels on the main span, the bridge responses at
the middle main-span become large. As the train travels on the right-side span, the bridge
responses decrease. The bridge then has a free vibration when the train leaves from the
bridge. Clearly, both the lateral displacement and acceleration responses of the bridge are
quite small. Considering that track irregularities are the only excitation source to the bridge
from the train, it can be thus concluded that the bridge lateral responses due to track
irregularities are not signi"cant.



Figure 6. Measured track irregularity curves used in the case study: (a) lateral irregularity; (b) vertical
irregularity; (c) torsional irregularity.

Figure 7. Track lateral irregularity spectrum.
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Figure 9(a) shows the vertical displacement response of the bridge at four di!erent
positions. The distance of points A, B, C, and D from the left abutment of the bridge are,
respectively, 1012)5, 1138)0,. 1174)0 and 1498)5 m. Points B and C are around the middle
main-span. Point D is around the quarter of the main span from the right tower while point



Figure 8. Lateral dynamic response of bridge at middle main spain: (a) lateral displacement response;
(b) lateral acceleration response. ;"70 km/h.
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A is at about 560 m from the left tower. All the vertical displacement responses are small
when the train runs on the left- and right-side spans. The maximum vertical displacement
response at each point occurs almost when the train runs around that point. The pattern of
the displacement response, however, depends on the position concerned. For instance, the
displacement response curves of points A and D are clearly di!erent from those at positions
B and C. It is also seen that the maximum response at point D is larger than that at point C,
which may be because the "rst vertical mode of vibration of the bridge is almost
anti-symmetrical. Although the maximum vertical displacement response at point
C reaches 0)5 m, it is still very small compared with the main span of 1377 m length. This
may be because the bridge is a low-frequency system while the train is a high-frequency
system. Also, because the bridge is relatively long and the train is relatively light, the vertical
dynamic displacement response looks like the static in#uence line.

Displayed in Figure 9(b) is the vertical acceleration response of the bridge at point C. It is
seen that when the train runs on the main span, the higher-frequency component of the
response due to the track irregularities appears in addition to the response component due
to the passage of the train. The track irregularities, however, do not a!ect the vertical
acceleration response of the bridge at the middle main span when the train runs on the side
spans. This indicates that the e!ect of vertical track irregularity on bridge response is local.
Clearly, the vertical acceleration response of the bridge due to the train is also not
signi"cant.

The bridge responses at four points are also computed for the train running at di!erent
speeds. The maximum lateral and vertical displacements and acceleration responses of the
bridge at the four positions are listed in Table 2. It is seen that the maximum vertical
displacement response, the maximum lateral acceleration response, and the maximum



Figure 9. Vertical dynamic response of bridge at middle main spain: (a) vertical displacement response;
(b) vertical acceleration response. ;"70 km/h.
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vertical acceleration response of the bridge increase with the increasing train speed but the
maximum lateral displacement response decreases with the increasing train speed.

4.2. RESPONSE OF VEHICLES

Figures 10 and 11 show, respectively, the lateral and vertical acceleration responses of the
"rst car body in the train that runs on the bridge at a speed of 70 km/h. It is seen that the
vertical response of the car body is only slightly larger than the lateral response but the
patterns of the response time histories are di!erent to some extent. The maximum
acceleration responses in both directions are well below the allowable accelerations related
to human comfort. It is also found that the lateral and vertical responses of the car body as
the vehicles run on the bridge are similar to those when the vehicles run on the ground. This
indicates that the motion of the long-span bridge does not a!ect the human comfort of
vehicles. As a result, the track irregularities dominate the responses of the car body and
these responses seem to be random signals.

There are two important parameters that should be considered in the evaluation of the
safety of the train. One is the derail factor de"ned as the ratio of lateral force Q acting on the
wheel-set to the total vertical force P acting on the same wheel-set. The total vertical force is
the sum of the self-weight of the vehicle per wheel-set P

s
and the dynamic vertical force P

d
on

the wheel-set. The other parameter is the o%oad factor de"ned as the ratio of the vertical
force di!erence DP to the total vertical force P acting on the wheel-set with DP"P

s
!P

d
.

From the computed time histories of the derail factor and o%oad factor of the "rst wheel-set



TABLE 2

Maximum responses of bridge and vehicles

Types of response Unit ;"20 km/h ;"40 km/h ;"70 km/h;"120 km/h

Deck vertical displacement cm 49)39 49)52 51)29 54)04
Deck vertical acceleration cm/s2 0)0845 0)332 0)878 3)156
Deck lateral displacement mm 15)07 10)83 8)058 4)686
Deck lateral acceleration cm/s2 0)931 1)097 1)298 2)234
Vehicle vertical acceleration cm/s2 12)96 31)85 48)29 74)31
Vehicle lateral acceleration cm/s2 19)01 38)19 40)05 51)92
Derail factor Q/P 0)247 0)287 0)306 0)413
O%oad factor DP/P 0)380 0)381 0)393 0)410

Note: ; is the train speed.
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in the "rst vehicle of the train travelling at a speed of 70 km/h, it is found that the value of
derail factor ranges from !0)27 to #0)32. The maximum value of derail factor is thus well
below the allowable value of 0)80 speci"ed in the Chinese code. It is also found that the
amplitude of o%oad factor changes from !0)40 to #0)37 and its maximum value is also
smaller than the allowable value of 0)6 speci"ed in the Chinese code. The derail factor and
the o%oad factor obtained as the vehicles run on the bridge are similar to those obtained as
the vehicles run on the ground. Thus, the motion of the long-span suspension bridge does
not signi"cantly a!ect the runability of the vehicles in this case study.

The train acceleration responses and two factors are also computed for other train
speeds. The maximum responses and the maximum values of the two factors are listed in
Table 2. It is seen that the train responses increase signi"cantly with the increasing train
speed. The increase of two factors, however, is relatively smaller with the increasing train
speed.

5. CONCLUSIONS

A formulation has been presented in this paper for investigating the dynamic interaction
of a long suspension bridge with running trains. Each railway vehicle was modelled as
a 27-d.o.f. dynamic system and the suspension bridge was represented by
a three-dimensional dynamic "nite element model. To reduce the d.o.f. of the coupled
bridge}train system, this study took the measured track irregularities as known quantities
and applied the mode superposition technique to the bridge. A real long suspension bridge
carrying train inside the bridge deck was taken as a case study. The dynamic response of the
bridge}train system and the derail factor and o%oad factor related to the running safety of
the train were computed. The results showed that the formulation presented in this paper
could well predict dynamic behaviors of both bridge and train with reasonable computation
e!orts. It was also found that the dynamic responses of the long suspension bridge under
running train are relatively small and the e!ects of the bridge motion on the runability of
railway vehicles are insigni"cant. This, however, may not be true if the e!ect of strong wind
on both bridge and vehicles is included.

It should also be pointed out that by using the mode superposition technique it is
assumed that the bridge is operating in a linear range. This is acceptable in this study
because the maximum displacement response of the bridge is much smaller than the bridge



Figure 10. Lateral acceleration response of "rst car body.

Figure 11. Vertical acceleration response of "rst car body. ;"70 km/h.
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span. This assumption may not be acceptable when studying the problem of bridge}vehicle
interaction under strong winds.
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APPENDIX A. SUB-MATRICES IN EQUATION (1)

Each sub-mass matrix is a diagonal matrix, expressed as

M
cci
"diag[M

ci
J
chi J

cti M
ci

J
cui

], (A1)

M
tjtji

"diag[M
tij

J
thij J

ttij M
tij

J
tuij

], (A2)

where M
ci
, J

chi , Jcti , and J
cui

are the mass, mass moment about the x-axis, mass moment
about the z-axis, and mass moment about the y-axis of the car body of the ith vehicle
respectively. M

tij
, J

thij , Jttij and J
tuij

are the mass, mass moment about the x-axis, mass
moment about the z-axis, and mass moment about the y-axis of the jth bogie in the ith
vehicle respectively. In this study, j"1, 2.

The sub-sti!ness matrices are expressed as
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where h
ij
, h

2i
, and h

3i
are the vertical distances between the three components in the ith

vehicle, as de"ned in Figure 1. a
i
, b

i
, d

i
, and s

i
are the longitudinal and lateral distances

between various axes of the ith vehicle, as de"ned in Figure 1.
The sub-damping matrix can be obtained by simply replacing &&k'' in the corresponding

sub-sti!ness matrix by &&c'', v
i
, v5

i
, and vK

i
are the displacement, velocity and acceleration

vectors of the ith vehicle respectively. As an example, the sub-displacement vectors for the
car body and two bogies in the ith vehicle can be expressed as

v
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Z
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]T, (A7)
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APPENDIX B. SUB-MATRICES IN EQUATION (14)

Assume that the number of vehicles on the bridge is N
v

and the number of concerned
vibration modes of the bridges is N

b
, the sub-displacement vectors can be expressed as

X
v
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v1
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v2
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b
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q
2

2 q
Nb

]T, (B1)

where X
vi
"[v

ci
, v

t,i
, v

t2i
]T i"1, 2,2, N

v
. The sub-mass and sti!ness matrices of the

vehicles are listed as follows:
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The sub-damping matrix of the vehicle can be achieved by simply replacing &&K'' in the
sti!ness matrix by &&C''. The sub-mass, sub-sti!ness, and sub-damping matrices of the bridge
are deduced as follows:
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The sub-sti!ness matrices attributed to the interaction between the bridge and the
vehicles can be derived as follows:
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where i"1, 2,2, N
v
, n"1, 2,2 , N

b
, and j"1, 2. The sub-damping matrices attributed

to the interaction between the bridge and vehicles can be obtained by simply replacing &&k''
in equation (28) by &&c''. If the external forces such as wind and earthquake are not taken into
account, the force vectors can be expressed as
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