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Geometrical-acoustics approach interprets vibration modes localized at the edge of
wedges as the quasi-plane #exural waves propagating in a plate of variable thickness. This
approach is combined with the dispersion relation for #exural wave in a thin anisotropic
#uid-loaded plate to analytically determine the subsonic velocities c of the localized modes
in anisotropic immersed wedges. The transcendent equation in c is established for an
arbitrarily anisotropic wedge material and a general case of the wedge}#uid coupling. An
approximate explicit solution for c is obtained in the cases when the parameter of the
wedge-#uid coupling hn/r is either small or large (here h is the apex angle, n is the modal
order, and r is the ratio of the #uid density and the wedge density). In both cases, the ratio of
the wedge-mode velocities c/c

0
in the immersed and free wedge is a corresponding function

of the coupling parameter hn/r. Provided that the wedge}#uid coupling is su$ciently
pronounced, the ratio c/c

0
in the presence of anisotropy acquires the scaling factor, which

depends appropriately on elastic coe$cients of the wedge and turns to unity in the isotropic
limit.
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1. INTRODUCTION

Flexural wedge waves propagating along the edges of free elastic wedges were predicted in
1972 by Lagasse [1] and Maradudin et al. [2], and have been studied since then both
theoretically and experimentally (see references [3}12]). The absence of dispersion, low
velocity, and localization near the wedge tip make these waves attractive for possible
applications in signal processing, non-destructive testing of special engineering
constructions, structural dynamics, etc. Because of the complexity of the boundary problem,
no exact analytical theory of wedge waves is available even for the case of elastically
isotropic material of a wedge. The approximate analytical model, based on the geometrical
acoustics approach, has been put forward for free slender wedges consisting of isotropic
[5, 6] and anisotropic [7, 12] materials.

More recently, #exural localized waves in #uid-loaded wedges have been also
investigated [11, 13}17]. It was shown in reference [16] that the geometrical-acoustics
method for isotropic immersed wedges provides good agreement with experiment. In the
present paper, this method is further developed and applied to obtain explicit analytical
approximation for the case of an anisotropic immersed wedge.
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Figure 1. Geometry of the problem.
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2. GENERAL CASE OF WEDGE-FLUID COUPLING

Consider a #uid-loaded elastic wedge with an acute apex angle h. According to reference
[16], the velocity c of the nth order antisymmetric localized mode, propagating along the
edge, may be de"ned by the equation in its wavenumber b"u/c,

P
C

[k2
a
(x, u)!b2]1@2 dx"2pn (n"1, 2,2), (1)

where

b"k
a
(x, u) cos u, (2)

x is the co-ordinate orthogonal to the wedge edge; u is the polar angle varying in the
mid-plane of the wedge, and k

a
is the wavenumber of the #exural mode in a #uid-loaded

plate of the small variable thickness h"hx. The integration path C follows the ray
trajectory, which starts from the edge x"0 at u"n/2, passes the turning point x

t
corresponding to u"0, and returns to the edge x"0 with u"!n/2 (Figure 1).

Let c
f

be the speed of sound in #uid, o
f

the density of #uid, and o the density of wedge
material. Denote their ratio by

r"
o
f

o
. (3)

Regarding the #exural wavenumber k
a

for a thin (k
a
h@1) #uid-loaded plate

of unrestricted anisotropy, it can be shown that the corresponding approximate
dispersion equation in the subsonic region u/k

a
(c

f
may be written similar to the case of

isotropy as

k5
a
h3!

u2

c2
k
a
h!2r

u2

c2
"0, (4)
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where

c"
c
0a

k
0a

h
(5)

is the coe$cient of linear dependence of the velocity c
0a

upon the wavenumber k
0a

for the
free-plate #exural mode at k

0a
h@1. (Throughout the paper, subscript 0 indicates reference

to the mechanically free state as opposed to the #uid-loaded state for both a plate and
a wedge.) The angular dependence c"c(u) accounts for the e!ects of anisotropy. For an
arbitrary anisotropic elastic material it follows that [18]

c(u)"
Jm ) [(mm)!(mn) (nn)~1(nm)]m

2J3o
, (6)

where m"m (u) is the unit vector turning about the angle u in the mid-plane, n is the unit
vector normal to the mid-plane, and (2) are the matrices written by means of notation:
(ab),a

j
c
ijkl

b
k
for any vectors a, b. In the generic case, the quadratic form under the radical

in equation (6) is a homogeneous polynomial of the fourth degree in sin u, cos u with the
coe$cients depending on elastic moduli. It is strictly positive de"nite for an arbitrary
elasticity tensor c

ijkl
and any vectors m, n [19]. In the case of isotropy in the mid-plane, the

coe$cient c has the constant value c"c
0p

/2J3, where

c
0p
"S

1

o Ac11!
c2
13

c
33
B (7)

is the velocity of longitudinal dilatational mode in a free transversely isotropic plate with
the principal symmetry axis orthogonal to the faces (for brevity, this setting is hereafter
referred to as isotropic).

By equation (2), equation (1) may be cast into the form

b P
C

tanu dx"2nn. (8)

Correspondingly, substituting h"hx and equation (2) into equation (4) leads to the
equation, which involves variables x, u and the unknown constant parameter b"u/c.
Taking u as a free variable speci"es this equation as a cubic one in x (u). The correctly
chosen root which tends to the appropriate solution x (u)"c2 cos2 u/uhc(u) of equation
(4) in the limit of vanishing #uid density rP0, is

x (u)"
(rc5)1@3

uhc2@3(u) CA1#S1!
c2 cos2 u
27r2c2(u)B

1@3
#A1!S1!

c2 cos2 u
27r2c2(u)B

1@3

D cos5@3u. (9)

Rewriting equation (8) in the form

u
c P

~n@2

n@2
x@(u) tan u du"2nn (10)

and inserting the derivative of equation (9) yields the transcendent equation in c, which is
applicable for an arbitrary anisotropic material of the slender wedge and any orientation of
its mid-plane. (Once the latter is "xed, integral (10) does not depend upon the orientation of
the edge in the given plane due to the period p of c (u).) At the same time, the unknown
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c appears under the integral, which cannot be evaluated explicitly even in the case of
isotropy, so this equation may be solved only numerically.

Seeking explicit analytical solution for the wedge-mode velocity, one has to implement
further approximation of the thin-plate dispersion relation (4). The approximation may be
stipulated by two alternative strong inequalities k

a
h@r and k

a
hAr. When applied for the

immersed-wedge problem, those two limiting cases may be interpreted as, respectively,
strong and weak wedge-#uid coupling.

3. STRONG WEDGE-FLUID COUPLING

Suppose that k
a
h@r. Then (4) yields the approximate solution

k
a
+

(2r)1@5

(hx)3@5 A
u
cB

2@5
, (11)

where h"hx has been taken into account. If the wedge is isotropic, then inserting equation
(11) into equation (2) allows resolving it for tan u as a function of x and taking the integral
in equation (8), as has been done in reference [16]. This procedure can no longer be carried
out in the presence of anisotropy, when c"c(u). At the same time, combining equations
(11) and (2) readily supplies x as a function of u.

x (u)"
(2rc)1@3

hu
cos5@3u
c2@3(u)

, (12)

which approximates equation (9). On inserting the derivative x@ (u) into equation (10), one
obtains the wedge-mode velocity c in the following explicit form:

c"
2n3@2

I

(hn)3@2

r1@2
, (13)

in which

I"GP
~n@2

n@2 C
cos5@3u

c2@3(u) D
@
tan u duH

3@2
. (14)

Recall that, according to reference [12], the velocity c
0

in the free (dry) anisotropic wedge is

c
0
"

p

J3J
hn, (15)

where

J"
1

2J3 P
~n@2

n@2 C
cos2u

c(u) D
@
tan u du. (16)

Hence, equation (13) may be presented in the form

c

c
0

"

2J3nJ

I S
hn

r
, (17)
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where the "rst fraction on the right-hand side depends (only) on elastic coe$cients of an
anisotropic wedge.

In the case of isotropic wedge,

I(iso)"
2J3m3@2

c
0p

, (18)

where c
0p

is the plate velocity (7), and the notation m is used for the table integral

m,5 P
1

0

J1!y3 dy+4. (19)

Then equations (13) and (17) reduce to the result obtained in reference [16], namely,

c(iso)"A
n
mB

3@2 c
0p

J3

(hn)3@2

r1@2
,

c(iso)

c(iso)
0

"A
n
mB

3@2

S
hn

r
, (20a, b)

in which

c(iso)
0

"

c
0p

J3
hn (21)

is the velocity of the nth mode in the free isotropic wedge [5]. Conjunction of equations (13)
and (20a) leads to the relation

c"sc(iso), (22)

where c(iso) is the velocity for the reference isotropic material, which is characterized by the
value c

0p
in it, and

s"2J3m3@2
1

c
0p

I
(23)

is the scaling factor describing the impact of the wedge material anisotropy on the velocity
in the immersed wedge. For comparison, a similar factor s

0
for the free wedge is, by

equations (15) an (21),

c
0
"s

0
c(iso)
0

, s
0
"n

1

c
0p

J
. (24)

Let us evaluate the range of validity of the obtained solution which is stipulated by the
initial assumption k

a
h@r. Combining equations (11)}(13) gives k

a
h"(2n cos2@3u/(cI)2@3) hn,

so that (k
a
h)

max
&hn, where the numerical factor is of the order of unity (it is 2n/m+1)5 in

the case of isotropy). Hence, a good approximation for the velocity of the nth wedge mode is
guaranteed in the range

hn

r
@1 . (25)

Regarding the range of values of the apex angle h, recall that the geometrical acoustics
approach is well justi"ed provided that h is small [5, 6]. At the same time, it has been noted
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in reference [16] that the theoretical expression (20b) for the ratio of velocities in the
isotropic immersed and free wedge manifests a remarkably good agreement with the
experimental results also for large h, which is probably due to the fact that the application of
the thin-plate approximation to the case of large h brings in the same relative distortions
into the free- and immersed-wedge velocities, so that they cancel when the ratio of these
velocities is taken. Anyhow, this conjecture seems to be less likely in the case of generic
anisotropy, which is prone to entail dissimilar dispersion dependencies of the velocities in
the free and immersed thick plates (as distinct from the thin plates, for which anisotropy
retains the dependence on kh, a!ecting only the coe$cients).

As an example, consider a wedge made of the tetragonal material, with the mid-plane
orthogonal to the four-fold axis. Then

c(u)"
c
0p

2J3
J1!A sin2 2u, (26)

where A"(c
11
!c

12
!2c

66
)/2oc2

0p
is the anisotropy parameter, which shows the

departure of a given tetragonal material from the reference (transversely) isotropic material
with the same value c

0p
. Assuming weak anisotropy ( DA D@1) readily allows explicit

evaluation of the integral (14), so that, by equation (23), the scaling factor for the immersed
wedge is s+1#0)23A. For comparison, the scaling factor for the same wedge in vacuum
is, by equation (24b), s

0
+1!0)25A.

4. WEAK WEDGE-FLUID COUPLING

Now we suppose that r@k
a
h (@1). Then the dispersion equation (4) for a #exural-mode

wavenumber k
a
in a thin immersed plate may be approximately replaced by the equation

k3
a
h2!

u
c

k
a
h!

u
c

r"0. (27)

Seeking the solution k
a
as a disturbance of the corresponding wavenumber k

0a
"Ju/ch in

a free plate (see equation (5)), we obtain

k
a
"k

0a
#

r

2h
. (28)

Inserting h"hx and combining equation (28) with equation (2) leads to the relation

x (u)"
c2 cos2 u
uhc(u)

#r
c cos u

uh
, (29)

which approximates equation (9) for the weak-coupling limiting case. In this relation, we
observe the #uid-uncoupled term and its perturbation by #uid loading, and we note that the
presence of anisotropy a!ects the "rst term, but not the second one. Substituting the
derivative of equation (29) into equation (10) yields the equation

2nn
c

c
0

#2
r

h P
n@2~d

0

sin2u

cosu
du"2nn. (30)
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On the left-hand side of equation (30), c
0

is the velocity in the free wedge, given
by equation (15), and c is the unknown velocity in the immersed wedge, whose value
is a!ected by the #uid-loading perturbation described by the second term. Cutting
o! the integration path close to the edge (taking the upper limit in the integral in equation
(30) to be n/2!d, where 0Od@1) in the considered approximation is stipulated by the
initial assumption r@k

a
h, which prevents h from reaching zero. The value d in the leading

approximation may be evaluated using the limiting estimate r&k
0a

h and neglecting
anisotropy in it. Then, recalling that u/c

0
"k

0a
cosu (see equation (2)) and invoking

equations (5) and (21), we may put

d"
r

2hn
@1. (31)

Applying equation (31) to the integral in equation (30) and con"ning to the principal order
of approximation at r/hn@1 gives

c

c
0

"1!
r

nhn
ln A

4

e

hn

r B . (32)

It is clear that equation (32) applies to the range of values hn/r, certainly exceeding e2/4, for
which c/c

0
monotonically increases with growing hn/r and tends to 1 at hn/rA1.

Comparison of the dependence (32) with the numerical solution of the transcendent
equation [16] and experimental results [14], obtained for the mode n"1 in the isotropic
case (brass wedge immersed in water, r"o

f
/o+0)11), shows a good agreement for apex

angles h'203 (hn/r'3). Note that the dependence of c/c
0

solely on the ratio hn/r, where
r@1, may explain why in this case equation (32), based on the thin-plate approximation,
applies for h being not small.

It should be noted that the numerical factor (4/e) under the logarithm in equation
(32) is a result of the rather rough approximation. However, the possible theoretical
inaccuracy in predicting this factor is not critical in the range hn/rA1, where this
logarithm is a very slowly changing function anyway. With this reservation borne
in mind, it follows from equation (32) that the weak wedge}#uid coupling in the leading
approximation does not depend on elastic coe$cients and hence on the elastic anisotropy.
In other words, in this case the e!ect of anisotropy on the velocity c in the immersed
wedge is described by the same scaling factor as on its value c

0
in the free wedge (see

equations (24)).

5. CONCLUSIONS

Localized modes in immersed anisotropic wedges have been considered. The
transcendent equation for wedge-mode velocity c is obtained for an arbitrary material of the
wedge and a general case of the wedge}#uid coupling. The approximate explicit solution for
the ratio of wedge wave velocities c/c

0
in the immersed and free wedge has been established

in the cases of strong and weak wedge}#uid coupling as functions of the coupling parameter
hn/r. In the case of strong coupling (hn/r@1), the e!ect of wedge material anisotropy on the
value c/c

0
is represented by the additional scaling factor, which depends on the elastic

coe$cients of the wedge and turns to unity in the isotropic limit. In the case of weak
coupling (hn/rA1), elastic anisotropy in the leading approximation considered has the same
scaling e!ect on the velocities c and c

0
, and therefore does not a!ect the ratio c/c

0
.
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