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For an historical evolution of the &&reverse path'' spectral method in the context of
single-degree-of-freedom (d.o.f.) systems, the interested reader can and should refer to the
extensive literature review provided by Bendat [1]. For instance, a quote from this citation
[1] concerning the work of early investigations follows: &&Rice and Fitzpatrick [1988, 1991]
wrote two outstanding articles dealing with useful techniques for non-linear system analysis
and identi"cation that were developed following the works of Bendat and Piersol [1982,
1986a], Bendat [1983], and Vugts and Bouquet [1985], but independently of other related
work by Bendat [1985], Bendat and Palo [1989, 1990], and Bendat et al. [1990, 1992].''

Since we developed our method for speci"c application to multi-d.o.f. systems [2], we did not
feel the need to duplicate the extensive literature review on the identi"cation of single-d.o.f.
systems. Formulation of the &&reverse path'' spectral technique has been thoroughly covered
by Bendat in a well-known textbook [3]; therefore, it is unnecessary to cite all parties
involved with the development and application of the method. Consequently, only the most
recent work on the development of the method has been referenced in our publications
[2, 4] so that readers may adequately follow the analytical treatment. In summary, we have
followed the accepted practices of citing and utilizing the scienti"c literature.

Concerning the extension of the &&reverse path'' spectral method towards multi-d.o.f.
systems, there are two distinct approaches. Each approach is formulated from the
generalized set of coupled di!erential equations of motion; see equations (1a}c) and (2) of
reference [2] and equations (1)}(3) of reference [5]. These equations are essentially
Newton's second law of motion applied to a generic non-linear vibration system.
Consequently, initial formulation of the methods should be similar. However, beyond
these basic governing equations that set the stage for further analysis, there exist
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fundamental di!erences between the two methods which concern the inputs and
identi"ed paths of the &&reverse path'' model. For example, Rice and Fitzpatrick formulate
the &&reverse path'' approach by treating each response X
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inputs to the &&reverse path'' model. Additional inputs are non-linear scalar functions
resulting from multiplying out and collecting terms of like form of functions describing
the non-linear restoring forces. The paths of each input X
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identi"ed and correspond to systems of order 0, 1 and 2. The frequency response functions
of the second order systems are then inverted resulting in frequency response functions
similar to those of a single-d.o.f. mechanical oscillator. Elements of the mass, damping and
sti!ness matrices are then estimated from the single-d.o.f. frequency response functions
using single-d.o.f. curve-"tting techniques. This procedure is discussed at the end of section
2.2 of reference [5] where it is stated that &&Once the linear operators denoted by R are
estimated and inverted they will appear as familiar linear single-d.o.f. frequency response
functions. The constituent mass, damping and sti!ness may be found using standard "tting
procedures.''This part of the procedure is what we describe in the introduction of our article
[2] when referring to Rice and Fitzpatrick's work [5] as follows: &&A similar approach has
been used for the identi"cation of two-d.o.f. non-linear systems where each response
location is considered as a single-d.o.f. mechanical oscillator.'' We go on to mention that
their technique requires excitations to be applied at every response location in order to fully
identify the system. this limitation is overcome by our approach; and in fact, identi"cation
of non-linearities away from locations of applied excitations is a critical issue that is clearly
emphasized and discussed in our articles [2, 6].

Unlike their method [5], we formulate the &&reverse path'' approach from the generalized
set of coupled di!erential equations of motion by retaining the system response in vector
form, i.e., X(u)"[X
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used as a vector input to the &&reverse path''model. Therefore, the path whose input is X(u)
is the entire dynamic sti!ness matrix B (u). The multi-d.o.f. dynamic compliance matrix
H(u) is then identi"ed by "rst applying spectral conditioning [2, 7] to obtain an equivalent
model with uncorrelated inputs, and then re-reversing the path corresponding to the
dynamic sti!ness matrix B (u). As a result, H (u) is independent of the dynamical e!ects from
the non-linearities; for example, natural frequencies are independent of the excitation levels.
Therefore, modal parameters can be estimated from H(u) using well-known multi-d.o.f.
modal parameter identi"cation methods [8], as opposed to the single-d.o.f. technique
employed by Rice and Fitzpatrick as discussed earlier. Although not all of the elements
H

ij
(u) of the matrix H (u) will be identi"ed since excitations at all response locations are not

required, reciprocity may be employed to obtain additional elements, i.e., H
ij
(u)"H
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This step allows for identi"cation of non-linearities at locations away from applied
excitations. One additional di!erence between the two approaches is that we retain the
functions describing the non-linear restoring forces in their original form and these
functions become the additional inputs to the &&reverse path'' model. Consequently, each
spectrum is itself an approximation of a coe$cient and not a combination of the many
coe$cients resulting from multiplying out and collecting terms of like form. This eliminates
the need to resolve the original coe$cients from algebraic expressions which may become
rather cumbersome for higher order polynomials. Also, we retain functions of the same type
(such as quadratic and cubic) in vector form; however, they could be separated and treated
as individual inputs.

It should be noted that although we make the assumption in our initial formulation that
we know the locations of the non-linearities [2], this assumption is not necessary. The
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&&reverse path'' model, as formulated from the assumed equations of motion for describing
the physical system, is based on the knowledge an analyst may somehow have concerning
the locations of the non-linearities and the associated mathematical equations for
describing them. Therefore, one may include functions for describing non-linearities at any
location on the physical system. From the identi"cation process, estimated coe$cients of
insigni"cant non-linear functions will then be zero. However, computation involved with
the identi"cation process may become excessive. Therefore, any a priori knowledge of the
locations and types of non-linearities should be employed to reduce the complexity of
the model, i.e. non-linear functions should only be included where non-linearities are likely
to be located and these functions should contain terms with high probability of describing
the nature of the non-linear restoring forces. In additional work [4], we address the topic of
identifying non-linearities of unknown forms.

Arguably, Rice and Fitzpatrick's method [5] appears to be advantageous since, ideally
physical properties are preferred over modal properties. However, as pointed out above,
excitations must be applied and measured at each response location for full identi"cation.
For systems with a large number of d.o.f. application of excitations at all response locations
could be rather di$cult task. Furthermore, identi"cation of the physical properties of
multi-d.o.f. systems should be questioned, since this is a di$cult task even for linear systems
as evident from the widespread use of modal techniques [8]. Extensive work has been
applied to the linear system identi"cation of multi-d.o.f. mechanical, #uid and structural
systems from which the most practical and widely used methods have been formulated
based on the modal domain.

In summary, our initial work [2] derives a procedur e to overcome the inability to
identify non-linearities at locations away from applied and measured excitations. This
process is carried out by treating the response as a vector input to the &&reverse path''model
and identifying multi-d.o.f. frequency response functions. Consequently, our formulation
results in a unique method more suited for identi"cation of non-linear multi-d.o.f. systems
with a large number of d.o.f. A separate article [6] further addresses the critical di!erences
between our method [2] and that developed by Rice and Fitzpatrick [5]. Both methods
are compared analytically and an example is provided to illustrate the procedures.
Finally, we believe that many unresolved research problems still exist in the area of
non-linear system identi"cation and expect that current methods [1}6] would form the
basis of further work.
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