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An investigation into the response statistics of a hinged}clamped beam under broadband
random excitation is made. By using Galerkin's method the governing equation is reduced
to a system of non-autonomous non-linear ordinary di!erential equations. The Fokker}
Planck equation is applied to generate a general "rst order di!erential equation in the
dynamic moments of response co-ordinates. By means of the Gaussian and non-Gaussian
closure methods the dynamic moment equations for the random responses of the system are
reduced to a system of autonomous ordinary di!erential equations. The analytical results for
two- and three-mode interactions are also compared with results obtained by Monte Carlo
simulation.
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1. INTRODUCTION

A straight beam with "xed ends experiences mid-plane stretching when de#ected. The
in#uence of this stretching on the dynamic response increases with the amplitude of the
response. This situation can be described with non-linear strain}displacement equations
and a linear stress}strain law which give us the non-linear beam equation. Even though
a beam is a continuous system, it can be approximated as a multi-degree-of-freedom system.
When a non-linear multi-degree-of-freedom system has two or more of its natural
frequencies commensurable or nearly so, the system may possess internal resonances
(modal interactions).

Non-linear dynamic responses of simply supported or clamped beams have been studied
by many authors [1}12]. Under harmonic excitation, Nayfeh and his colleagues [5}7], and
Lee and his colleagues [8}10] considered two- or three-mode interaction to study the
steady state responses of a hinged}clamped beam. Lee and Soh [8] showed that there exists
no signi"cant di!erence between two and three-mode interactions' in#uences on the
responses.

On the other hand, Ibrahim and his colleagues [11, 12] have studied the stochastic
bifurcation of the unexcited mode of a clamped}clamped beam under wide band random
excitation when initial static axial load is applied to the beam. When the load does not
exceed the Euler buckling load [11], the Gaussian closure failed to predict bifurcation of
unexcited second mode under all possible conditions of axial load and excitation level. But
both the non-Gaussian closure and Monte Carlo simulation predicted second mode
22-460X/00/430377#17 $35.00/0 ( 2000 Academic Press



Figure 1. A schematic diagram of a hinged}clamped beam.
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bifurcation. When the load exceeds the Euler buckling load [12], the Gaussian closure
method and Monte Carlo simulation give almost consistent bifurcation points of the second
mode, which are inconsistent with the non-Gaussian closure result.

In this study, to investigate in#uences of the internal resonance of a hinged}clamped
beam with a random excitation we reduce a partial di!erential equation of motion and
boundary conditions to a system of coupled non-linear ordinary di!erential equations using
Galerkin's procedure. Obtaining moment equations from the Fokker}Planck equation
corresponding to the coupled non-linear ordinary di!erential equations, we used Gaussian
and non-Gaussian closure schemes to reduce a system of autonomous ordinary di!erential
equations for moments. The response statistics of these systems are examined. We consider
two- and three-mode interactions by the Gaussian closure scheme, and two-mode
interaction by the non-Gaussian closure scheme. The results obtained by two closure
schemes are compared with those obtained by Monte Carlo simulation.

2. EQUATION OF MOTION FOR BEAM

Consider a slender, initially straight hinged}clamped beam, which is shown in Figure 1.
For such a beam, the partial di!erential equation of motion and boundary conditions can
be represented as follows [5]:
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where E is the Young's modulus, b the width of beam, h the thickness of beam, o the density
of beam, I("bh3/12) the area moment of inertia, c* the damping coe$cient, P* the exciting
random force, H*("EA/2l*:l*

0
(Lw*/Lx*)2 dx*) the tension due to mid-plane stretching,
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w* the de#ection of the beam, t* the time in seconds, x* the longitudinal axis, l* the length of
the beam, and A the cross-sectional area of the beam.

Rewriting the equations in terms of dimensionless variables, we have
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Equation (1) can be solved approximately by Galerkin's method. The de#ection is
approximated by
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u
n
"e

n
[sin(a

n
x)!R

n
sinh(a

n
x)], (4)

where

e
n
"[1

2
l(l!R2

n
)#MR2

n
sinh(2a

n
l )!sin(2a

n
l)N/(4a

n
)]~1@2,

R
n
"sin(a

n
l )/sinh(a

n
l ), a

n
"u1@2

n
,

and a
n

are the roots of tan(a
n
l )"tanh(a

n
l). The "rst three eigenfunctions are shown in
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From the observation of these natural frequencies, we can see the relations u
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, which satisfy the internal resonance condition. Substituting

Eq. (2) into Eq. (1), multiplying by u
m
, integrating over the length, and using the

orthogonality of the eigenfunctions we obtain a set of non-linear ordinary di!erential



Figure 2. Eigenfunctions of the beam vibration.
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equations
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In this study we consider two cases of excitations.
Case I: When the excitation is applied at the nodal point of the second mode (indirectly

excited second mode).
To investigate the in#uences of the energy transfer from the directly excited modes (u

1
, u

3
)

to the indirectly excited mode (u
2
) through non-linear coupling, we select the nodal point of

the second mode as an excitation point. Letting the second natural mode be zero, i.e.,
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Case II: When the excitation is applied at the antinode of the second mode (directly
excited second mode).

In order to excite directly the second mode, we select the antinode of the second mode as
excitation point. Letting "rst derivative of the second natural mode be zero, i.e.,
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Random excitation = (t) is assumed to be zero mean white noise having the
autocorrelation function

R
WW

(Dt)"E[= (t)=(t#Dt)]"2Dd(Dt), (9)

where 2D represents the spectral density when we express the frequency by f ("u/2n), and
d(Dt) is the Dirac delta function.
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3. FOKKER}PLANCK EQUATION

Introducing the notations
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where prime denotes di!erentiation with respect to t, and letting= (t) be a formal derivative
of a Brownian process, i.e.,=(t)"dB(t)/dt, we can express the equations (5) as following
Ito stochastic di!erential equation:
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The solution process of this equation is a Markov process and the Fokker}Planck equation
may be applied for the Markov vector X in the form
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Since it is impossible to obtain the exact solution p (x, t) to the Fokker}Planck equation
[14, 15], we are trying to examine the system responses by means of moment equations.
First of all, introducing the following notations for the nth order moments of the system
responses:
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5. CLOSURE SCHEMES

Equation (14) constitutes a set of in"nite coupled equations. In other words, the
di!erential equation of order n contains moment terms of orders n#1 and n#2. In order
to solve for response statistics these equations must be truncated by an appropriate closure
scheme. Two cumulant truncation schemes are used. These are the Gaussian and
non-Gaussian closures.

The Gaussian closure is based on the assumption that the response process is nearly
Gaussian and is carried out by setting third and fourth order cumulants to zero. In this case,
we can generate 14 coupled di!erential equations for "rst and second order moments
depend on the "rst through fourth moments. The third and fourth order moments can be
expressed in terms of lower order moments as follows:
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Figure 3. Mean-square time histories when the excitation is applied at the nodal point of the second mode
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(2 modes); * , Monte Carlo simulation (3 modes).
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Substituting equations (15) and (16) into equations (14) we can obtain a system of 14
coupled di!erential equations which consist of four equations for the "rst order moments
and 10 equations for the second order moments.

For non-Gaussian processes the cumulants of order higher than the second do not
vanish. However, their contribution diminishes as their order increases if the process
deviates slightly from Gaussian. Thus, the non-Gaussian closure is carried out by setting
"fth and sixth order cumulants to zero and expressing "fth and sixth order moments in
terms of lower order moments as follows:
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Figure 4. Mean-square time histories when the excitation is applied at the antinode of the second mode
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Figure 5. Mean-square responses at t"900 versus the number of sample excitation records when the excitation
is applied at the nodal point of the second mode (c

1
"c

2
"c

3
"100, e"0)0001, 2e2D"1500).
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Figure 6. Mean-square responses versus spectral density 2e2D when the excitation is applied at the nodal point
of the second mode (c

1
"c

2
"c

3
"100, e"0)0001): *, linear; )))))))), Gausian closure (2 modes); } - }, Gaussian

closure (3 modes): * - -*, non-Gaussian closure (2 modes); s, Monte Carlo simulation (2 modes); n, Monte
Carlo simulation (3 modes). (a) First mode; (b) second mode; (c) third mode.
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Figure 6. Continued.
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In this case, we can obtain a system of 69 coupled di!erential equations which consist of
four equations for the "rst order moments, 10 equations for the second order moments, 20
equations for the third order moments, and 35 equations for the fourth order moments.

For convenience the system is expressed as follows:

m@"f (m), (19)

where m"Mm
1,0,0,0,0,0

, m
0,1,0,0,0,0

,2NT is the moment vector consisting of 14 or 69
moments and f (m)"M f

1
(m), f

2
(m),2NT is the vector "eld of the system.

6. NUMERICAL RESULTS

We investigate the long-term behaviour of the moments by integrating numerically the
ordinary di!erential equation (19) obtained by Gaussian and non-Gaussian closures.

Figures 3 and 4 show mean-square responses when the excitation is applied at the nodal
point and the antinode of the second mode respectively. These two "gures represent time
histories of mean square responses corresponding to two-mode interaction by the Gaussian
closure and the non-Gaussian closure, and three-mode interaction by Monte Carlo
simulation for c

1
"c

2
"c

3
"100. e"0)0001, 2e2D"1500. In Figure 3, the results from

non-Gaussian closure and Monte Carlo simulation show the energy transfer between the
"rst and second modes. The result from Gaussian closure does not agree with these. In
Figure 4 results from two analytical schemes and Monte Carlo simulation agree very well
and show energy transfer between two modes.



Figure 7. Mean-square responses versus spectral density 2e2D when the excitation is applied at the antinode of
the second mode (c

1
"c

2
"c

3
"100, e"0)0001): *, linear; )))))))), Gaussian closure (2 modes); } - }, Gaussian

closure (3 modes); * - -*, non-Gaussian closure (2 modes); s, Monte Carlo simulation (2 modes); n, Monte
Carlo simulation (3 modes). (a) First mode; (b) second mode; (c) third mode.
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Figure 7. Continued.
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For Monte Carlo simulation [16, 17], the response statistics are estimated by numerically
integrating the non-linear coupled equations (5) for a large number of sample excitation
records. In order to check the numerical convergence we plotted Figure 5, which shows
that mean-square responses at a speci"c time depend on the number of sample excitation
records. This "gure shows that 1000 records are found to be adequate to give convergence
of the results. The 00H'' in the "gure represents temporal mean for mean-square responses
between 1200 and 1400 of sample excitation records. Each record of the random excitation
=(t) with duration t"1000 is generated by sampling a sequence of N"40 000 random
numbers in order to prevent unacceptable frequency distortion in the record as follows:

=(t)"
N
+
j/1

J2(4D
j
) ( f

j`1
!f

j
) sin(2nJf

j
f
j`1

t#/
j
), (20)

where 4D
j

are one-sided spectral density, f
j

are random frequency, independent and
uniformly distributed in ascending order [0, 20 Hz], and /

j
are random phase angles,

independent and uniformly distributed on the interval [0, 2n]. The sampling time stepsize
(Dt) is chosen to be less than 1/(2f

max
).

Figures 6 and 7 show mean-square responses in the steady state as functions of spectral
density 2e2D proportional to mean-square excitation p2

W
when the excitation is applied at

the nodal point and the antinode of the second mode respectively. All of these "gures except
Figure 6(b) show that results from two analytical schemes and Monte Carlo simulation
agree very well, and the result (solid line) from linear analysis agrees with these results
especially when excitation level is low. In Figure 6(b) result from Monte Carlo simulation
agrees with result from non-Gaussian closure rather than one from Gaussian closure as
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expected from Figure 3. Result from linear analysis does not appear in the "gure because the
second mode is excited through non-linear coupling. In Figures 6(a), 6(b), 7(a), and 7(b)
beyond the excitation level z}z we cannot get any solution by the non-Gaussian closure
scheme because the solution experiences divergence. Comparing results from two- and
three-mode interactions we can conclude that there exists no signi"cant di!erence between
both modal interactions.

7. CONCLUSIONS

An analysis has been presented for the modal interactions of a hinged}clamped beam
under broadband random excitation. By means of internal resonance conditions two- and
three-mode interactions are considered. The energy transfer from the "rst and third modes
excited directly to the second mode excited indirectly through non-linear coupling has been
found. It is also observed that in some case result from Monte Carlo simulation agrees with
result from non-Gaussian closure rather than one from Gaussian closure. Analytical and
numerical results show that there exists no signi"cant di!erence between two- and
three-mode interactions.
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