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A structural modi"cation method based on frequency response functions is presented
in terms of an inverse eigenvalue problem. The design objective is to derive multiple
lumped mass, damper and sti!ness modi"cations needed to reallocate eigenvalues and
specify eigenvectors of an existing structure. A frequency response function-based
substructure-coupling concept is used to get the system dynamic equations. A linear
algebraic equation is "nally obtained to identify the necessary structural modi"cations. The
exact structural modi"cations are determined. The existence and uniqueness of exact
solutions are also investigated. The feasibility of structural modi"cation is examined under
the restrictions of structural modi"cations in the case where in"nite many exact
modi"cations can exist. The proposed method was applied to an example structure. Based
on experiment data, the minimum sti!ness modi"cations were calculated. The result of
application indicates that the suggested method can derive accurate structural changes just
based on minimum number of measured frequency response functions.
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1. INTRODUCTION

Structural modi"cations are often undertaken to improve the dynamic behavior of an
existing structure. In many cases, the objective is to modify structure eigenvalues or
eigenvectors to reduce the vibration responses of the structure. There are two opposite
approaches for structural modi"cations. The "rst one is a forward problem, in which new
modi"ed eigenproperties are predicted utilizing the structural changes together with the
original modal properties. The second one is questioning about the necessary structural
modi"cations which satisfy the desired eigenproperties. This one is an inverse problem and
its solution can be non-unique or non-existent depending on the target modes and the given
restrictions on the structural modi"cations. This paper deals with this inverse problem
accounting especially the local modi"cations, i.e., lumped mass, sti!ness and damping
modi"cations. Special interest is given in this paper to utilizing only the experimental data
obtained from the existing structure throughout the solution procedure.

Many approaches have been suggested to solve this inverse problem based on modal
information. Modal perturbation [1] and localized modi"cation methods [2, 3] were
introduced to change structure eigenvalues. Some researchers utilized iterative method
combined with eigenvalues sensitivity [4]. But these modal domain methods provide the
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accurate solutions of the inverse problem as long as the amount of structural modi"cation is
small or that is just a simple rank-one (i.e., single lumped mass or linear sti!ness)
modi"cation [5]. The major reason for this limitation is due to the so-called modal
truncation error [6, 7]. In most cases, the truncated modal model is obtained from both of
the FE analysis and the experimental modal analysis since only a subset containing lower
modes are available in numerical calculation and in test as well. Up to recent years,
alternative methods have been introduced to "nd the exact solutions of the inverse problem
by relieving this modal truncation error. Bucher and Braun assumed the desired new mode
shape to be a linear combinations of unmodi"ed modal vectors [8]. Tsuei [9, 10], Li [11]
and Park [12] addressed frequency response function (FRF) formulations to relocate modal
frequencies.

Thus, this paper endeavors to "nd analytically the necessary multiple mass, sti!ness and
damping modi"cations in order to exactly achieve both of required eigenvalues and
eigenvectors. The test-based FRF of unmodi"ed structure is used throughout this solution
procedure.

For the theory development, a substructure-coupling concept is introduced. Frequency
response functions of the original structure and those of adding substructures are coupled at
the connecting degrees of freedom (d.o.f.) by using force equilibrium and geometric
compatibility constraints. Finally, a linear algebraic identi"cation equation is obtained to
solve the inverse eigenvalue problem. No iteration is needed for obtaining the exact solution
of the inverse problem but it can be determined analytically by solving this linear algebraic
equation. The existence and uniqueness of the exact solutions are investigated. A special
attention is given to the case where in"nite many structural modi"cations are possible, in
which the least modi"cation can be determined among the possible modi"cations. The
proposed method is applied to a plate structure which is redesigned to have a speci"ed
natural frequency and nodal point. The resulting modi"cations were checked by experiment
and their e!ectiveness was discussed.

2. PROBLEM DEFINITION

The problem de"nition of this paper is how to add multiple lumped masses, linear
grounded sti!nesses and dampers to a baseline structure in order to change the system
natural frequency to a desired value u

n
and also to specify the modeshape to a desired

modal vector /
n
. In this problem, each added structure is assumed to be either

mass}damper system or sti!ness}damper system. Figure 1 shows the schematic diagram for
Figure 1. Multiple lumped structural modi"cations at designated modi"cation d.o.f. in domain M and
modeshape /

n
de"ned in domain R for a natural frequency u

n
.
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the suggesting problem. The modi"cation d.o.f. are designated to N
M

speci"ed locations in
domain M and a mass}damper system or a sti!ness}damper system can be added to each
point. The desired modal vector /

n
is de"ned on partially selected N

R
locations in domain

R. The desired eigenproperties, i.e., u
n

and /
n
, can be assigned arbitrarily.

3. FREE VIBRATION EQUATIONS

This modi"ed structure can be divided into several substructures. Thus, baseline
structure and modi"cation structures are coupled at the interface d.o.f. in domain M as
shown in Figure 1. Each modi"cation substructure is connected to baseline structure at
each interface node. For free vibration case, no external force is exerted on the substructures
except the internal forces at the interfaces. The equation of motion of the substructures can
be described in the stacked form as

C
Hb

MM
(u

n
)

0

0

Hm
MM

(u
n
)D C

fb
M

fm
M
D"C

xb
M

xm
M
D , (1)

where the superscripts b and m denote baseline structure and modi"cation structures,
respectively, and the subscript M denotes modi"cation d.o.f. Hb

MM
(u) and Hm

MM
(u) are the

frequency response function (FRF) matrices of substructures containing the FRFs between
the interface d.o.f. in domain M. fb

M
and fm

M
are the internal force vectors acting on

substructures and xb
M
, xm

M
are the displacement vectors de"ned in domain M. The forces and

the displacements in equation (1) are subject to the force equilibrium and the geometric
compatibility constraints as follows:

fb
M
#fm

M
"0, (2)

xb
M
"xm

M
. (3)

Due to the constraints in equations (2) and (3), not all of the forces and displacements in
equation (1) are independent. By substituting equations (2) and (3) into equation (1) and
rearrange it with respect to fb

M
, we have the free vibration equation of combined structure

for the independent force vector fb
M

as

[Hb
MM

(u
n
)#Hn

MM
(u

n
)]fb

M
"H(u

n
) f"0. (4)

Equation (4) is called the modal force equation [9, 12], which is a key equation in this study.
Non-trivial solution of fb

M
is denoted by the modal force vector f, which consists of the

internal forces acting on the baseline structure when the combined structure vibrates freely.
The modal force matrix, H(u

n
) is the summation of FRF matrix of the baseline structure,

Hb
MM

(u
n
) and that of the modi"cation substructures, Hm

MM
(u

n
). Considering the

modi"cation structures composed of lumped mass}damper systems and sti!ness}damper
systems, the matrix Hm

MM
(u

n
) in equation (4) can be written in detail as

Hm
MM

(u
n
)"

h
1
(u

n
) 0 0 0

0 h
2
(u

n
) 0 0

0 0 } F

0 0 2 hN
M
(u

n
)

. (5)
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h
j
(u

n
) in equation (5) is the point receptance of the jth modi"cation substructure at the

natural frequency u
n
and it is simply

h
j
(u

n
)"

1

d
j
(u

n
)
"

1

!u2
n
m

j
#iu

n
c
j

for mass}damper modi"cation (6)

or

h
j
(u

n
)"

1

d
j
(u

n
)
"

1

k
j
#iu

n
c
j

for sti!ness}damper modi"cation (7)

where d
j
(u

n
) denotes dynamic sti!ness of the jth modi"cation substructure, and m

j
, c

j
and

k
j

(for j"1, 2,2, N
M
) are the amounts of mass, damper and sti!ness modi"cations,

respectively, which are positive de"nite. Experimentally measured FRFs of the baseline
structure can be used directly to form the modal force equation bypassing the numerical
modelling process as shown in equation (4).

The assigned modeshape /
n
is obviously the frequency response due to modal force f at

this desired natural frequency such that

/
n
"Hb

RM
(u

n
) f, (8)

where Hb
RM

(u
n
) is the cross FRF matrix between d.o.f. in domain R and those in domain

M shown in Figure 1.
Note that equations (4) and (8) are the necessary and su$cient conditions for the

requirements that u
n

becomes a new system natural frequency and /
n

is corresponding
mode shape. Hence, the FRFs of the modi"cation substructures in equation (5) are the exact
solution for the given eigenproperty assignment when equations (4) and (8) are satis"ed
simultaneously.

4. DETERMINATION OF EXACT STRUCTURAL MODIFICATIONS

The solution procedure for "nding structural parameters starts from the force}response
relation in equation (8). Modal force vector f can be identi"ed from equation (8) if N

M
"N

R
and Hb

RM
(u

n
) is invertible as

f"Hb
RM

(u
n
)~1/

n
. (9)

By substituting equation (5) into equation (4), we can have a linear algebraic equation for
the FRFs of modi"cation substructures, i.e., h

j
(u

n
) for j"1, 2,2, N

M
as

f
1

0 0 0

0 f
2

0 0

0 0 } F

0 0 2 f
NM

h
1
(u

n
)

h
2
(u

n
)

F

h
NM

(u
n
)

"!Hb
MM

(u
n
) f, (10)

where f
j

is the jth modal force in f which is identi"ed by equation (9). By solving this
algebraic equation, h

j
(u

n
) can be obtained as

h
j
(u

n
)"

1

d
j
(u

n
)
"!

xHb
MM

(u
n
)yT

j
f

f
j

for j"1, 2,2, N
M

, (11)

where xHb
MM

(u
n
)y

j
is the jth row vector of Hb

MM
(u

n
).
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The necessary structural parameters at the jth modi"cation point can be determined
straightforwardly by substituting calculated h

j
(u

n
) in equation (11) into equation (6) or

equation (7) as follows. By comparing the real parts of equations (6) and (7), mass m
j
or

sti!ness k
j
can be determined according to the signs of the real parts since m

j
and k

j
are

positive de"nite as follows:

m
j
"!

1

u2
n

Re[d
j
(u

n
)] when Re [d

j
(u

n
)](0 (12)

or

k
j
"Re [d

j
(u

n
)] when Re [d

j
(u

n
)]'0 (13)

for j"1, 2,2, N
M
. Negative real part of the jth dynamic sti!ness means that the mass e!ect

is required at the jth location for achieving the given eigenproperties, and its positive real
part means that the sti!ening e!ect is required at the same location. Mass and sti!ness in
equations (12) and (13) are the realizations of the necessary physical e!ects of the
modi"cations on the baseline structure. By comparing the imaginary parts of equations (6)
and (7), the damping parameter c

j
can be determined. Since c

j
is positive de"nite, it is

c
j
"

1

u
n

Im [d
j
(u

n
)] when Im[d

j
(u

n
)]'0. (14)

Positive imaginary part of the jth dynamic sti!ness implies that energy dissipation is needed
at the jth location in order to meet the given eigenproperty change and it can be realized
with the passive damping element as shown in equation (14). However, if the jth dynamic
sti!ness has negative imaginary part then the damping parameter should be negative, which
cannot be realized by the passive damping element. It means that in this case an energy
source element, e.g., an excitation device, is required at that node for achieving the given
eigen properties.

When singular condition occurs in equation (11), i.e., f
j
"0, in other words if no internal

force is required at the jth node, any kind of structural element need not be added at that
position. For the condition that h

j
(u

n
)"0 in equation (11), i.e., dynamic sti!ness goes to

in"nity, we know that the jth node should be rigidly supported obviously. The structural
modi"cations determined in equations (12)}(14) are the exact solutions for achieving the
given eigenstructure under the assumptions that the measured FRFs are free of noise. Any
arbitrary natural frequencies and modal vectors of size N

R
except those requiring energy

source elements can be achieved by adding the multiple mass}damper systems and
sti!ness}damper systems described in equations (12)}(14). But due to the practical
limitations of hardware, not all of the structural modi"cations can be realizable although
exact solutions are known in principle.

5. EXISTENCE AND UNIQUENESS OF EXACT SOLUTION

A unique set of exact structural modi"cations can be determined straightforwardly for an
identi"ed modal force vector as described in section 4. Hence, the number of exact solution
is equal to the number of modal force vectors which satisfy the mode shape requirement
shown in equation (8). Considering equation (8), it can be stated about the existence and
uniqueness of the exact structural modi"cations for a given eigenproperty requirement as
follows:



416 Y.-H. PARK AND Y.-S. PARK
Case 1. A unique set of exact structural modi,cation exists when N
M
"N

R
and Hb

RM
(u

n
) is

invertible. In this case, the modal force vector is

f"Hb
RM

(u
n
)~1/

n
. (15)

Case 2. In,nite many sets of exact structural modi,cations exist when N
M
'N

R
. In this

case, the modal force vector is underdetermined [13] as

f"f0#
NM~NR

+
i/1

c
i
f i, (16)

where f0"Hb
RM

(u
n
)`/

n
and superscript#denotes the pseudo-inverse matrix, c

1
, c

2
,2, c

s
(s"N

M
!N

R
) are arbitrary redundant parameters and f i is the ith null vector of Hb

RM
(u

n
),

i.e., f i satis"es

Hb
RM

(u
n
)f i"0 for i"1, 2,2 , N

M
!N

R
. (17)

For a special case when N
M
"1 and N

R
"0, i.e., single structural modi"cation without

modeshape constraint, the solution is unique since the scalar underdetermined modal force
in both sides of equation (10) can be cancelled out and it does not a!ect the solution.

Case 3. Exact structural modi,cation does not exist when N
M
(N

R
. In this case, the

modal force vector is overdetermined. The least-squares error solution of modal force
vector is

f"Hb
RM

(u
n
)`/

n
. (18)

For a special case when the given mode shape vector is included in the range space of
Hb

RM
(u

n
), exact structural modi"cation exists [13].

6. DETERMINATION OF MODIFICATION AMONG INFINITE MANY SOLUTIONS
FOR UNDAMPED STRUCTURES

In previous sections, the exact solutions of inverse eigenvalue problem were considered.
However, although the solutions described in equations (12)}(14) are exact in principle,
actually achievable structural modi"cations can be restricted. In the practical point of view,
the structural modi"cations at some limited number of positions are applicable. Sometimes
the amount of mass and sti!ness modi"cations should be limited also. Then the minimum
modi"cation among the feasible solutions can be preferred. In some practical structures
operating in free}free boundary condition, e.g., aircraft and rockets, the ground sti!ness
modi"cation cannot be achievable but the mass modi"cations are feasible. In this section,
a procedure to determine the structural modi"cations under their restrictions mentioned
above is presented.

As shown in section 5, in"nite many structural modi"cations which achieve the given
eigenproperties exist when modal force vectors are underdetermined. Considering the
hardware restrictions on the structural modi"cations, how to select the best one among
those in"nite many solutions may be a question at this moment. In this section, an
approximate but simpli"ed procedure for selecting the best modi"cation will be described
under the assumption that the baseline structure is undamped. Under this assumption, the
FRFs of the baseline structure can be assumed to be real-valued functions and consequently
the structural modi"cations are restricted to the mass and sti!ness additions as one can see
in equations (12) and (13).
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By substituting equation (16) into equation (11), the dynamic sti!ness of the jth adding
structural element can be written in terms of redundant parameters (c

1
, c

2
,2 , c

s
) as

d
j
(u

n
)"

f
j

!xHb
MM

(u
n
)yT

j
f
"

f 0
j
#+s

i/1
c
i
f i
j

g0
j
#+s

i/1
c
i
g i
j

,

f
j
(c)

g
j
(c)

, (19)

where c"[c
1
, c

2
,2, c

s
]T, f i

j
"xf iy

j
and gi

j
"!xHb

MM
(u

n
)yT

j
f i (for i"0, 1, 2,2, s and

j"1, 2,2 , N
M

). When the baseline structure is undamped and normal mode shape /
n
is

considered, all of functions and variables in equation (19) are real-valued. The sign of d
j
(u

n
)

in equation (19), which varies with the parameters (c
1
, c

2
,2, c

s
), determines which kind of

structural modi"cation among mass and sti!ness is applicable as shown in equations (12)
and (13). Thus, the structural modi"cation at the jth node (for j"1, 2,2 , N

M
) can be

determined directly by examining the signs of f
j
(c) and g

j
(c) as follows:

mass modi"cation is feasible when f
j
(c) ) g

j
(c)(0, (20)

sti!ness modi"cation is feasible when f
j
(c) ) g

j
(c)'0, (21)

need not to be modi"ed when f
j
(c)"0, (22)

rigid support is feasible when g
j
(c)"0. (23)

The restrictions on the amount of mass or sti!ness modi"cation at the jth node can be
described by the following inequalities:

m
j
)M

max
, (24)

k
j
)K

max
, (25)

where M
max

and K
max

are the maximum allowed mass and sti!ness modi"cations.
Equations (24) and (25) also can be written in terms of redundant parameters (c

1
, c

2
,2 , c

s
)

using equations (12), (13) and (19) as follows:

for mass constraints r
mj

(c)"r0
mj
#

s
+
i/1

c
i
ri
mj G

*0

)0

when g
j
(c)'0,

when g
j
(c)(0,

(26)

for sti!ness constraints r
kj

(c)"r0
kj
#

s
+
i/1

c
i
ri
kj G

*0

)0

when g
J
(c)'0,

when g
j
(c)(0,

(27)

where ri
mj
"f i

j
#u2

n
M

max
g i
j

and ri
kj
"!f i

j
#K

max
g i
j

for i"0, 1, 2,2 , s and j"1,
2,,2, N

M
. To get the practically achievable structural modi"cation at the jth node, the

redundant parameters (c
1
, c

2
,2, c

s
) should be selected to satisfy one of the equations

(20)}(23), and also satisfy equation (26) or equation (27).
The constraints in equations (20)}(23) and equations (26) and (27) can be examined

systematically by using the following vector space approach. Consider the hyperplanes,
which are de"ned in a s-dimensional linear spaces as

f
i
(c)"f 0

j
#

s
+
i/1

c
i
f i
j
"0, (28)

g
j
(c)"g0

j
#

s
+
i/1

c
i
gi
j
"0, (29)
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where c"[c
1
, c

2
,2, c

s
]T denotes a state vector which represents the point in an

s-dimensional linear space. The normal vectors of those planes are

n
fj
"[ f 1

j
, f 2

j
,2 , f s

j
]T for f

j
(c)"0, (30)

ngj
"[ g 1

j
, g 2

j
,2, gs

j
]T for g

j
(c)"0. (31)

The hyperplane f
j
(c)"0 divides the s-dimensional linear space into two half-spaces and so

does the hyperplane g
j
(c)"0. f

j
(c) and g

j
(c) have positive values when the point c is placed

in the upper half-spaces of those hyperplanes, i.e., the half-spaces in normal vector
directions from the hyperplanes. The signs of f

j
(c) and g

j
(c) alter when the point c crosses

over those hyperplanes. The signs of r
mj

(c) and r
kj

(c) can be examined by using their
hyperplanes r

mj
(c)"0 and r

kj
(c)"0 as references in the similar way. For an illustration,

a structural modi"cation problem involving three modi"cation nodes (N
M
"3) and one

modeshape constraint (N
R
"1) is considered. In this case, the modal force vector de"ned in

equation (8) is underdetermined and has two redundant parameters, i.e., c"[c
1
, c

2
]T. Thus,

hyperplanes in equations (28) and (29) for the "rst node ( j"1) form lines in c
1
}c

2
plane as

shown in Figure 2. Those two lines divide c
1
}c

2
plane into four sub-regions, which can be

matched to the corresponding structural modi"cations determined from equations (20) and
(21). Redundant parameters (c

1
, c

2
) on the line g

1
(c)"0 yield rigid support and those placed

on f
1
(c)"0 yield no modi"cation at the "rst node for achieving the given eigenproperties

according to equations (22) and (23). Assuming that mass modi"cation is desired for the "rst
node, then the redundant parameters (c

1
, c

2
) should be selected in region A or region B. If

the mass is limited as equation (24), then the feasible region of (c
1
, c

2
) shrinks to region

B
1

since the constraint in equation (26) as well as equation (20) should be satis"ed.
Obviously, the mass modi"cation under its constraint in equation (26) is shown to be
feasible for achieving the given eigenproperties because the region B

1
is not empty. Two

other structural modi"cations for the rest of nodes M
2

and M
3

can be examined by the
same way.

In general case, when s redundant parameters are involved, the hyperplanes f
j
(c)"0,

g
j
(c)"0, r

mj
(c)"0 and/or r

kj
(c)"0 (for j"1, 2,2 , N

M
) can be expressed explicitly in

terms of the linear equations of redundant parameters (c
1
, c

2
,2, c

s
) . Using these

hyperplanes the feasibility of trial structural modi"cations can be examined analytically
Figure 2. Redundant parameters (c
1
, c

2
) and corresponding feasible structural modi"cations for the "rst node

( j"1); regions A and B are feasible for mass modi"cation and region B
1

is feasible for mass modi"cation together
with its constraint in equation (24).
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through the same vector space approach described in the above illustration. Though the
hyperplanes are known in explicit forms, somehow complicated calculations are required to
identify the sub-regions surrounded by the known hyperplanes in general case. Note that in
the entire procedure, only the measured FRFs of the baseline structure are required.

Furthermore, structural weights and/or sti!ness can be minimized with respect to
redundant parameters (c

1
, c

2
,2, c

s
) de"ned in the resulting feasible region if necessary.

This minimization requires solving a linear-constrained non-linear-optimization problem
in aids of some of non-linear programming techniques since the resulting mass and
sti!ness in equations (12) and (13) are non-linear functions of the redundant parameters
(c

1
, c

2
,2 , c

s
).

7. EXAMPLES

The proposed method is applied to a plate structure shown in Figure 3 by experiments.
The example structure is a simply supported steel square plate having dimensions
800 mm]800 mm]3 mm. To account more practical situation, an uncertain boundary
condition is given on purpose: the lower-left corner of the plate is supported by a linear
spring having unknown sti!ness. The measured natural frequencies and damping ratios of
the plate are listed in Table 1. Two examples will be shown in this section. The "rst example,
the simplest and straightforward case, is aimed to "nd an exact single structural
modi"cation only for a natural frequency reallocation of the plate. In the second one, more
complicated case, both of the natural frequency and the modeshape are modi"ed
TABLE 1

Measured natural frequencies and damping ratios of an example plate

Mode no. Natural frequency (Hz) Damping ratio (%)

1 7)8 0)8
2 15)7 0)6
3 15)8 0)6
4 21)6 0)1
5 35)2 0)9
6 47)3 0)2

Figure 3. Modi"cation d.o.f. (M
1
, M

2
and M

3
) and a response d.o.f. (R

1
) on the example plate supported by

three rigid supports and a spring support having unknown sti!ness.
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simultaneously by the multiple structural modi"cations through the approximate solution
procedure described in section 6.

The objective of the "rst example is to "nd exact lumped mass}damper or mass}sti!ness
modi"cation at node M

2
(N

M
"1) shown in Figure 3 which reallocates the second natural

frequency from 15)7 to 18)0 Hz without any constraint on its modeshape (N
R
"0). In this

case, an unique exact solution exists for the given natural frequency requirement as
described in section 5. The measured point receptance of the baseline plate at node M

2
is

hb
M2M2

(18)0 Hz)"[!36)9#1)1i]]106. (32)

In this case, the modal force f is scalar. The dynamic sti!ness of the modi"cation structure at
node M

2
can be obtained from equations (11) and (32) as

d (18)0 Hz)"
1

hb
M2M2

(18)0 Hz)
"[27)1#0)8i]]103. (33)

Since the real part of the dynamic sti!ness d(18.0 Hz) is positive, sti!ness element is
determined to be added to node M

2
according to equation (13). Finally, the exact sti!ness

and damping parameters of the sti!ness}damper modi"cation for this natural frequency
reallocation are found from equations (13) and (14) as

k"27)1 kN/m and c"7)1 Ns/m. (34)

Figure 4 shows the FRF change due to the resulting sti!ness}damper modi"cation. As one
can see, the sti!ness}damper modi"cation given in equation (34) reallocates the second
natural frequency to 18)0 Hz. Experimentally measured FRFs of the baseline structure can
be used directly to form the modal force equation bypassing the numerical modelling
process as shown in equation (4).

To show a more complicated application of the proposed method, the assignment of
modeshape as well as that of natural frequency of the second mode is considered in the
second example. Also extra constraints on the structural parameters are introduced. The
objective of the second example is to "nd the structural elements added to three designated
nodes M

1
, M

2
and M

3
(N

M
"3) shown in Figure 3 which reallocate the second natural

frequency from 15)7 to 18)0 Hz and place its nodal point to node R
1

(/
n
"0, N

R
"1)

simultaneously. This nodal point assignment is aimed to minimize the vibration response at
Figure 4. FRF change due to a sti!ness}damper modi"cation at node M
2

(k"27)1 kN/m, c"7)1 N s/m):
- - - - -, original FRF of the plate; **, modi"ed FRF of the plate.



STRUCTURAL DYNAMICS MODIFICATION 421
node R
1

caused by the excitation of the second mode. It is assumed that the structural
modi"cations at the three nodes are restricted to be sti!ness modi"cations only. The
amounts of the sti!nesses are also assumed to be restricted up to 30)0 kN/m such that

k
j
)K

max
"30)0 kN/m for j"1, 2, 3. (35)

In this case, Hb
RM

(18)0 Hz) is a 1]3 matrix and the modal force vector de"ned in equation
(8) is underdetermined, hence in"nite many exact structural modi"cations exist. The
number of redundant parameters is 2 (s"N

M
!N

R
"2). Instead of an exact solution, an

approximated solution will be found through the solution procedure described in section
6 and the results were compared to the exact solution. To get the force response equation,
i.e., equation (8), the cross receptances of the baseline plate between three modi"cation
nodes (M

1
, M

2
and M

3
) and one response node (R

1
), i.e., Hb

RM
(18)0 Hz) were measured as

Hb
RM

(18)0 Hz)"[20)9!1)0i 30)9!1)8i 10)6!0)6i]]10~6. (36)

The point and cross receptances between the three modi"cation nodes, i.e., Hb
MM

(18)0 Hz)
were also measured to get the modal force equation, i.e., equations (4) as follows:

Hb
MM

(18)0 Hz)"

!66)8#3)6i !47)9#2)8i !4)9#0)5i

!36)9#1)1i !46)2#3)7i

sym. !39)0#2)9i

]10~6. (37)

Since the modal dampings of the plate shown in Table 1 are su$ciently small, the plate can
be assumed to be an undamped system. Under the assumption that the plate is undamped,
the real parts of the measured FRFs in equation (36) and (37) are used in the solution
procedure while the imaginary parts are neglected, which have relatively small values
compared to the real parts except in the vicinities of resonant frequencies. By using this
assumption, all of the functions and variables considered in the second example become
real-valued. From equation (16), underdetermined force vector f(c) (3]1) can be identi"ed
as

f (c)"[ f
1
(c), f

2
(c), f

3
(c)]T"c

1
f1#c

2
f2, (38)

where c"[c
1
, c

2
]T and c

1
, c

2
are redundant parameters. In this case, f0"0 since /

n
"0 as

shown in equation (16). Null vectors of Hb
RM

(18)0 Hz) are f1"[!84)2, 51)0, 17)5]T]10~2

and f2"[0, !32)5, 94)6]T]10~2. By substituting equation (38) into equation (19), g(c) can
be obtained as

g(c)"[g
1
(c), g

2
(c), g

3
(c)]T"c

1
g1#c

2
g2, (39)

where g1"[!31)0, !13)5, 26)2]T]10~6 and g2"[!10)9, 31)7, 21)9]T]10~6. From
equation (19), the dynamic sti!nesses of the three modi"cation structures can be written
with respect to the redundant parameters c

1
and c

2
by using the calculated f(c) and g(c) as

d
j
(18)0 Hz)"

f
j
(c)

g
j
(c)

"

c
1

f 1
j
#c

2
f 2
j

c
1

g1
j
#c

2
g2
j

for j"1, 2, 3. (40)

Hyperplanes f
j
(c)"0 and g

j
(c)"0 (for j"1, 2, 3) in this example are plotted on c

1
}c

2
plane

as shown in Figure 5. The hyperplanes are lines in this case. Sub-regions A}F divided by
these lines indicate the corresponding combinations of the three necessary structural
modi"cations for achieving the given eigenproperties, which are determined from equations
(20)}(23). Figure 5 reveals that only the sub-sets of all possible combinations of the
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Figure 5. The relation between redundant parameters (c
1
, c

2
) and the feasible structural modi"cations at the

three modi"cation d.o.f. A (sti!ness, sti!ness, sti!ness); B, D and F (sti!ness, mass, sti!ness); C (mass, mass,
sti!ness); E (sti!ness, mass, mass). The region A

1
is feasible for the three sti!ness modi"cations together with the

constraints described in equation (35).

structural modi"cations are feasible in this case: these are (sti!ness, sti!ness, sti!ness)
modi"cations for region A, (sti!ness, mass, sti!ness) modi"cations for regions B, D and F,
(mass, mass, sti!ness) modi"cations for region C, and (sti!ness, mass, mass) modi"cations
for region E. These four combinations of structural modi"cations can be realized selectively
by choosing the redundant parameters (c

1
, c

2
) in one of regions A}E. In order to obtain

sti!ness modi"cations at all three nodes, the redundant parameters (c
1
, c

2
) should be

selected in region A. Extra constraints on the three sti!ness de"ned in equation (31) can be
written with respect to redundant parameters (c

1
, c

2
) from equations (27) as

r
k1

(c)"!8)7c
1
!3)3c

2G
*0

)0

when g
1
(c)'0,

when g
1
(c)(0,

(41)

r
k2

(c)"!9)1c
1
#12)8c

2G
*0

)0

when g
2
(c)'0,

when g
2
(c)(0,

(42)

r
k3

(c)"6)1c
1
!2)9c

2G
*0

)0

when g
3
(c)'0,

when g
3
(c)(0.

(43)

The feasible region of (c
1
, c

2
) for the sti!ness modi"cations together with their constraints is

obviously the intersection of region A and the constraint region de"ned in equations
(41)}(43): that is region A

1
which can be written explicitly as

A
1
"M(c

1
, c

2
) D51)0c

1
!32)5c

2
*0 and !9)1c

1
#12)8c

2
*0N. (44)

The feasible region A
1

is not empty. It reveals that the trial sti!ness modi"cations for
achieving the given eigenproperties together with their constraints in equation (35) are
practically achievable in this case. Consequently, we can write down the sti!nesses at the
three nodes explicitly from equations (13), (40) and (44) as follows:

k
1
"

84)2c
1

31)0c
1
#10)9c

2

]104 N/m, (45)



Figure 6. Variations of sti!ness versus c
2

when c
1
"1. Redundant parameters c

1
and c

2
belong to the feasible

region A
1

in Figure 5. The sti!nesses are calculated from equations (45)}(47): - - - - , k
1
; } ) } ) }, k

2
; } ) ) }, k

3
;22,

total sti!ness.
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k
2
"

51)0c
1
!32)5c

2
!13)5c

1
#31)7c

2

]104 N/m, (46)

k
3
"

17)5c
1
#94)6c

2
26)2c

1
#21)9c

2

]104 N/m, (47)

where the redundant parameters (c
1
, c

2
), are de"ned in the region A

1
.

Minimum modi"cations were found as the redundant parameters (c
1
, c

2
) vary in the

feasible region A
1
. Without loss of accuracy in this case, the minimum total sti!ness was

found as c
2

varies on the line c
1
"1. Figure 6 shows the line search result. The minimum

total sti!ness of 44.9 kN/m was obtained when c
1
"1 and c

2
"1)57. Three resulting

sti!nesses are

k
1
"17)5, k

2
"0)0 and k

3
"27)4 kN/m. (48)

It is interesting that k
2

is determined to zero since the point (c
1
, c

2
)"(1, 1)57) is placed on

the line f
2
(c)"0 as shown in Figure 5. Figure 7 and 8 show that the second mode of the

modi"ed plate has natural frequency of 18)0 Hz and nodal point at node R
1
by the additions

of calculated sti!nesses.
The resulting sti!nesses in equation (48) were calculated under the assumption that the

plate is undamped. To examine the validity of this assumption, the approximated sti!nesses
in equation (48) were compared to an exact solutions which are calculated from the same
FRFs in equations (36) and (37) without neglecting the imaginary parts of those FRFs. To
"nd the exact modi"cations, complex-valued f (c) and g(c) were calculated from the
measured FRFs in equations (36) and (37), and the same redundant parameters (c

1
, c

2
)"1,

1)57) were used. Then the complex-valued dynamic sti!nesses d
j
(18)0 Hz) (for j"1, 2, 3) in

equation (40) were obtained as

d
1

(18)0 Hz)"(17)5#0)9i)]103, (49)

d
2

(18)0 Hz)"(0)0#0)1i)]103, (50)

d
3
(18)0 Hz)"(27)2#1)9i)]103. (51)



Figure 7. FRF changes due to structural modi"cations: - - - -, original FRF of the plate;*, modi"ed FRF of the
plate after the approximated sti!ness modi"cations in equation (48); - ) - ) -, modi"ed FRF of the plate after the
exact sti!ness}damper modi"cations in equations (52) and (53).

Figure 8. Contour plots of the modeshapes of the plate before and after the sti!ness modi"cations in equation
(48), k

1
"17)5, k

2
"0)0 and k

3
"27)4 kN/m: , nodal line; d, desired nodal point; (a) original modeshape of the

second mode of the plate (15)5 Hz); (b) modi"ed modeshape after the sti!ness modi"cations (18)0 Hz).
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From equations (13) and (14), the corresponding exact structural parameters of the
sti!ness}damper modi"cations were obtained as

k
1
"17)5, k

2
"0)0 and k

3
"27)2 kN/m, (52)

c
1
"8)0, c

2
"0)9 and c

3
"16)8 Ns/m. (53)

Comparing equations (48) and (52), the approximated sti!nesses in equation (48) di!er from
the exact solutions up to 0)8%. However, the exact damping modi"cations in equation (53)
are needed to achieve the imaginary parts of the complex dynamic sti!nesses in equations
(49)}(51). Figure 7 shows that the imaginary parts of the complex dynamic sti!nesses in
equations (49)}(51). Figure 7 shows that these additional damping modi"cations reduce the
frequency response of the plate in the vicinities of the modi"ed natural frequencies. But
these damping additions do not a!ect the system natural frequencies considerably. The
approximated sti!ness modi"cations in equation (48) and the exact sti!ness}damper
modi"cations in equations (52) and (53) yield the same natural frequency of 18)0 Hz: the
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natural frequency di!erence is observed to be less than the frequency resolution used in this
experiment, i.e., 0)08 Hz. This indicates that the assumption used in calculating the
approximated sti!nesses is valid in this low-damping case. However, if the damping of the
baseline structure is not negligible, the approximated modi"cation will produce large errors
of resulting eigen properties from those obtained from exact solutions. In this case, only the
exact structural modi"cations are valid, and the simple vector space approach described in
section 6 cannot be applied.

It is interesting that the unknown sti!ness support was left to unknown value in
calculating the exact structural modi"cations. Since the proposed method is based on the
experimental data which re#ect the e!ect of the uncertain boundary condition, extra e!orts
to identify the uncertainty is not needed. This point shows an advantage of the proposed
experimental method when it is applied to complex real structures which normally require
expensive numerical modelling and veri"cation process.

8. CONCLUSIONS

An analytical approach for the structural modi"cation using multiple lumped masses,
dampers and sti!nesses was presented to exactly achieve the pre-determined system natural
frequency and modeshape simultaneously. An FRF-based substructure-coupling concept is
used for the identi"cation of structural parameters. In the solution procedure, only the
measured FRFs at the designated positions are required without any need of the numerical
model of an existing structure.

When the number of modeshape constraints and that of structural modi"cation are
equal, a unique exact structural modi"cation exist and the modi"cation can be identi"ed
straightforwardly. When in"nite many exact modi"cations exist, the modi"cation consists
of the summation of redundant modi"cations. The redundant modi"cations can be used to
meet the hardware restrictions on the structural modi"cations. Under the assumption that
the existing structure is undamped, this paper suggests a vector space approach to examine
the feasibility of the potential structural modi"cations among the in"nite many
modi"cations. Though the approach is not straightforward, it can provide the explicit
expressions of the feasible structural modi"cations.

In the example of a plate structure, minimum sti!ness modi"cation were identi"ed
e$ciently to reallocate a natural frequency and a nodal point. For damped systems, not
only mass and sti!ness but also damping modi"cation is required to exactly get the desired
modes. However, the result of the example reveals that the imaginary parts of the measured
FRFs are related especially to the resulting damping modi"cation, which does not a!ect the
system modes considerably in lightly damped systems. Hence, the resulting approximated
modi"cations under the undamped-system assumption are found to be valid for lightly
damped systems.

The modal change, which is considered in this paper, can be useful to modify the other
system dynamic behaviors. In the example of the paper, to show one of this usefulness, the
nodal point assignment is considered to minimize the vibration response at a speci"c
position. However, the improvement of the vibration at one position can make it worse at
the other positions. Meanwhile, modifying too many vibration responses may require
impractical structural modi"cations. Hence, in order to get the e$cient modi"cations, the
target modes should be determined carefully according to the desired dynamic
characteristics before conducting the structural modi"cations.

The identi"ed structural modi"cations of the proposed method are exact when the
measured FRFs are free of noise. But sometimes it is di$cult to get accurate FRFs. Further
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works should deal with the e!ects of the measurement errors on resulting modi"cations to
obtain a reliable structural modi"cation.
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