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The dynamic response of a spur gear pair is investigated using a "nite element/contact
mechanics model that o!ers signi"cant advantages for dynamic gear analyses. The gear pair
is analyzed across a wide range of operating speeds and torques. Comparisons are made to
other researchers' published experiments that reveal complex non-linear phenomena. The
non-linearity source is contact loss of the meshing teeth, which, in contrast to the prevailing
understanding, occurs even for large torques despite the use of high-precision gears.
A primary feature of the modelling is that dynamic mesh forces are calculated using
a detailed contact analysis at each time step as the gears roll through the mesh; there is no
need to externally specify the excitation in the form of time-varying mesh sti!ness, static
transmission error input, or the like. A semi-analytical model near the tooth surface is
matched to a "nite element solution away from the tooth surface, and the computational
e$ciency that results permits dynamic analysis. Two-single-degree-of-freedom models are
also studied. While one gives encouragingly good results, the other, which appears to have
better mesh sti!ness modelling, gives poor comparisons with experiments. The results
indicate the sensitivity of such models to the Fourier spectrum of the changing mesh
sti!ness.

( 2000 Academic Press
1. INTRODUCTION

The dynamic response of gears remains a paramount concern because of noise generation
and dynamic loads. Prior studies have yielded a vast literature on this topic and, in
particular, a remarkable variety of mathematical models as discussed in reference [1]. More
recent studies are cited in the comprehensive bibliography in reference [2]. Most models use
a discrete (lumped parameter) representation involving rigid gear components and
combinations of discrete elastic and dissipative elements to represent the meshing teeth and
support/bearing sti!nesses. Such models have varying complexity in their treatment of the
tooth mesh, shaft, bearing, and housing modelling. In essence, the required analytical
modelling to capture the complex gear dynamic response has not been established.
Even when attention is restricted to modelling the tooth mesh, a variety of plausible
0022-460X/00/430435#21 $35.00/0 ( 2000 Academic Press
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representations exist [3], and the optimal treatment of time-varying mesh sti!ness, contact
loss, use of static transmission error as a dynamic input, frictional e!ects, etc., remains
unsettled. This study analytically investigates the dynamics of a spur gear pair for which
comprehensive experimental data exist. The tooth mesh is the most complex aspect in gear
dynamics, and the gear system in this work is selected to isolate tooth mesh e!ects. The
primary analytical tool is a "nite elements/contact mechanics (FE/CM) formulation that
o!ers signi"cant advantages in its representation of the crucial tooth contact. The purpose
is to further expose the basic non-linear and time-varying phenomena at play in the tooth
mesh, demonstrate the modelling "delity and advantages of the FE/CM method used, and
compare the ability of two s.d.o.f models to represent the experimentally observed
phenomena.

The gear pair studied is that used in a series of experiments by Kahraman and
Blankenship [4}8]. Tests on this system were initially reported in reference [8], where the
details of the system are given. The test stand is designed to isolate the impact of tooth mesh
interactions on the dynamic response and exclude complications from the shafts, bearings,
and housing. In particular, the bearing and shaft con"guration is such that the support
structure is nearly rigid and the response is purely gear rotation. The test gears are
dynamically isolated from the slave gears in the back-to-back con"guration. Despite this
reduction to the simplest case of s.d.o.f response, measurements of dynamic transmission
error (D¹E) show distinct, repeatable, non-linear, time-varying system response in the form
of classical jump phenomena, sub- and super-harmonic resonances, parametric instabilities,
and even apparently chaotic response. The non-linear tooth mesh forces causing these
complex behaviors are what we seek to model in this study.

A primary motivation is to establish the ability of the unique FE/CM formulation to
capture complex gear mesh forces in dynamics simulations. Similar analysis tools with the
advantages presented in what follows are not known to the authors. Conventional "nite
element analysis, and even the currently available commercial software, require
prohibitively re"ned meshes to represent the tooth contact and precise tooth surface
description needed for gear mechanics, particularly when one seeks to go beyond static
analyses to dynamic response analyses. The subject gear system was selected to validate the
FE/CM approach as a research tool because (1) the complex, non-linear behavior is
a suitably demanding benchmark, and (2) carefully conducted, high-quality experiments
exist.

Traditional "nite elements are e!ective for calculating quantities like mesh sti!ness, tooth
de#ections, and stress distributions under static conditions where highly re"ned meshes are
computationally feasible and the contact mechanics are simpler. Use of "nite elements in
dynamic gear analyses is typically restricted to components away from the tooth mesh such
as the gear web, shafts and housing. Tooth mesh excitations are then speci,ed externally
and the response is calculated by conventional means. The current "nite element
formulation, however, is unique in representing the time-varying tooth contact mechanics
with su$cient "delity and computational e$ciency so that dynamic analyses are possible.
The two gears are numerically rolled through the mesh at a speci"ed operating speed. Thus,
the instantaneous con"guration changes continuously as teeth enter and exit the mesh. This
is why a full gear mesh is required (Figure 1) rather than a gear with one or two
representative teeth. Contact analysis at each time step identi"es the dynamic mesh forces
due to changing numbers of teeth in mesh and contact loss, eliminating the need for external
speci,cation of the dynamic forces or assumptions about modelling these mesh forces by
time-varying sti+ness and static transmission error. The "nite element results give remarkable
agreement with the measured behavior. Furthermore, they clearly identify contact loss as
the root cause of the non-linear response. An outline of this modelling and its features,



Figure 1. Finite element mesh and a close-up view of the mesh density on the teeth.
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which has been used successfully for planetary gears [9], is presented subsequently. To
examine simpler representations, results from two-s.d.o.f (SDOF) analytical models based
on Figure 2 are given. While one of these gives encouragingly good results, neither of them
are as accurate as the "nite element model. Also, the one that might be expected to be the
more accurate, fails to capture the critical behaviors.

2. FINITE ELEMENT ANALYSIS

The "nite element formulation is unique in its combination of detailed contact modelling
between the elastic teeth [10] with a combined surface integral/"nite element solution [11]
to e$ciently capture tooth deformations and loads with a relatively coarse mesh. Details are
available in the references and a short description of the surface integral/"nite element
solution is given in reference [9]. The contact analysis is brie#y described here.

The mesh for the gear pair in this study is shown in Figure 1. Each of the gears undergoes
large rotation according to a prescribed, kinematic trajectory. In this two-gear case, this
trajectory is that of conjugate action of the gears at speci"ed operating speed. The elastic
gear motions that superpose on this prescribed trajectory are small. If the "nite element
displacement vector x

fi
for a particular gear i is measured with respect to a reference frame

that follows this known trajectory, then it is possible to represent its behavior by a linear
system of equations

M
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#C

ffi
x5
fi
#K

ffi
x
fi
"f

fi
. (1)



Figure 2. Single-degree-of-freedom modelling of the two gear system. The response is presented as the dynamic
transmission error (D¹E) r
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Here, f
fi

is a vector of speci"ed external loads. The damping matrix C
ffi

is obtained using
Rayleigh's damping model

C
ffi

"kM
ffi

#gK
ffi

. (2)

If the "nite element mesh is adequately constrained to its reference frame, then x
fi

contains
no rigid-body degrees of freedom and K

ffi
is positive-de"nite. M

ffi
is always

positive-de"nite.
Rigid-body d.o.f. are not assigned to the "nite element mesh but rather to the moving

reference frame. A vector x
ri

represents the small &&rigid-body'' motions of the reference
frame that superpose on the large, prescribed kinematic trajectory of the reference frame.
For a general two-dimensional model, there are up to three unconstrained components in
x
ri
. For the current system where translations of the gear centers are prevented, each gear

has only one reference frame d.o.f. h
i
. Augmenting equation (1) with the vector x

ri
and

assuming that x
ri

is small, we obtain the linear relationship
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The terms M
rfi

"MT
fri

and K
rfi

"KT
fri

are computed from the "nite element mesh using
energy methods. Any lumped masses and inertias are added into M

rri
. In a general system
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where, for example, the gears are on elastic rather than rigid bearings, the bearings are
modelled as lumped spring-damper elements connecting the individual gear reference
frames to ground. These and any other lumped sti!nesses and viscous dampers contribute
the terms K

rri
and C

rri
in equation (3). The equations for each gear are assembled into

a larger system of equations for the entire system as

C
M

ff
M

rf

M
fr

M
rr
D G

xK
f

xK
r
H#C

C
ff

C
rf

C
fr

C
rr
D G

x5
f

x5
r
H#C

K
ff

K
rf

K
fr

K
rr
D G

x
f

x
r
H"G

f
f
f
r
H . (4)

x
f
"G

x
f1

x
f2

2

x
fi

2

H , x
r
"G

x
r1

x
r2

2

x
ri

2

H , f
f
"G

f
f1
f
f2
2

f
fi

2

H , f
r
"G

f
r1

f
r2

2

f
ri

2

H (5)

NMxK#Cx5 #Kx"f, x"G
x
f

x
r
H , f"G

f
f
f
r
H . (6)

The matrix K
rr

is usually not of full rank in gear applications, so the sti!ness matrix K is
typically not invertible. This is the current case due to the unrestrained rigid-body rotation
admitted for each of the two gears.

In static and quasi-static analyses, the inertia and damping matrices are neglected and the
system (6) reduces to

Kx"f. (7)

In dynamic analyses, time-discretization based on the Newmark method is used. The
discretized form of equation (6) is
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All schemes for which c"1
2

and b*1
4

are unconditionally stable and show no arti"cial
damping. Several commonly used integration schemes are special cases of this three-point
scheme for certain combinations of c and b. The values c"1

2
and b"1

4
are used here.

Equation (8) can be written in the form K< x;"f< , where K< "M#cDtC#bDt2K is an
e!ective sti!ness matrix, x;"x

n`1
, and f< is an e!ective load vector. This is identical in form

to equation (7) and they are treated identically in the discussion below.
A linear co-ordinate transformation is used to diagonalize the system (7) and separate out

the non-singular part according to
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Figure 3. Contact zone indicating candidate contact points P and G. The inner and outer regions where the
analytical (inner) and "nite element (outer) solutions apply are shown.
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where the columns of T contain the eigenvectors of K. The generalized co-ordinates are
partitioned according to those associated with elastic modes (q

(
) and, if K is singular, with

rigid-body modes (qh ). K
((

is diagonal and positive-de"nite. For a dynamic situation, the
e!ective sti!ness matrix K) is always positive-de"nite, so that qh would have a dimension of
zero. The partitions of equation (11) give

q
(
"K~1

((
g
(
, gh"TT

h
f"0. (12)

For the contact analysis, consider the pinion-gear combination shown in Figure 3.
Candidate contact pairs (CCP) with surface normals along a common axis are calculated by
a search algorithm with speci"ed tolerance (P}G, for example). The tooth surface is de"ned
with arbitrary precision as either a continuous curve or as a set of surface co-ordinates with
a speci"ed surface normal (these surface co-ordinates are not limited to nodal points on the
"nite element mesh). The (arbitrary) number of points used to describe the surface dictates
the pool of possible contact points. The following vector quantities are de"ned: e( is the
separation distances of all CCPs along their common normal at some instant in the
unloaded and undeformed state, d is the separations of the CCPs along their common
normal in the loaded, deformed state, d"the changes in separation due to loading, and p is
the compressive contact loads acting along the normals of each CCP. The "nal separation
of the CCPs is given by

d"e(#d. (13)

The external load vector f (from equation (7)) is related to the contact force vector p by the
linear relationship

f"Ep#f
o
. (14)

Here, E is a known, non-square matrix that apportions the contact force p at the CCPs as
nodal forces at adjacent nodes. E depends on the geometry and "nite element interpolation
functions. f

o
is a vector of applied, externally-speci"ed, non-contact loads acting on the

model. From equations (12) and (14),
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The increase in separation d is related to the displacement vector of equation (6) according
to

d"Gx"G [T
(

Th] G
q
(

qhH. (16)

Like E above, G depends on geometry and "nite element interpolation functions. Equation
(16) contains only the "nite element contributions to the increase in separation at the
contact points (from the outer-region model of Figure 3). In addition to this, a contribution
from a local deformation "eld is superposed (from the inner-region model of Figure 3). This
contribution is calculated using a semi-analytical surface integral/"nite element solution
near the contact zone [9, 11]. This introduces an additional term A

local
p into equation (16)

to yield, in combination with equation (13) and (15), the compliance relationship
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This is cast in the "nal form
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In addition, the second of equation (12) and equation (14) lead to the equilibrium equation

TTh Ep#TTh f
o
"0 (19)

which is of the form
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o
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The contact problem is then posed as follows: solve equations (18) and (20) for d, p, and
qh subject to the constraints that all components d

i
, p

i
*0 and either d

i
"0 or p

i
"0 holds

for every i. This problem can be solved with linear programming methods [10]. The results
are then used to determine the displacement x from equations (14), (10), and (12). The
contact forces p can also be used in the combined surface integral/"nite-element solution to
calculate tooth de#ections and stresses near the tooth contact zone. This process is repeated
at each integration time step. E and G, which depend on straightforward kinematics, are
recalculated at each step as the gears undergo the speci"ed rigid-body motions. A

local
is also

recalculated at each step because of the changing contact conditions. The "nite element
sti!ness matrix K (or K< for dynamic analyses) and its eigenvectors T"[T

(
Th], however,

are determined only once and do not require updating.
The combined surface integral/"nite element solution is described in reference [11] with

a simpli"ed discussion in reference [9]. In essence, the concept is to match an analytical
&&inner'' solution that applies near the tooth surface (calculated from the solution for a point
load on a half-space) with an &&outer'' "nite element solution that applies slightly away from
the tooth surface where the displacement gradients are less steep. The need for an extremely
re"ned tooth mesh is removed because the solution in the &&inner'' region at the tooth surface
does not depend on "nite elements to calculate the tooth surface deformations, model the
contact mechanics, or de"ne the geometry via node points (see the relatively coarse mesh in
Figure 1(b)). This key point makes dynamic analysis with careful contact modelling possible
for a su$cient number of time steps to obtain frequency domain response calculations.
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A crucial distinction of this formulation is that no a priori assumptions about the nature of
the dynamic excitation are needed. The time-varying mesh sti!ness and/or static
transmission error excitation that are required inputs in virtually all existing models (e.g.,
references [8, 12]) are naturally calculated outputs in this formulation. In addition, there is
no agreement on how to incorporate one or both of these modelling devices into analytical
representations, but this is not of concern in the computational model. Here, only the
operating torque and speed, and not the dynamic excitation, are speci"ed inputs to the
dynamic analysis. The desired outputs are the rotational vibrations of each gear, expressed
as the dynamic transmission error D¹E"r

1
h
1
#r

2
h
2

(Figure 2), and the net tooth contact
force calculated from the contact force vector p at each meshing tooth. Note that h

1,2
are the

elements of x
r
in equation (6).

The mesh in Figure 1 shows a tooth section mesh and a central gear mesh. A Fourier
series expansion of the displacements on the circular joining interface is used to allow
a mismatch of nodal positions between the two meshes. The somewhat crude central gear
mesh is for computational e$ciency as it is only necessary to capture inertial e!ects.
Conventional four-node "nite element displacement interpolation is used everywhere
except at this interface between the central gear mesh and the tooth section mesh.

2.1. DYNAMIC TRANSMISSION ERROR

The experimental gear pair consists of identical, precision-ground spur gears with 50
teeth, 7)047 mm base radius, 3 mm module, and 203 pressure angle (Figure 1). This work
considers only the case of no tooth modi"cation and a "xed contact ratio of 1)75. While the
actual facewidth is 20 mm, the two-dimensional "nite element model uses unit facewidth of
1 in"25)4 mm. The gears are steel with elasticity modulus of 207]109 N/m2 and density
of 7600 kg/m3. To mimic the rigid support test set-up, the "nite element and SDOF models
constrain the gears to rotate about their centers with no translation.

Blankenship and Kahraman [4] state that the gears have a natural frequency &&around''
f
n
"2700 Hz. Numerical impact tests were conducted to calculate the natural frequency

using "nite element. The gears are held statically in mesh by a steady torque ¹
i
. For a single

integration time step, the torque is increased to 1)2 ¹
i
, simulating an applied impulse. The

natural frequency is determined from the ensuing transient D¹E response. The natural
frequencies for di!erent torques and either one or two pairs of teeth in mesh are shown in
Table 1. The mean (over one mesh cycle) "nite element results are within 5% of the

experimental value of 2700 J25)4/20, where the scaling J25)4/20 is dictated by the sti!ness
change associated with the di!ering facewidths in the experiment and computational model.
Table 1 shows the natural frequency to be a weak function of load over this range of
torques.
TABLE 1

Natural frequencies in Hz for di+ering torques and one/two pairs of
meshing teeth

Toque 100 N m 200 N m 300 N m

One tooth pair in mesh 2480 2480 2560
Two tooth pairs in mesh 3040 3040 3040
Mean (over 1 mesh cycle) 2900 2900 2920



Figure 4. Experimentally measured RMS of oscillating component of dynamic transmission error for
¹"150 Nm. From reference [4].
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A second purpose of these impact analyses is to "x the system damping. Two damping
mechanisms are modelled. The "rst is material damping in the elastic bodies which is
presumed to be proportional damping of the form

C"kM#gK, (21)

where M, K are the inertia and sti!ness matrices and k, g are constant Rayleigh coe$cients.
This represents the primary energy dissipation in the model. The coe$cients k, g are
adjusted such that the logarithmic decrement [13] of the impact analysis D¹E yields a 7%
damping ratio. The second damping is linear, viscous damping acting at the gear rotation
axis (i.e., viscous bearing damping). The bearing damping is light, and the chosen value
((1%) was the minimum required to remove numerically induced &&drift'' in the
mean-transmission error due to response in the rigid-body mode.

The primary intent of this work is to examine the dynamic response under operating
speeds and torques. The complex D¹E response that occurs in this simplest of gear sets is
shown in Figure 4 for ¹"150 Nm from reference [4]. A primary resonance is evident for
mesh frequency f

m
+f

n
+2700 Hz. A distinct softening non-linearity exists as the peak

bends to the left. In a speed range just below 2500 Hz, multiple steady state response
amplitudes are possible. Classical jump phenomena occur as the speed increases or
decreases past the boundaries of the multiple solution regime. Blankenship and Kahraman
[4] report 10}40 dB di!erences in sound pressure level between these branches. The
resonances at speeds one-half and one-third of the primary resonance speed are caused by
higher harmonics of mesh frequency in the dynamic excitation. The dynamic mesh forces
have spectral content at (at least) the harmonics of mesh frequency, that is,

F
mesh

(t)"+D
p
sin (2npf

m
t#/

p
)#g (t). (22)

At f
m
"f

n
/2"1350 Hz, the second harmonic of mesh frequency (p"2) coincides with f

n
,

exciting resonance. The third harmonic of mesh frequency (p"3) drives the resonance at



Figure 5. Finite element calculation of RMS of oscillating component of dynamic transmission error for
¹"150 Nm.
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f
m
"f

n
/3. The softening non-linearity and jump phenomena are less pronounced in these

superharmonic resonances.
Figure 5 shows the corresponding "nite element D¹E results. The multiple resonances,

softening non-linearity, and jump phenomena are predicted remarkably well by the "nite
element analysis. The frequencies at which the resonances and jumps occur is slightly higher
for the "nite element results because of the aforementioned natural frequency di!erences.
Notice that even the quantitative amplitudes of the "nite element model agree quite well
with the experimental data.

Figure 6 from reference [4] presents the experimental D¹E amplitudes for three torques
¹"100, 200, and 300 Nm. Responses were measured for slowly increasing and decreasing
speeds to calculate the lower and upper branches respectively. The multiple resonances and
non-linear jumps exhibited in Figure 4 persist for both higher and lower torques. The
amplitude of resonant response is noticeably larger for increasing torque. Analogous
FE/CM results in Figure 7 agree closely with experimental data. In particular, the jump
frequencies and maximum amplitudes generally agree quantitatively as well as qualitatively.
One exception is the width of the multiple solution band for ¹"100 Nm, where the
computational results predict a wider overlap.

Unlike typical analyses, there is no freedom to adjust the excitation or system parameters
to achieve this agreement. The results are particularly encouraging in light of this point. The
only unspeci"ed parameter is damping, which was "xed at 7% as discussed previously. This
value was selected so that the jump down frequency for the ¹"100 N m case agreed with
experimental measurements. Once selected, the value was "xed and good agreement
resulted for other torques.

Figure 8 shows the time-domain D¹E and the spectra for the primary resonance case of
¹"150 Nm (Figures 4 and 5). The D¹E for the upper branch (Figures 8(a) and 8(c) is
nearly harmonic at the mesh frequency. Some small distortion from higher harmonics is
evident in the primary resonance lower branch (Figures 8(b) and 8(d)). Figure 9 presents
analogous data for the resonance condition at f

m
"1350 Hz. In this case, the response

is almost harmonic at twice the mesh frequency, that is, the natural frequency. The upper



Figure 6. Experimentally measured RMS of oscillating component of dynamic transmission error for ¹"100
(#), 200 (e) and 300 (*) N m. From reference [4].

Figure 7. Finite element calculation of RMS of oscillating component of dynamic transmission error for
¹"100 (#), 200 (s) and 300 (h) Nm.
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branch, which has considerably higher amplitude, is closer to purely harmonic response
while the lower branch has more distortion from frequencies other than the resonant
excitation frequency at the second harmonic of f

m
. These time-domain calculations closely

match the experimental data [4].
The softening non-linearity exhibited in the frequency response indicates a sti!ness

reduction. The reduced sti!ness is caused by contact loss at the tooth mesh. Figure 10 shows



Figure 8. Oscillating D¹E time histories and spectra for the (a, c) upper and (b, d) lower branches of the primary
resonance for f

m
"2400 Hz and ¹"150 Nm.
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the net tooth mesh force for the upper and lower branches of the primary resonance of
Figure 5 (¹"150 Nm, f

m
"2500 Hz). The mesh force (or tooth load) in Figure 10(a) for the

lower branch of primary resonance exhibits a smooth load carrying transition between
a tooth i and its adjacent tooth i#1. No contact loss occurs. For operation at the same
speed along the upper branch (Figure 10(b)), however, the mesh force vanishes over part of
each mesh cycle. Contact loss is clearly the non-linearity source. Tooth loads for the upper
and lower branches of the secondary resonance at f

m
"1350 Hz are given in Figure 11.

While the lower branch (Figure 11(a)) has no contact loss, the upper branch (Figure 11(b))
has two contact losses in each mesh cycle, consistent with the dominant response frequency
being twice the mesh frequency. The maximum tooth load is considerably larger when
contact loss occurs. Comparing Figures 10(a) and 10(b) for primary resonance, the
maximum tooth load with contact loss (upper branch) is 4850 N, a 62% increase from the
maximum load of 3000N for the same speed without contact loss (lower branch). In con#ict



Figure 9. Oscillating D¹E time histories and spectra for the (a, c) upper and (b, d) lower branches of the
secondary resonance for f

m
"1300 Hz and ¹"150 Nm.
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with conventional assumptions about gear behavior, contact loss occurs even for large
torques as in the ¹"300 N m case of Figure 7. As a numerical experiment, a speed sweep
analogous to Figure 5 and 7 was conducted for a torque of 600 Nm. The character of the
response is the same as for the presented torques in that contact loss and the associated
jump phenomena occur despite the large torque and the maximum amplitude was
considerably greater than for ¹"300 Nm. Non-linear behavior is apparently unavoidable
in this gear system.

Contact loss is not limited to mesh frequencies in the immediate vicinity of the jump
down phenomenon. In fact, it is not limited to the regime in which multiple steady state
solutions exist. Considering Figure 7, a kink in the frequency response curve occurs just
above the natural frequency for each torque value. This kink indicates the onset of contact
loss, which occurs for all mesh frequencies along the upper branch between the kink and the
jump down. Contact loss never occurs along the lower branch.



Figure 10. Tooth loads for contacting teeth at the (a) upper and (b) lower branches of the primary resonance for
f
m
"2400 Hz and ¹"150 Nm.
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3. SINGLE-DEGREE-OF FREEDOM ANALYSIS

Analytical representations of the gear response in terms of dynamic systems having
few degrees of freedom is desirable from research and design perspectives, and many
have been proposed [1]. The following results show that such models are capable of
producing good results but are limited by their high sensitivity to mesh force modelling.
Two models are examined, with the di!erence in each being the representation of the
varying mesh sti!ness as the gears rotate. The basic model is based on Figure 2 with the
equation of motion.

mxK#cxR #F(t)"¹/r, F(t)"G
k(t)x,

0,

x*0,

x(0.
(23)



Figure 11. Tooth loads for contacting teeth at the (a) upper and (b) lower branches of the secondary resonance
for f

m
"1300 Hz and ¹"150 N m.
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Here, x"r
2
h
2
#r

1
h
1

is the D¹E, m"I
1
I
2
/(I

1
r2
1
#I

2
r2
2
)"I/(2r2), F(t) is the elastic

mesh force, and ¹ is a steady torque. The con"guration x"0 implies the condition where
a pair of teeth are in unloaded contact. Blankenship and Kahraman [8] studied a similar
model using harmonic balance to gain analytical insight into the non-linear response of
spur gears. The damping c is chosen to give a damping ratio of 8%. Note that this damping
represents dissipation by a discrete viscous damper at the tooth mesh rather than material
damping distributed throughout the gears as in the "nite element model, and this is why the
damping ratios di!er slightly. m"1)4 kg is chosen such that f

n
"(1/2n) Jk

avg
/m"2900 Hz

in accordance with the "nite element model and the average mesh sti!ness k
avg

"462)1]
106 N/m is determined from results to follow. The mesh sti!ness is both non-linear and time
varying. Equation (23) is numerically integrated with the sti!ness k(t) at each instant
determined from Figure 13 using the nominal position of the gears in the mesh cycle.

Certain static results are needed before proceeding. First, the static transmission error
and its spectrum are calculated over a mesh cycle for the torques ¹"100, 200, and 300 Nm



Figure 12. Static transmission error for ¹"100 Nm ( ) ) ) ) ), 200 Nm ( - - - ), and 300 Nm (** ). (b) Static
transmission error spectrum for ¹"100 Nm (#), 200 Nm (s), and 300 Nm (h).
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from static "nite element analyses (Figure 12). Some models use static transmission error to
represent the input excitation in s.d.o.f. dynamic models. Using the relationship
k"(¹/r)/S¹E for a base radius of 7)047 mm, the mesh sti!ness is determined along with its
spectral content (Figure 13). The weighted line is the rectangular wave approximation
where the abrupt changes coincide with the changes in the number of tooth pairs in contact.

The "rst mesh sti!ness model uses the torque-independent rectangular waveform in
Figure 13. Figure 14 shows the D¹E determined for both increasing and decreasing speed
sweeps. The oscillating component of D¹E (Figure 14(a)) reproduces the experimental
amplitudes, jump phenomena, and superharmonic resonances with reasonable accuracy.
A distinct di!erence, however, is that the jump frequencies, like the sti!ness model, are
independent of torque. The mean D¹E (Figure 14(b)) experiences jumps coinciding with



Figure 13. (a) Mesh sti!ness (derived from static transmission error) for rectangular wave approximation
(** ), ¹"100 Nm (} ) }), 200 Nm ( - - - ), and 300 N m ( ) ) ) )). (b) Mesh sti!ness spectrum for rectangular wave
approximation (*), ¹"100 Nm (#), 200 Nm (s), and 300 Nm (K).
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those in the oscillating D¹E. As the amplitude of oscillating D¹E jumps down (or up), the
mean D¹E jumps up (or down). The changes in mean D¹E, however, are consistently less
than the corresponding oscillating D¹E changes.

The mesh forces F(t) from this s.d.o.f. model are shown in Figure 15 for the upper and
lower branches of the primary resonance for ¹"150 Nm. Contact loss is evident along the
upper branch. Again, this contact loss starts at the kinks in the frequency response curves
around f

m
"3100 Hz. No contact loss occurs in the lower branch. Note that Figure 15 gives

the total mesh force and must be compared with the sum of the two tooth loads in Figure
10. Figure 15 exposes a shortcoming of this s.d.o.f model. Notice the discontinuity in the
mesh force F(t)"k(t)x(t) that occurs as the number of teeth in contact changes. This occurs



Figure 14. Single-degree-of-freedom model RMS of oscillating D¹E component and mean D¹E for
¹"100 Nm (#), 200 Nm (s), and 300 N m (h). Mesh sti!ness is the rectangular waveform in Figure 13.
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because k(t) undergoes a step change while x(t) cannot change instantly. In reality, the tooth
entering contact will more gradually absorb the mesh force.

In an e!ort to improve the s.d.o.f. model to better match the torque sensitivity of the jump
frequencies, a second mesh sti!ness model was introduced. In this case, the instantaneous
mesh sti!ness is determined from Figure 13 using the curve for the appropriate torque. The
dynamic response results are shown in Figure 16. While this sti!ness model appears more
representative of the physical system and di!ers relatively modestly from the rectangular
waveform sti!ness, the results are markedly di!erent and do not agree with the experiment.
The oscillating D¹E amplitudes are strikingly reduced. Furthermore, contact loss occurs
only at low torques with linear behavior for ¹"200 and 300 Nm. The results indicate
that the shape of the assumed mesh sti!ness function is critical. While the average mesh
sti!ness changes little with torque (Figure 13(a)), the altered shape sharply changes the
Fourier spectrum with torque (Figure 13(b)). Accurate Fourier representation of the



Figure 15. Net mesh force for the single-degree-of-freedom model with rectangular waveform mesh sti!ness
approximation. Curves are shown for the (a) upper branch ( f

m
"2200 Hz) and (b) lower branch ( f

m
"2150 Hz) of

the primary resonance with ¹"150 Nm.
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changing sti!ness is evidently crucial in the use of low order dynamic models such as
equation (23).

4. DISCUSSION AND SUMMARY

This paper presents a "nite element/contact mechanics formulation that is well suited to
dynamic gear analyses. The critically important mesh forces are determined by contact
analysis in combination with a unique semi-analytical "nite element formulation at the
tooth mesh. No assumptions are made with regard to modelling one or both of mesh
sti!ness variation and static transmission error as approximations of the dynamic
excitation [12]. This combination overcomes the usual limitation of "nite element analysis



Figure 16. Single-degree-of-freedom model RMS of oscillating D¹E component and mean D¹E for
¹"100 Nm (#), 200 Nm (s), and 300 N m (h). Mesh sti!nesses for each torque value are shown in Figure 13.
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to static analyses, free vibration eigensolutions, or response calculations with inherent
assumptions on the nature of the mesh forces. The excellent agreement with experimental
data demonstrates the ability to capture complex, non-linear phenomena. The approach is
particularly valuable for multi-body, multi-mesh systems such as epicyclic gears where mesh
modelling in discrete dynamic models is especially di$cult. Additional features that result
from the "nite element approach are that coupling to #exible shafts, bearings, and housings
can be handled naturally, gear geometry errors and tooth-to-tooth variability can be easily
analyzed, elastic deformations of the gear bodies are modelled, friction at the tooth surface
can be included in the contact analysis [10], and pro"le modi"cations of magnitudes used in
practice are modelled by the rede"nition of the tooth surface without remeshing. This last
point is true because local tooth deformations near the surface are handled by an analytical
model near the inner region of Figure 3; small pro"le modi"cations a!ect A

local
in equation

(17) and not the "nite element matrices in equation (6).
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A discrete, s.d.o.f. model with contact loss non-linearity and time-varying mesh sti!ness
captures much of the non-linear behavior. Two di!ering sti!ness models yield perplexingly
di!erent results. When the sti!ness is a torque-independent, rectangular wave function
of mesh cycle (one of the simplest approximations) much of the non-linear behavior
is accurately predicted. Counter-intuitively, when the expectedly more accurate
torque-dependent sti!ness curves (Figure 13) are used, the non-linear behavior is
suppressed at high torques, which clearly con#icts with the experiments. The spectral
content of the rectangular wave in the lower mesh frequency harmonics is lost in the
torque-speci"c sti!ness approximations, and this di!erence appears to be the cause of the
large di!erence in results. It is troublesome that the expectedly better model produces
poorer agreement with experiments. While the results show that low order models are able
to capture complex, dynamic response in this case, the high sensitivity to sti!ness modelling
makes use of such models for other gear systems uncertain without further validation.
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