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The present work deals with a generalization of geometrically linear shear deformation
theory for multilayered anisotropic shells of general shape. No assumptions are made other
than to neglect the transverse normal strain. The results, which include the effects of shear
deformations and rotary inertia as well as initial curvature (included in the stress resultants
and assumed transverse shear stresses) are deduced by application of the virtual work
principle, with displacements and transverse shear as independent variables. These
equations are applied to different shell geometries, such as revolution, cylindrical, spherical
and conical shells as well as rectangular and circular plates.
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1. INTRODUCTION

Shells are widely used as structural elements in modern construction engineering, aircraft
construction, ship building, rocket construction, the nuclear, aerospace and aeronautical
industries, as well as the petroleum and petrochemical industries (pressure vessel, pipeline),
etc. It is very important, therefore, that the static and dynamic behavior of these structures
when subjected to different loads be clearly understood, in order that they may be
used safely in industry. The analysis of thin elastic shells under static or dynamic loads
has been the focus of a great deal of research. These shells have been studied in the light of
such different factors as large displacements, thickness variation, residual stresses, rotary
inertia, anisotropy, initial curvature and the effect of the surrounding medium (air, liquid),
etc.

Many theories have been developed for thin elastic shells, in both linear and non-linear
cases, and are based on the first approximation of Love-Kirchhoff theory which, because it
does not take transverse shear deformations into account, can be grossly in error in
predicting the transverse deflections, buckling loads and natural frequencies. In the case of
plates and shells made of advanced laminated composite materials, the prediction errors are
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even more marked. The transverse shear effect on non-linear vibration and post-buckling
behavior is significantly especially for laminates with moderately large thickness.

The present work presents the general equations of anisotropic shells (equilibrium,
constitutive and kinematic relations) by considering the effects of shear deformation, rotary
inertia and initial curvature. These relations are then applied to different shell geometries:
shells of revolution, cylindrical, spherical and conical shells as well as the circular and
rectangular plates.

2. LITERATURE REVIEW

The literature review covers three broad areas. In the first, both linear and non-linear
theories on analysis of plates and shell structures are discussed. These theories were, in
many instances, developed for isotropic materials before being extended to anisotropic
material applications. The second part deals with the study of the effect of shear
deformation on both the static and dynamic behavior of plates and shells; especially those
made of advanced anisotropic materials. In the last part, we briefly discuss the effect of
structure—fluid interaction on the vibrations of plates and shells. Special attention is given
to cylindrical shells immersed in or filled with a liquid or subjected to a flowing fluid.

A shell structure may be defined as a body enclosed between two closely spaced and
curved surfaces. In general, a shell has three fundamental identifying features; its reference
surfaces, its thickness and its edges. Of these, the reference surface is the most significant
because the behavior of the shell is governed by the behavior of its reference surface.

Many shell theories are derived from the equations of elasticity. The strain-displacement
relations of shells can be derived from kinematics and the 3-D strain—displacement relations
written in terms of arbitrary curvilinear co-ordinates [ 1]. In reality, the behavior of the top
and bottom surfaces of a shell under load can vary widely.

The first attempt to formulate a bending theory of shells from the general equations of
elasticity was made by Aron in 1874. A thin shell is one in which the thickness is small
compared with the overall dimensions of the reference shell surface, and a two-dimensional
(2-D) theory is used to approximate three-dimensional (3-D) phenomena. Many classical
shell theories were developed originally for thin elastic shells, and are based on the
Love-Kirchhoff assumptions which are: (1) the shell is thin; (2) the displacements and
rotations are small; (3) normals to the shell reference surface before deformation remain
normal after deformation; and (4) transverse normal stresses are negligible.

These assumptions led to a thin shell theory that can be viewed as an extension to
Kirchhoff plate theory and is often called Kirchhoff-Love shell theory. The effects of
the normal transverse strain are often neglected in the kinematics compared to the effects of
the in-plane strains due to the thinness of the shell, and the shell is assumed to be in an
approximate state of plane stress. The in-plane stresses became dominant because the
transverse normal stress is, in general, of order h/R times the bending stresses, whereas
the transverse shear stresses, obtained from equilibrium conditions, are of order h/L times
the bending stresses. Therefore, for L/R less than 10, the transverse normal stress is
negligible compared to transverse shear stresses.

On the other hand, the normal transverse strain can generally be included in the analysis
through the constitutive relations. In deriving the equilibrium equations, statically
equivalent forces and moments acting on the reference surface can be defined by integrating
stresses through the thickness. In this way, the 3-D shell behavior can be fully described
using a 2-D approximation [1-4]. The third assumption of the Love-Kirchhoff theory is
that transverse shear strains may not be written in terms of displacements, which leads to
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their being completely ignored although transverse shear stresses should be included in
equilibrium equations.

Surveys of various classical shell theories can be found in the works of Bert [5], Reissner
[6] and Naghdi [7]. The last truncate, the Taylor’s series expansion for tangential
displacements after linear terms in the thickness co-ordinate, and many others followed
him. An excellent collection of the research carried out on this topic has been produced by
Leisssa [8]. Elegant representations, both linear and non-linear, of Love’s shell theory can
be derived strictly via definitions from surface theory without reference to 3-D relationships
[3,9].

One of the best known of these theories, Love’s first approximation, yields sufficiently
accurate results when (1) the lateral dimension to thickness ratio (L/h) is large; (2) the
dynamic excitations are within the low-frequency range; (3) the material anisotropy is not
severe. However, the application of such theories to layered anisotropic composites shells
could lead to errors in the prediction of natural frequencies, deflections, stresses and
buckling loads.

There is an inconsistency in the original version of Love’s theory since all strains do not
vanish for rigid-body motion. It was perhaps this inconsistency that encouraged many
researchers to develop slightly different shell theories. Many shell theories based more or
less on Love’s assumptions have been developed, each different since each neglects or
approximates small terms in its own way. Sanders [10] redefined the force and moment
resultants in such a way that all strains vanish for any rigid-body motion.

The thin shell assumption in Love’s theory have not been taken into account in the
theories of Fliigge et al. [3], which impose a less restrictive requirement on the thinness of
the shell. Their theory also eliminates the rigid-body strains anomaly. Koiter [11] discussed
the significance of Love’s first theory and, based on an order magnitude study, states that
refinements of Love first theory cannot consistently be made without including transverse
deformation effects. Other prominent theories on this subject include those of Novozhilov
[12].

Useful information about vibrations of shell-type structures can be found in the
monograph by Soedel [13] dealing with different geometries of beams, plates and shells,
isotropic and composite materials, computational methods and related advanced topics.
Two types of basic equation, corresponding either to Fliigge’s or Donnell’s equations for
isotropic shells, have been formulated in the literature [2, 3]. Donnell’s derivation is not
easy to follow, since it completely neglects a number of terms both in the relationships
between the changes of curvature and twist and the displacement, and in the relations of
stress resultants and moment resultants in terms of displacement.

A small displacement Love theory has been used by Dong et al. [14] for the bending
analysis of thin anisotropic plates and shells. These are specialized to give linear Donnell
equations for anisotropic cylindrical shells. Bogner et al. [15] developed a linear cylindrical
isotropic shell finite element based on the classical shell theory. Morley [16] extended the
limits of the Donnell theory. Reissner [17] applied the Donnell’s assumptions to a shallow
spherical shell. The Donnell-Mushtari-Vlasov equations [8] are obtained from Donnell’s
assumptions are applied to a shallow shell of arbitrary geometry.

Cheng and He [18, 19] have developed an exact linear theory for circular cylindrical
shells based on Love’s assumptions. By retaining all the small terms which are neglected, in
varying degrees, by other theories, the usual eighth order operator in the governing
equilibrium equation of the transverse displacement can be separated into two complex
conjugate operators, thereby reducing the solution complexity. A general theory for thin
isotropic shells, which makes no simplifications for approximations beyond a fundamental
hypothesis, was developed by Markov [20].
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Padovan [21] used a complex multi-segment numerical integration procedure, which can
handle the static analysis of mechanically, and thermally loaded branched laminated
anisotropic shells of revolution with arbitrary meridional variation in thickness and
material properties. The governing equations are based on the Love-Reissner theory (they
did not consider the effects of shear deformation in their work).

Basar and Ding [22] used the finite rotation elements for the non-linear analysis of thin
shell structures. Their work is based on the Kirchhoff-Love hypothesis. In the development
of non-linear finite element using the Kirchhoff-Love hypothesis, the essential problem is
the elimination of the rotation vector (the difference vector) without loss of accuracy. To do
this, the Kirchhoff-Love hypothesis is expressed by two sets of equivalent conditions: one of
them is used in the form of linear variational equations for elimination of the incremental
rotational variables; the other, non-linear one, is needed for the exact calculation of the
rotation vector of the fundamental state.

Most of the theories outlined above have been applied to a shell so thin that all transverse
shear deformation effects, transverse stresses and strains can be neglected. These transverse
effects become more pronounced as the shell becomes thicker relative to its in-plane
dimensions and radius of curvature. This is particularly true of the transverse shear
deformations [11] since classical theories can be grossly in error in predicting transverse
deflections, buckling loads or natural frequencies. It is well known from experimental
observations that the fact that classical plate theory neglects transverse shear strains leads
to underestimations of deflections and overpredictions of natural frequencies and buckling
loads.

These errors are even higher in the case of plates and shells made up of advanced
anisotropic laminated composite materials such as graphite-epoxy and born-epoxy, where
the ratio of elastic moduli to shear moduli are very great (i.e., of the order 25-40 instead of 2:6
for isotropic materials). As pointed out by Koiter [11], refinement of Love’s approximation
theory of thin elastics shells is meaningless unless the effects of transverse shear and normal
stresses are taken into account. Transverse shear deformation plays a very important role in
reducing the effective flexural stiffness of anisotropic laminated plates and shells because their
in-plane elastic modulus to transverse shear modulus ratio is high.

The transverse shear effect on non-linear vibration and post-buckling behavior is
significant, especially for laminates with moderately significant thickness, a high
circumferential wave number and a greater number of layers. Study of the shear
deformation shows that these effects can become quite meaningful for some geometrical
parameters, such as small radius—thickness or length—thickness ratios, as well as for shorter
wavelengths or longer shells.

In addition to the transverse shear deformation, the initial curvature effect should be
considered for the analysis of thick shells as indicated by Voyiadjis and Shi [23] for
isotropic materials. The initial curvature effect is very important in making accurate
predictions of stresses even in the central region. In the shell structure, the curvature of each
parallel surface through the thickness of the shell is different. To consider the initial
curvature effects, the term 1 + z/R has to be included. The presence of curvature effectively
increases the structural stiffness.

In the refined shell theories that take the transverse shear deformation effect into account,
the normals to the reference surface of shells are permitted to rotate such that plane sections
originally perpendicular to the middle surface remain planar, but, as a result of the
deformation, are no longer perpendicular. The transverse shear is represented by inclusion
of an independent degree of freedom (d.o.f) in the kinematics. The shells is still fully
described by the behavior of the reference surface and therefore these approaches represent
2-D theory [24].
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Hildebrand et al. [25] were the first to make significant contributions by dispensing with
Love’s assumption and assuming instead a three-term Taylor’s series expansion for the
displacement vector for orthotropic and homogeneous shells. Naghdi [26] has employed
Reissner’s [27] mixed variational principle to develop a complete shell formulation similar
to that of Hildebrand et al. [25], retaining two and three terms in the Taylor’s series
expansions for tangential and transverse displacement components respectively.

The first analysis to incorporate the bending and stretching coupling was carried out by
Ambartsumyan [9]. He assumed that the individual orthotropic layers were oriented in
such a way that the principal axes of material symmetry coincided with those of the
principal co-ordinates of the shell reference surface. The effects of transverse shear
deformation, transverse normal stresses and transverse normal strain on the behavior of
laminated shells can be incorporated, on the basis of a mathematical model, through the
inclusion of higher order terms in the power-series expansion of the assumed displacement
field.

Dong and Tso [28] were perhaps the first to present a first order shear deformation
theory, retaining one and two terms in the Taylor’s series for transverse and tangential
displacement components, respectively. The theory includes the effects of transverse shear
deformation through the shell thickness, and hence they construct a laminated orthotropic
shell theory. Hildebrand et al. [25] found that the effects of the additional terms in the
transverse displacement that resulted in non-zero transverse normal strains are negligible.
Reissner used these kinematic relations to analyze first plates [29] and then sandwich shells
[30]. The rotary inertia terms have been included in the dynamic analysis of plates by
Mindlin [31].

The above-mentioned first order shear theories result from the so-called
Reissner—Mindlin (RM) kinematics do not satisfy the transverse shear boundary conditions
on the top and bottom surfaces of the shell or plate, since a constant shear angle through the
thickness is assumed, and plane sections remain plane. For this reason, the theories based
on these kinematic relations usually require shear correction factors for equilibrium
considerations. The shear correction factors are only functions of lamination parameters
(number of layers, stacking sequence, degree of orthotropy and fiber orientation in each
individual layer) [32, 33].

Levinson [34] and Reddy [35] have developed theories that include terms in-plane
displacement kinematics. They used a parabolic shear strain distribution through the
thickness for satisfying zero transverse shear stress on the top and bottom surfaces of the
shell, thus producing closer agreement with linear elasticity. The parabolic shear strain
distribution has been used to analyze the linear vibrational behavior of isotropic cylindrical
shells by Bhimaraddi [36].

The effects of transverse shear deformation and transverse isotropy as well as thermal
expansion through the thickness of cylindrical shells were considered by Gulati and
Essenburg [37], Zukas and Vinson [38], Dong and his colleagues [14], Hsu and Wang
[39], Chaudhuri and Abu-Arja [40] and Khdeir et al. [41].

Whitney and Sun [42,43] developed a shear deformation theory for laminated
cylindrical shells that includes both transverse shear deformation and transverse normal
strain as well as expansional strains. The theory is based on a displacement field in which
the displacements in the surface of the shell are expanded as linear functions of the thickness
co-ordinate and the transverse displacement is expanded as a quadratic function of the
thickness co-ordinate. They discussed some methods by which one can diagnose the mass
matrix. They did not consider the product of the first order derivatives of the tangential
displacement component with respect to x, y and z in the strain-displacement relations.
These relations are based on von Karman’s theory [12].
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Reddy [44] extended Sanders’ [10, 457 theory for simply supported cross-ply laminated
shells assuming 5 d.o.f.s per node. The theory is based on a displacement field in which the
displacements of the middle surface are expanded as cubic functions of the thickness
co-ordinate, and the transverse displacement is assumed to be constant through the
thickness. The Navier-type exact solutions for bending and natural vibration are presented
for cylindrical and spherical shells under simply supported boundary conditions.

A generalization of geometrically linear shear deformation theories for small elastic stains
was presented for multilayered axisymmetric shells of general shape by Touratier [46]. He
proposed a general shear deformation theory for multilayered, moderately thick,
axisymmetric shells. The theory, which is geometrically linear, is developed for small elastic
strain and is restricted to axisymmetric shells under axisymmetric loading and classical
boundary conditions. The principal advantage of this work is that it does not need shear
correction factors.

Static analysis of laminated shells using a refined shear deformation theory was done by
Ji-Fan He [47]. According to this theory, the thickness of the shell must be small compared
to the principal radii of curvature. It can be expected that the present theory would tend to
be fairly accurate for laminated shells with many layers. Hsu and Wang [39] and Di Sciuva
[48] proposed a specially designed displacement field with traction continuity at the layer
interface, and Reissner [49] proposed another type of general shell theory for transversely
isotropic materials based on the Reissner mixed variational principle with independently
assumed transverse stresses.

More recently, Jing and Tzeng [50] derived a mixed shear deformation theory for thick
laminated shells of general shape based on proposed method of Jing and Liao [51]. The
displacement field uses a zig-zag function in addition to the Reissner—-Mindlin-type in-plane
displacements and a constant transverse deflection. Kant and Ramesh [52] developed
complete governing equations for a thick laminated composite shell. The theory is based on
a three-term Taylor’s series expansion of the displacement vector and generalized Hooke’s
law, as is the displacement model of Hildebrand et al. [25], and is applicable to orthotropic
material layers having planes of symmetry coincident with shell co-ordinates.

Advanced composites materials are being used more and more in a variety of industries
due to their high strength and stiffness-to-weight ratios; this has led to a rapid increase in
the use of these materials in structural applications during the past decade. Structural
elements made up of advanced fiber-reinforced composite materials offer unique
advantages over those made of isotropic materials. They are being extensively used in high
and low technology areas, e.g., the aerospace industry, where complex shell configurations
are common structural elements.

The filament-winding techniques for manufacturing composite shells of revolution has
recently been expanded in aircraft, shipbuilding, petroleum and other industries. In general,
these materials are fiber-reinforced laminate, symmetric or antisymmetric cross- and
angle-ply, which consist of numerous layers each with various fiber orientation. Although
the total laminate may exhibit orthotropic-like properties, each layer of the laminate is
usually anisotropic; thus the individual properties of each layer must be taken into account
when attempting to gain insight into the actual stress and strain fields.

By optimizing the properties we can reduce the overall weight of a structure since stiffness
and strength can be designed only where they are required. A lower weight structure
translates into higher performance. Since optimized structural systems are often more
sensitive to instabilities, it is necessary to exercise caution. The designer would be much
better able to avoid any instabilities, if, when predicting a maximum load capacity, he either
knew the equilibrium paths of structural elements or had accurate modelling of the
load-displacement behavior of the structure.
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Anisotropic laminated plates and shells have a further complication which must be
considered during the design process: potentially large directional variations of stiffness
properties in these structures due to tailoring mean that three-dimensional effects can
become very important. The classical two-dimensional assumptions may lead to gross
inaccuracies, although they may be valid for an identical shell structure made up of
isotropic materials.

However, although they have properties that are superior to isotropic materials,
advanced composite structures do present some technical problems in both manufacture
and design. For computational reasons, the study of composite materials involves either
their behaviors on the macroscopic level such as linear and non-linear loading responses,
natural frequencies, buckling loads, etc., or their micro-mechanical properties like cracking,
delamination, fiber-matrix debonding, etc.

A number of theories for layered anisotropic shells exist in the literature. Many of these
theories were developed for thin shells and are based on the Kirchhoff-Love hypothesis.
The first analysis that incorporated the bending-stretching coupling (due to asymmetric
lamination in composites) was by Ambartsumayan [9]. In his analysis, he assumed that the
individual orthotropic layers were oriented such that the principal axes of material
symmetry coincided with the principal co-ordinates of the shell reference surface. He has
written extensively on the matter, basing his work of Love’s theory with some discussion of
transverse stresses.

The simplifying assumption of laminated anisotropy is often used in applying a 2-D
theory to plates and shells consisting of layers of composite materials [24]. In this approach,
the individual properties of the composite constituents, the fibers and the matrix, are
“smeared” and thus each lamina is treated as an orthotropic material.

A survey of the analysis of multilayered composite shells using Reissner’s mixed
variational principle was done by Grigolyuk and Kulikov [53]. They maintain that
laminated anisotropy assumes perfect bonding between layers, and that the interply
adhesive has infinitesimal thickness but infinite stiffness. This approach leads to classical
laminated plate theory (CLPT) and the references by Jones [ 54] and Whitney and Pagano
[55] to CLPT are based on the Kirchhoff-Love assumptions. However, both references
point out that transverse shear deformation is more significant in laminated anisotropic
than in similar isotropic constructions.

Bert [56] used Vlasov shell theory to formulate a linear laminated shell theory similar to
CLPT. Pagano and Wang [57-60] and Srinivas and Rao [61] have developed some exact
solutions of 3-D elasticity equations governing composite plates that have been used to
validate the shear theory. They conclude that CLPT gives fairly good approximations for
both the displacements and stresses if the plate is thin. Higher order shear theories do not
give much better transverse stress results but displacements show a marked improvement
over CLPT for the thicker plates. Transverse stresses are best calculated from equilibrium
instead of from the constitutive relations [54]. Ren [62] similarly solved 3-D elasticity
equations for a laminated cylindrical shell in cylindrical bending.

His work dealt with what is now known as laminated orthotropic shells rather than with
laminated anisotropic shells. In laminated anisotropic shells, the individual layers are, in
general, anisotropic, and the principal axes of material symmetry of the individual layers
coincide with only one of the principal co-ordinates of the shell (the thickness-normal
co-ordinate). Whitney and Pagano [55] applied the Reissner-Mindlin theory to composite
plate analysis. The buckling of laminated cylindrical shells was studied by Hirano [63].
Reddy and Chao [64] applied the closed-form solution to the thick composite plate.

Reddy [24, 65] has extended the cubic kinematic approach to the analysis of laminated
anisotropic plates and he has applied them to solving several linear static and buckling
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problems. Additionally, Soldatos applied the parabolic shear theory to examination of the
stability of asymmetrically laminated cylindrical panels [66, 67]. Cheng and Ho [68]
presented an analysis of laminated anisotropic cylindrical shells using Fliigge’s shell theory
[2]. A first approximation theory for the asymmetric deformation of non-homogeneous,
anisotropic, elastic cylindrical shells was derived by Widera and his colleagues [69, 70] by
means of the asymptotic integration of the elasticity equations. For a homogeneous,
isotropic material, the theory reduces to Donnell’s equations.

Noor and Peters [71] presented the free vibration analysis of laminated anisotropic shells
of revolution as well as the sensitivity of their response to anisotropic material coefficients.
Their analytical formulation is based on a form of the Sanders-Budiansky shell theory,
including the effects of both transverse shear deformation and the laminated anisotropic
material response. Each of the shell variables is expressed in terms of trigonometric
functions in the circumferential co-ordinate and a three-field mixed finite element model is
used for the discretization in the meridional direction. They used a reduction method
involving the successive use of the finite element method and classical Bubnov-Galerkin
technique to substantially reduce the size of the eigenvalue problem.

Zienkiewicz [72] introduced a finite element approach with independent transverse
displacement and rotational d.o.f.s such that a RM shear deformable shell element is
obtained. A small rotation approach for anisotropic shell has been developed by Librescu
and Schmidt [73].

Successive approximations, as steps towards an estimate of exact shell
strain-displacement relations where displacements, large strains and rotations were all
initially allowed, are presented for isotropic shells by Sanders [45] and anisotropic shells by
Librescu [73].

Kant and Kommineni [74] presented higher order theories for general orthotropic as
well as laminated shells. These theories were derived from the three-dimensional elasticity
equations by expanding the displacement vector in a Taylor’s series in the thickness
co-ordinate. Reference [75] presented some elements, which can be successfully applied to
the analysis of both thin and thick plate and shells. Kui et al. [76] applied the finite element
method, displacement type, to analyses thin shells and to overcoming the shear-locking
phenomena.

Pryor and Barker [77] developed a linear plate element based on the RM theory. They
used a rectangular element with 28 d.o.f:s (8, 12, 8 for extension, bending and shear effects,
respectively), to have continuity of transverse stress at any interface. Hinrichsen and
Palazotto [ 78] applied a cubic spline function to the non-linear analysis of thick composite
plates. Their theory is based on the usual Kirchhoff hypothesis. The theory was developed
by considering the Lagrangian strains in conjunction with the second Piola-Kirchhoff
stress hypothesis. This formulation leads to a quasi-three-dimensional element that
combines large displacement with moderately large rotation but is restricted to small
strains.

Schmit and Monforton [79] formulated an anisotropic cylindrical shell element, which
allows them to predict the geometrically non-linear behavior of sandwich plate and
cylindrical shell structures, based on accepted thin shell theory assumptions. Other recent
papers by Meroueh [80] and Surana [81, 82] can be mentioned. Cylindrical shells are in
general use in the aerospace, shipbuilding, structural and petroleum industries. They are the
simplest shell structure to analyze yet have many of the characteristics of more complex
shell geometries. The linear problem of composite cylindrical shells has been widely
investigated by a number of researchers using different shell theories. Based on the
Kirchhoff hypothesis, for example, Dong [83] studied the free vibration of laminated
orthotropic cylindrical shells with homogeneous boundary conditions.
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The governing equations of orthotropic cylindrical shells were solved via a pair of
complex conjugate fourth order differential equations by Cheng and He [19]. Their work is
based on the Kirchhoff hypothesis. For the static problem, Fliigge and Kelkar [84] and Yao
[85] obtained an exact solution for closed isotropic long cylinders under general
two-dimensional surface traction. Using the Forbenius method, Srinivas [61] developed an
exact three-dimensional solution for orthotropic finite cylinders with simply supported
conditions. Varadan and Bhaskar [86] also performed the static stress analysis using the
procedures proposed by Srinivas [61]. Pagano [87] obtained the stress field for
a homogeneous, anisotropic closed cylinder under two-dimensional surface loads in which
the problem are independent of the axial co-ordinate.

Ren [88] presented an exact solution for simply supported laminated cross-ply circular
cylindrical panels of infinite and finite length in the axial direction. Leissa et al. [89]
analyzed the vibration of cantilevered cylindrical panels by using the Ritz method, with
algebraic polynomial functions for the displacements.

Widera and Logan [70] studied the non-homogeneous, anisotropic, circular cylindrical
elastic shell, using the method of asymptotic expansion in terms of a small parameter in
conjunction with Reissner’s variational principle. In their work, the procedure used to derive
the shell equation starts with substitution of non-dimensional shell co-ordinates in terms of
a characteristic length scale for changes of stresses and displacements and Reissner functional
direction. The employment of the formulation in terms of Reissner’s principle allows one to
obtain automatically all the equations necessary to formulate a complete boundary value
problem for a first-approximation shell analysis. Non-dimensional stresses, displacements
and Reissner functional direction are introduced and considered to be representable by
asymptotic expansions in a power series in terms of a small shell parameter.

Recently, Bert and his colleagues [90, 91] and Hsu et al. [92] presented exact solutions
for bending and vibration of cross-ply, thin cylindrical shells. These solutions are limited to
cylindrical shells and sinusoidal distribution of the transverse load, and the procedure used
is similar to that used by Whitney and Leissa [93], Whitney and Pagano [55], Bert and
Chen [94], and Reddy and Chao [64] for laminated composite plates.

Tzeng [95] proposed a mixed shear deformation theory for the bending analysis of
arbitrarily laminated, anisotropic panels and closed cylinders. The initial curvature effect is
included in the strain-displacement relations, stress resultants and assumed transverse
shear stresses. Two types of shell geometry, infinitely long cylindrical panels and closed
cylinders of finite length, are employed in the numerical study. Suzuki and Leissa [96, 97]
analyzed the free vibration of circular and non-circular cylindrical shells having
circumferentially varying thickness.

The static response to the axisymmetric problem of arbitrarily laminated, anisotropic
cylindrical shells of finite length using three-dimensional elasticity equations was studied by
Jing and Zeng [98]. The closed cylinder is simply supported at both ends. The highly
coupled partial differential equations are reduced to ordinary differential equations with
variable coefficients by choosing the solution composed of trigonometric functions along
the axial direction.

Kant et al. [52, 74] presented various higher order theories for laminated composite
cylindrical shells using C,, finite elements. Kant and co-workers did extensive numerical
investigations on laminated plates and shells, both static and dynamic analysis, using C,
finite elements and different higher order theories. They proved that the imposition of
shear-free boundary conditions on the top and bottom bounding planes of the laminate
gives stiffer solutions when compared to three-dimensional (3-D) elasticity solutions and
various displacement models for flat laminates. The one having 9 d.o.f.s per node produces
results very close to 3-D elasticity solution.
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A higher order shear deformation theory of plates accounting for the von Karman strains
was presented by Reddy [99]. This theory contains the same dependent unknowns as those
in the Hencky—Mindlin-type first order shear deformation theory. The displacements are
expanded in powers of the thickness of the plate, and accounts for parabolic distribution of
the transverse shear strains through the thickness of plate. Hamilton’s principle was used to
derive the equations of motions and the Navier solution procedure was used to solve the
equations of the simply supported plate.

Jing and Liao [51] proposed a mixed function with displacements and transverse shear
stresses as independent variables and established the corresponding partial hybrid stress
element for the analysis of thick laminated plates. Some comparison between the results
obtained for plates by these two functions were made by Jing and Tzeng [100].

A refined laminated plate theory was developed by Whitney and Sun [42] and is
applicable to fiber-reinforced composite materials under impact loading. The theory also
includes the first symmetric thickness shear and thickness stretch motion, as well as the first
antisymmetric thickness shear mode, by including higher order terms in the displacement
expansion about the mid-plane of the laminate in a manner similar to that of Mindlin and
Medick [101] for homogeneous isotropic plates.

Reddy and Phan [65] used a higher order shear deformation theory to determine the
natural frequencies and buckling loads of elastic plates. The theory accounts for the
transverse shear strain and rotary inertia. This work dealt with the exact solutions of the
theory as applied to the free vibration and buckling of isotropic, orthotropic and laminated
rectangular plates with simply supported edge conditions. Reddy [35] developed a higher
order shear deformation theory for laminated composite plates. This theory uses
a displacement approach similar to that in the Reissner—-Mindlin-type theories. The
in-plane displacements are expanded as cubic functions of the thickness co-ordinate and the
transverse deflection is constant through the plate thickness.

The form is dictated by satisfying the conditions that the transverse shear stresses vanish
on the plate surfaces and be non-zero elsewhere. This requires the use of a displacement field
in which the in-plane displacements are expanded as cubic functions of the thickness
co-ordinate and the transverse deflection is constant through the plate thickness. Ren and
Hui [102] formulated a simple theory for non-linear bending of generally laminated
composite rectangular plates, which accounts for the transverse shear stains by using the
principle of virtual displacements. Moreover, because the total deflection of a plate is
decomposed into a deflection due to bending and a deflection due to shear, the solution of
the governing equations of the present theory becomes simpler.

The Jing and Liao’s functional, modified from the Hellinger-Reissner principle by
separating the stress field into a flexural part and a transverse shear part and leaving only
displacements and transverse shear stresses as independent variables, has been used by Jing
and Tzeng [50] to analyze laminated plates with satisfactory accuracy.

There are many situations in mechanics in which some simplifying assumptions have
been considered to help the analyst in getting timely and accurate results. However, various
air, water and land vehicles and structures such as aircraft, rocket, pressure vessel,
petroleum and petrochemical units, etc., may be subjected to impacts, collisions, blasts
and/or other intensive transient loads which can cause large transient structural
deformation and damage.

Thin shells subjected to dynamic loads could encounter deflections of the order of the
shell thickness or higher. Thin shells could also encounter a phenomenon of dynamic
impacts or dynamic buckling and collapse, which are attributed to the change in the
equilibrium state characterizing the load-response mode. Response of these kinds cannot
be correctly predicted by using the small or intermediate displacement theory. In the
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intermediate non-linearity approach, the non-linear terms which represent in-plane
rotations of the shell are neglected [103, 104]. This theory is often used in stability analysis.

The structural elements made up of the advanced composite materials undergo large
deformations before they become inelastic, because of the high-modulus and high-strength
properties of composite materials. Therefore, an accurate prediction of transient response is
possible only when one accounts for the geometric non-linearity.

There are also cases where structural elements experience only small strains under load
but may fail catastrophically due to their geometric configuration. It turns out that this
class of structural system can be accurately analyzed on the basis of small strain, non-linear
geometrical and linear elastic material behavior. The need for accurate and efficient
methods for structural analysis and design, especially for this category of large-deflection
(geometrically non-linear) and elastic—plastic (materially non-linear) dynamic response
problems has recently become increasingly apparent.

In the proposed non-linear analysis methods, e.g., references [12, 45, 105], many of the
non-linear displacement terms may be considered negligible depending, of course, on the
specific situation. For example, an accurate load—displacement characterization of a flat
plate is based on the von Karman equation where many non-linear rotational terms have
been omitted. Similar assumptions for shell element result in equations of the type proposed
by Donnel, Sanders and Novozhilov. These formulations are typically valid for the
so-called intermediate non-linearity or theories that allow only moderate rotations.

The strain—-displacement relations that include non-linear displacement terms are used to
represent large displacements and rotations of differential elements of the shell. Non-linear
vibrations of generally laminated circular cylindrical shells were examined using the
Timoshenko-Mindlin kinematics hypothesis and an extension of Donnell’s shell theory.
The effects of the transverse shear deformation, rotary inertia and geometrically initial
imperfection are included in the analysis. The Galerkin procedure furnishes an infinite
systems of equations for time functions, which is solved by the method of harmonic balance
[106].

It has been recognized that the non-linear behavior of composite cylindrical shells plays
an important role in determining the stability and dynamic response of these shells. Chu
[107] first presented an analysis for circular isotropic cylindrical shells with the hardening
type of non-linearity for the amplitude-frequency response. Nowinski [ 108] confirmed the
results of Chu [107] by investing the non-linear vibration of orthotropic cylindrical shells.
Later, Evensen [109] pointed out that the mode shapes assumed by Chu do not satisfy the
condition of continuity of the circumferential in-plane displacement. A more rigorous study
of non-linear free flexural vibrations of circular cylindrical shells was conducted by Atluri
[110], who compared his results with the available data and concluded by accepting the
possibility of the softening type of non-linearity.

Chen and Babcock [111] adopted a perturbation technique in considering the
large-amplitude vibration of a thin-walled cylindrical shell. Ramachandran [112] studied
the non-linear vibration of cylindrical shells of varying thickness. Khot [113] studied the
post-buckling behavior of a laminated cylindrical shell subjected to axial load torsion using
the von Karman-Donnell equations. The results obtained by Khot [113] show that, in
general, composite shells are less imperfection sensitive than isotropic shells.

Recently, Iu and Chia [114] discussed the non-linear vibration and post-buckling of
antisymmetric cross-ply circular cylindrical shells on the basis of von Karman-Donnell
kinematic assumptions and the effects of transverse shear on the non-linear behavior of
these shells using the Timoshenko-Mindlin kinematic hypothesis. They neglected some
terms (e.g., cross-product of displacement derivatives) in non-linear strain-displacement
relations.
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Neglecting the transverse rotational non-linear terms as well will result in a linear
Love-type shell theory. These successive approximations to the shell strain-displacement
relations are discussed in the paper by Librescu [115] and Sanders [45]. In the last work, the
deformations are restricted by the Kirchhoff hypothesis (the transverse shear and normal
strains were neglected), the middle surface strains were assumed small and the rotations were
assumed to be moderately small. Most of the above approaches can include various degrees of
non-linearity in the strain—displacement relations representing the displacements and
rotations. Considerable simplification was achieved in the Donnel equations by use of
assumption that the non-linear membrane strains derived only from out-of-plane rotations.

For example, Donnell’s theory is not suitable for the analysis of shells in which the
buckling mode involves fewer than three full waves around the circumference [105]. More
accurate non-linear shell equations are given by Sanders and by Novozhilov, but these were
somewhat more complex than the Donnell equations. More terms are retained because
fewer assumptions are made about the relative magnitude of various terms in the non-linear
strain-displacement. Reddy and Chandrashekhara [116] solved laminated shell problems,
both cylindrical and spherical, assuming RM theory and an intermediate non-linearity.
There are few such analytical closed-form solutions for shell geometries, especially those
that govern non-linear behavior.

The formulation and computational procedure are presented for the geometrically
non-linear analysis of laminated orthotropic and anisotropic composite shells based upon
a modified incremental Hellinger—Reissner principal and the total Lagrangian description
by Rothert and Di [117]. In this investigation, a computational model for a geometrically
non-linear analysis has been studied on the basis of a rational approach for a hybrid stress
model.

The through-thickness assumption used in the total Lagrangian formulation is
introduced, incorporating the non-linear formulation for a large rotation assumption. Noor
and Peters [118] analyzed the non-linear response of anisotropic cylindrical panel that
included transverse shear deformation. Their formulations are based on the Rayleigh-Ritz
technique and the Hu-Washizu mixed shallow shell finite element approach.

Stein [119] used truncated series expansions of exact non-linear strain—-displacement
relations in a shell approach that also included transverse shear deformation. The
non-linear strain—-displacement relations were expanded into a series that contains all first-
and second-degree terms; only the first few terms have been retained for the displacements.
Geometrically non-linear quasi-three-dimensional approaches for laminated composite
plates and shells have been developed by Palazotto and Witt [120], Hinrichsen and
Palazotto [ 78] and Dennis and Palazotto [121]. Their work is restricted to small strains;
the exact Green’s strain—displacement and linear strain displacement relations were
assumed for the in-plane strains and the transverse strains, respectively, so the accuracy in
rotation is limited by the linear assumption on the transverse shear strains.

Tsai and Palazotto [122] have developed a finite element formulation for the geometric
non-linear vibration analysis of cylindrical shells, based upon a curved quadrilateral, 36
d.o.f:s, thin shell element. The equations of motion are based on a total Lagrangian frame of
reference. A f method, which is a generalization of Newmark’s time-matching integration
scheme and the Newton-Raphson iterative method, are both applied in order to solve the
set of non-linear equations of motion numerically.

The solution of a set of non-linear, second order differential equations which describe an
anisotropic shell of revolution was presented by Martin and Drew [123]. Their analysis is
based upon Sanders’ non-linear shell theory without considering the shear deformation
effects. The method for solving these equations follows the procedure used by Budiansky
and Radkowski [124].
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Kant and Kommineni [125] presented the geometrically non-linear transient analysis of
laminated composite (transversely isotropic) and sandwich shells, based on von Karman’s
theory. In the time domain, the explicit central difference integrator is used in conjunction
with the special mass matrix diagonalization scheme, which conserves the total mass of the
element and includes effects due to rotary inertia terms.

Rotter and Jumikis [105] have presented a set of non-linear strain-displacement
relations for axisymmetric thin shells subject to large displacements with moderate
rotations, by retaining more terms. Their works is based on Kirchhoff’s assumptions. They
have shown that non-linear strains arising from products of inplane strain terms, which
were omitted in previous theories, may be important in certain buckling problems. The new
relations are particularly important when branched shells are being studied and when the
buckling mode may involve a translation of the branching joint. Their work does not
include any numerical result.

A modal approximation in deriving the equations of motion for the non-linear flexural
vibrations of a cylindrical shell by using the Donnell’s shallow shell theory was presented by
Dowell and Ventres [126]. The purpose of their work was to satisfy more accurately the
boundary and the continuity conditions and investigate their effects on the form of the
modal equations.

Horrigmoe and Bergan [127] presented classical variational principles for non-linear
problems by considering incremental deformations of a continuum. Wunderlich [128] and
Stricklin et al. [129] have reviewed various principles of incremental analysis and solution
procedures for geometrical non-linear problems respectively. Noor and Hartley [130]
employed the shallow shell theory with transverse shear strains and geometric
non-linearities to develop triangular and quadrilateral finite elements.

Chao and Reddy [131], Reddy and Chandrasekhara [116] have presented a first order
shear deformation theory based on the kinematic and geometric assumption of Sanders’
thin shell theory for the geometrically non-linear analysis of doubly curved composite
shells. An analysis of the dynamic responses of cylindrical shells including geometric and
material non-linearities was made by Wu and Witmer [132]. The methods of finite element
analysis were applied to the problem of large deflection, elastic—plastic dynamic response of
cylindrical shells to transient loading. The formulation is based upon the virtual work
principle and D’Alembert’s principle. Wu and Witmer used a bilinear polynomial for the
axial displacement, and bicubic polynomials for both the circumferential displacement and
the transverse displacement, and explicitly excluded rigid-body modes.

The analytical solution of the shell motion equations is generally considered to be
difficult. Approximation methods can be suitably used (e.g., the finite difference, Galerkin,
Rayleigh—Ritz, transfer matrix and finite element methods). All of these methods have
advantages and disadvantages. One of the most important criteria in determining the
versatility of the resolution is the capacity to predict, with precision, both high and low
frequencies.

In the finite difference method, the initial values are given and this method requires
a great deal of calculation time. The Galerkin approach loses precision in the higher
frequencies of shells. The Rayleigh-Ritz method presents several drawbacks, among which
are the displacement function choice, which has to take the boundary conditions into
account, and the necessity to use a large number of terms of express displacement functions.
Also in the Galerkin method, both geometric and force boundary conditions must be
satisfied. On the other hand, the finite element method [72, 133-136] is satisfactory from
these viewpoints

The accuracy of solutions reached by the finite element displacement formulation
depends on whether the assumed functions accurately model the deformation modes of
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structures. To satisfy this criterion, Lakis and his group have developed a hybrid type of
finite element, whereby the displacement functions in the finite element method are derived
from Sanders’ classical shell theory [10]. This method has been applied with satisfactory
results to the dynamic linear and non-linear analysis of cylindrical shells, both closed and
open [137-147], spherical [148], conical [149], isotropic and anisotropic, uniform and
axially non-uniform shells, both empty and liquid filled. This method has also been applied
to the dynamic analysis of circular and annular plates by Lakis and Selmane [150-152].

The effect of the surrounding medium (air, liquid, etc.) upon the vibration of plates and
shells is of primary interest to scientists and engineers working in aerospace, marine and
reactor technology. The effect of the fluid on the structural response is usually significant
except in the case of extremely thick shells. The dynamic response of the shells when
subjected to a flowing fluid, as well as the influence of fluid speed on the shell-free vibrations,
were studied by many researchers. Lakis and Paidoussis [137-139], Paidoussis and Denis
[153], Weaver and Unny [154], Cheng [155] and Jain [156]. Paidoussis and Li made an
elaborate review in this field [157].

The fluid effect on the dynamic behavior of the structure can be taken into account by
considering the hydrodynamic mass, which is added to the mass matrix of the structure. The
effective mass is a function of the mode shape being considered, the shell and liquid
geometrical parameters, plus the physical parameters. In addition, the forces exerted by free
surface motion have to be considered; the pressure distribution due to surface motion during
vibration could be neglected; however, since resonant sloshing frequencies of thin shells are
considerably below the natural frequencies of the combined fluid—structure system.

The dynamics of coupled fluid shells were reviewed extensively by Yang [158] and Brown
[159]. Dynamic analysis of the structure-fluid systems was studied by Brenneman and
Yang [160], using the modal and hybrid methods. They obtained the structure and fluid
modes by applying the stiffness and flexibility methods, following MacNeal’s approach.
Crouzet-Pascal and Garnet [161] studied a ring-reinforced cylindrical shell immersed in
a fluid medium, and its dynamic response to an axisymmetric step pulse. MacNeal [162]
presented another approach, which is based on a hybrid finite element formulation in which
the structure is modelled with displacements as the unknown variables, and a fluid is
modelled with pressure as the variables. To utilize existing mainframe structural analysis
programs, MacNeal showed how to recover symmetry by manipulating the equations and
adding auxiliary variables to the problem.

The free vibration of simply supported vertical cylindrical shells partially filled with or
submerged in a fluid has been analyzed by Gongalves and Batista [163]. The Rayleigh-Ritz
method was used to obtain an approximate solution, which coincide with the exact solution
for the cases of an empty shell or a shell completely in contact with fluid. Their work is
based upon the consistent shell theory of Sanders. The fluid is taken as non-viscous and
compressible and the coupling between the deformable shell and this acoustic medium is
taken into account.

Since the lowest natural frequency of bending vibration of shells, immersed in or filled
with a fluid, is much less than the corresponding natural frequency of the shell in air, they
investigated the effects of variable height of fluid on the vibration response of vertical
cylinders filled with or submerged in an acoustic fluid medium. In general, the lowest
frequency is depending on liquid level, mode shapes and shell and liquid geometrical and
physical parameters.

The free vibration analysis of cylindrical storage tanks with axial thickness variation and
partially filled with liquid was studied by Han and Liu [164]. The tank is modelled using
Fliugge’s thin shell theory (in the isotropic case) and the fluid in the tank, according to
potential flow theory, is assumed to be inviscid and incompressible. In their work, the shear
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deformation effects have not been considered. They solved the partial differential equations
by using the transfer matrix technique.

An analysis of the non-linear vibration of cylindrical shells of varying thickness in an
incompressible fluid was made by Ramachandran [112]. The Rayleigh-Ritz procedure was
used to analyze non-linear transverse vibrations of elastic, orthotropic cylindrical shells of
linearly varying thickness, embedded in an incompressible fluid (there is no shear deformation
effect in his work). There are several reasons for undertaking the development of this theory.
First, developing a theory for either dynamic or stress analysis of anisotropic laminated plates
and shells, with various geometry shapes. The accurate prediction of the dynamic response or
failure characteristics of these structures made up from advanced composite materials
requires the use of refined theory where the effect of transverse shear deformation and other
factors such as rotary inertia and initial curvature effects are taken into account. This is
because the transverse shear deformation plays a more important role in reducing the effective
flexural stiffness of plates or shells made of these advanced materials than for corresponding
isotropic materials; the present study focuses on this last effect.

The next step deals with the study of the free vibration characteristics of thin anisotropic
laminated cylindrical shells based on the present theory. One of the criteria of success of
a method may be considered to be its capability of yielding the high, as well as the low,
natural frequencies and modal shapes with comparable high accuracy. The numerical
method will be based on a combination of hybrid finite element analysis [139] and the
refined shear deformation theory of shells. This allows us to use the thin shell equation in
full for the determination of the displacement functions, and hence the mass, stiffness and
stress-resultant matrices, instead of the more usual polynomial displacement functions.

This formulation yields the natural frequencies and mode shapes of shell defined by
arbitrary conditions without changing the displacement functions in each case. Numerical
results for fundamental frequencies will be presented for anisotropic laminated cylindrical
shells.

At the same time, the flowing fluid effect on the natural frequencies of anisotropic, open
cylindrical shells will be studied.

3. THEORETICAL DEVELOPMENT

This work is based on the following assumptions: (1) linear elastic behavior of laminated
anisotropic materials; (2) use the strain—displacement relations expressed in arbitrary
orthogonal curvilinear co-ordinate system; (3) the shell is thin and therefore we assume that
the thickness-direction normal stress is negligible compared with stress tangential to the
shell surface; (4) the transverse shear deformation, rotary inertia and initial curvature are
considered to influence the governing equations.

3.1. STRAIN-DISPLACEMENT RELATIONS

The normal and shear strain components are related to the components of the
displacement vector by [3]
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Figure 1. (a) Differential element of a shell, (b) definition of shell co-ordinate system.

where o;, @7; and g; are, respectively, the curvilinear co-ordinates of the surface, components
of the displacement vector and geometrical scale factor quantities, and are defined below for
application to shells (Figure 1):

Oy =0y, Oy =0, O3 =, uy=Uy, uy=U,, uz=W,

2
g1 =AT(1+{/R)% g@=A5(1+{/Ry)*% g3=1,

where Uy, U,, ,W, A;, R; and ( are, respectively, the displacement vector components,
Lamé’s parameters, the curvature radius and the thickness co-ordinate. Substituting
equation (2) into equation (1), we obtain the following strain-displacements equations in the
shell space:

1 oU, U,04, AW
=—""—"——|5""+—775 R
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where ¢; and (y;,,, 715) are, respectively, the normal and shearing strain components. We can
assume that the displacement components are presented by the following relationships:

Ui(o, 0z, £) = uq (o, 02) + {P1(0g, 22),
U, (o, 0z, £) = ua(0g, 03) + {fo(0tq, 22), )
Wy, 02, §) = wlag, o).

The f; and f3, represent the rotation of tangents to the reference surface oriented along the
parametric lines a; and o, respectively. Substituting equation (4) into equation (3),
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where &0, 7?2, k;, 7; and uf are, respectively, the in-surface normal and in-surface shearing
strain, the change in the curvature and torsion of the reference surface and the shearing
strain components. The Coddazi conditions which were used for the above equations are

A ORI =T R, T4 R = SR UR), ()
o2 Joty 0oy Ooty

where R;, {, A; and o; were defined earlier by equations (1) and (2).

3.2. THE RELATIONSHIP BETWEEN THE STRESS AND STRAIN VECTORS (HOOKE’S LAW)

The relationship between the stress and strain vectors (Hooke’s law) is

{0} =[0]1{e}. (8)

The constitutive equation of the Kth lamina (for a lamina of fibre-reinforced composite
material) in the lamina reference axes («, f3, ) can be written as follows, for only one lamina,
(Figure 2):

o4 [(Qu Qu Qny O 0 0 £
ap Ops Qpp Qpy O 0 0 &g
oy — QW Qvﬂ Qw 0 0 0 &y )
Tgy 0 0 0 2Q44 Yy
Tay 0 0 0 2055 Yoy
Tap L 0 0 0 2066 Vap

The [ Q] matrix denotes the elastic stiffness in the material co-ordinates (local axes). It is
useful to mention that the shear strains used in this work are tensor shear strains, not
engineering shear strains. Q;;’s elements are defined as follows:

Qux = Esa(1 = vy vyp)/A, Qup = (Vgo + VyuVy) EnnfA = (Vg + Vi) Egp/A,

Qpp = Egg(1 — vy, vi)id,  Quy = (Viyu + VpaVyp) EnofA = (Voy + Vopvp,) E,/A,

Qyy = Esa(1 = vopvpo)/A, Qpy = (vyp + VapVyo) Egp/A = (v, + vpaVay) E /A, (10)
Q44 = Gﬁya st = Gay; Q66 = Gaﬁa

A4=1- VapVpa = VpyVop — VyaVay — 2Vﬂavvﬁvav’
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2 (Transverse)

1 (Longitudinal)

Figure 2. Uni-directional lamina and principal co-ordinate axes.

where E,5 G, and v,; are, respectively, Young’s moduli of elasticity in the principal
directions, rigidity moduli characterizing the change of angles between the principal
directions, and the Poisson ratios characterizing the transverse contraction (expansion)
under tension (compression) in the directions of the co-ordinate axes. The stress—strain
relations of the Kth lamina in the laminate co-ordinate axes (1, 2, 3, global co-ordinates) can
be written as (Figure 3)

. Qi Qi Qi 0 0 20|
1 - 1
o Qa1 Qa2 Qa0 0 20 1,
0 0 2
{6}2 o, _ 031 Q32 Qas 036 & ’ (11)
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where
[Q1=[T] ' [QI[T] (12)
The transformation matrix [T] is defined by
[ m* w2 0 0 0 2mn |
n m* 0 0 0 — 2mn
0 0 1 0 0 0
[T1= 0 0 0 m —n 0 ’ (13)
0 0 0 n m 0
—mn mn 0 0 0 (m*—n? |

where: m = cos o, n = sin o.. The orientation angle o is measured counter-clockwise from the
1-axis to the x-axis (Figure 3). [Q] elements are defined as follows

011=0,* +2(Qus +2Q66)m*n* + Qppn*, Q12= Qs + Qpp — 4066)m*n® + Quy(m* + n*),
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Figure 3. (a) Multi-directional laminate with co-ordinate notation of individual plies, (b) a fiber-reinforced

lamina with global and material co-ordinate systems.
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3.3. THE EQUATIONS OF MOTION

Using the virtual work principle for the present case yields
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and where I, p® and { are, respectively, inertia moments, density of the Kth’s lamina
material and the thickness co-ordinate.

The sixth equation of equilibrium is identically satisfied by the integral definitions of the
shearing-stress resultants in terms of the shearing stress components. Two basic approaches
that enable us to eliminate exactly this sixth equation of equilibrium have been developed:

1. Derivation of constitutive equations which fulfill identically this extra equation of
equilibrium. For the classical theory of isotropic shell, such constitutive equations are
known as Fliigge-Lure-Byrne constitutive equations. In the case of composite shells,
the reader is referred to the monographs [165-167] by Librescu.

2. Formulation of modified stress resultants and stress couple measures, satisfying
identically this sixth equation of equilibrium. For the classical theory of isotropic
shells, such modified stress resultants and stress couples have been defined by Sanders
[45], Koiter [11] and Novozhilov [12]. For orthotropic and anisotropic shells,
a similar stress resultants and stress couples were considered by Lakis and Laveau
[142] and Librescu [165-167] respectively.

Now, we see that there are five independent boundary conditions to be applied at given
edges. The transverse shear deformations do not vanish in the present theory and, therefore,
the f5; cannot be expressed in terms of U; and W. The transverse shear theory recommended
here leads to no strains during rigid-body motion.

3.4, THE STRESS RESULTANTS AND STRESS COUPLES

The stress resultants and stress coupled are given by [3]

Ny g1 N, (]
Ny, T12 N3y T21
0 b= [ (o O+ URIAL {02 p= | {rap(I+URIAL (1)
M, “l ooy M, ¢l o,
M, T12 M3, T21

The quantities (N1, N»,, N1, N,;) are called the in-plane stress resultants, and (M, M 55,
M,, M,,) are called the stress couples resultants; (Q1, Q,,) denote the transverse force
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resultants. We notice, in equation (17), that the symmetry of the stress tensor (1, =

M. H. TOORANI AND A. A. LAKIS

T21)

does not necessarily imply that Ny, and N,; are equal or that M, and M, are equal
except in the case of a spherical shell, a plate or a thin shell of any shape.

3.5. THE CONSTITUTIVE EQUATIONS

The stress resultants and stress couples, which correspond to the stress components given
by equation (17), have been, therefore, obtained by using equations (5), (11) and (17):

where

and

where N is the number of lamina.

Nl 8(1) K1
Gi; A 0 H;. B;;
Niz [ } n +[ i f’] o i=16206
N, Aij Gijlaxa | €2 Bi; Hij laxa | K2
Ny Vg T2
M, &? K4 (18)
M= [H"" Bf"] e [J"" Df’} b ii=1626
M3, Bij Hij uxa | €2 Dij JijJaxa | K2
M, V(z) T2
Gij= Aij + ayBij + a;Di; + a3 E;;, Hy;= Bjj + ayDi; + a,E;; + az Fyj,
GI —Alj+b Blj+b2D,]+b EU’ H;j=Bij+b1Dij+b2E,‘j+b3Fij,
(19)
Jij=Dij+a1Eij+a2Fij+a3Cij>
1 1 1 1 1 1
TR TR CTRAR R “TRR
2 1 1 1 2 1R
(20)
b — 1 1 B 1 <1 1> B 1
"R, R ' Ry\R, R;) 7 RIR/
N 1N
Z (Ql])k (hk hk*l) Eij n Z ( lj) (hk hk 1)
k=1 4=
1 X 1Y
:z Z j hl%* 1)) F _g Z Ql] (hlg - h}?—l), l’] = 1: 69 2) 67 (21)
1Y 1 X
g Z hk _hk 1) Cij=g Z 1J)k (hk hl?—l)a
k=1 k=
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Note: Ny, # N,; and M, # M, and in the case of a sphere a3 = b3 and in the case of
conical and cylindrical shells as well as the case of circular and rectangular plates,
az = b3 == 0 NeXt,

1

TTeRy " YR ERIE (22)

This expansion requires only that ({/R)? < 1. So
b2 R 1 1 2 W2 R 371 1
[ idgzh[l_i_(___)h_]’ j &gdgz _h_<___>.
w2 1+ /Ry R, R,/ 12R, w2 L+ /Ry 12\R; R,
We also have
Ql} {f'ﬁn(l + C/Rz)dg} |:AA55 A54:| {M?}
=K, =K, \ 24
{Qz jTZn(l + {/Ry)d{ Ays BBy | |45 249

AAss = Ass + a;Bss + a,Dss + azEss, BBay = Ays + b1Buy + byDys + b3Ey,,

where

1
A = (Qaﬂ) (hk - hk— 1), Baﬂ = 5

k

(erﬂ)k (hl% - hl%— 1)’ o, ﬁ = 4’ 5’ (25)

HMZ
HMZ

aﬂ_

N
Z Qaﬂ h?* 1)-

-Jkl»—

N
Z (Quple (hé — hi—y),  Enp =

wl»—

In composite laminated plates and shells, the transverse shear stresses vary through the
layer thickness. This discrepancy between the actual stress state and the constant stress state
is often corrected in computing the transverse shear force resultants (Q; and Q,) by
multiplying equation (24) with a parameter K, called shear correction factor.

This factor is computed such that the strain energy due to transverse shear stresses equals
the strain energy due to the true transverse stresses predicted by the three-dimensional
elasticity theory. Values of K for various special cases are available in the literature such as
the shear correction factor for a homogeneous case obtained separatly by Reissner [27] and
Mindlin [31].

The determination of the shear correction factor, K, for composite laminated structures
is still an unresolved issue. This factor depends, in general, on the lamination parameters
such as number of layers, stacking sequence, degree of orthotropy and fiber orientation in
each individual layer.

Finally,

{Nu N12Q11N33 Ny Q3 M1 My, M;, M21}T = [P](10><10) {8(1) “/(1) #(1) 8(2) Vg .U(z) K1T1 K3 Tz}T'
(26)

The ef;79, ... and 1, were given earlier in equations (5) whereas the P; ;elements are given
in Appendix A and are defined by equations (19)-(21) and equation (25).
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The formulations of the governing equations will be developed hereafter in terms of
displacement measures only. There are other formulations in terms of stress resultants and
stress couples, in terms of strain measures, as well, mixed formulation in terms of stress
resultants (or stress potential functions like the Airy functions) and displacement quantities.
In order to obtain such formulation, it is necessary to first develop the compatibility
equations associated with the strain-displacement relationships. In order to obtain such
equations, the reader may follow the procedures described by Sanders [10] and Brull and
Librescu [168].

The five remaining equations of motion are implicit relations among the 10 resultant
forces and moments. Therefore, the five necessary boundary conditions must be specified on
each edge of the shell. It should be noted that these governing equations will be expressed in
terms of displacement measures only, named Dirichlet (essential) boundary value problem.
Therefore, five necessary boundary conditions must be specified on each edge of the shell:

uy =uf, u,=ui, w=w* f;=pf and p,=p3%.

For instance, in the case of a dynamic investigation of a clamped shell, we may write
u; =u, =w=_0and f; = f, =0 at each edge. In the case of a simply supported edge, we
obtain u, =w =0, §, =0 and u, = Cy, §; = C, at each edge, etc.

Finally, it can be seen that there are three different stiffness matrices in connection with
the constructive equation (18) considered in conjunction with equations (19)—(21). The first
one relates the in-plane stress resultants (N’s) to the mid-surface strain (¢’s) and is called the
extensional stiffness matrix. The flexural stiffness matrix relates the stress couples (M’s) to
the curvature (x’s). The last one is called the bending- stretching coupling matrix which
relates (M’s) to (&’s) and (N’s) to (x’s). In fact, the bending-stretching matrix components
equal to zero, only when the structure is exactly symmetric about its middle surface and this
requires symmetry in lamina properties, orientation and location from the middle surface.
With this regard, the stiffness quantities B, E;;, Cij, B,s and E,g, given in relations (21) and
(25), become immaterial in the case of symmetrically laminated structures. So, the governing
equations of rectangular and circular plates, as shown in Appendices B and E, can be
decoupled in two groups associated with stretching and bending. In the same connection,
the constitutive equations of symmetrically laminated composite shells can be also
decoupled, only if Love’s first approximation is adopted.

Now, we develop (1) equilibrium equations, (2) constitutive equations, (3) kinematic
relations (strain-displacement relations) for shells of revolution, cylindrical shells,
rectangular plates, spherical shells, conical shells and circular plates.

4. SHELL OF REVOLUTION

4.1. THE EQUILIBRIUM EQUATIONS

Substituting the geometry definitions of shells of revolution (Figure 4) into equations (15)

1 — 1 . .s
RyR,sin ¢ [NyRycos ¢+ Ny Rosind + Noy,g Ry — NoRycos §] +g—z +qy = Ly + 1,5y,
S — - 0 o
R4,Rgsin¢) [NG,BRd, + NO(/)ROCOS¢+N</)0,(/)Resln¢) +N(/,0R9COS ¢] +E =+ ’r) 211u0+12ﬂ9,

1 . N,
R,R,sin [QyRycosp+Q, 4 Rosing +QpeR,y] —

Ny
— 0 g =1y, (27
R,/, R0+qn 1 W ( )
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(a) (b) (c)

Figure 4. (a) Revolution shell, (b) principal curvatures, (c) curvilinear co-ordinates on the revolution surface. 0 = cte. :
ds =71, dg; ¢ = cte.:ds =rdb; 0y = ¢y, =0, Ay = Ry, A, = Rysinh; Ry = Ry, R, = Ry;0A4, /00, =0,04,/00; = Rycos ¢.

1 . . "
m [M, ,Resin+M;Rycos p+ My, g Ry — MogRycos ¢] — Q, = Lyiiy + I3,
]
1 . . "
m [My oRy+M 4o s Rosinp +MyoRy + Mg, Rocos ¢] — Qg = I iig + I3[,
PO

where the (@, 0) and (R,, Ry) are curvilinear co-ordinates and curvature radius of the
revolution surface respectively (Figure 4).

4.2. CONSTITUTIVE EQUATIONS

We have the same equations as those of equations (26), but the definitions given in
equation (20) must be changed. The constitutive equation is given in Appendix A.

11 1/1 1 1
GG =———, dy=— |5 ——5 | a3=—5—
""Ry R, 7’ R,\R, R,/ ° RIR,

11 1/1 1 1
by=——— by=—|———), by=—s.
'""R, R, ° R0<R0 R¢> * 7 RyR?

4.3. KINEMATIC RELATIONS (LINEAR STRAIN-DISPLACEMENT RELATIONS)

Using geometrical parameters given in (Figure 4), equations (5) can be defined as

1
0 0 0 0 0

. TSI

0 —r— 0 0 0 0
&g (1 + C/RB) 1 1
L " A yR) G+OR) | 0
Von 0 0 0 0 0
Von (1 4+ ¢/Ry) 1

0 0 0 0 O TR,
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- ‘s‘; ‘. -

bg Ky
0

Vo Ty

X + ¢ . (29)
Vg To
o 0

L\ uo 0

where

1 ou 10
8((12 = — <W + ¢>, Ky = ﬁd)

R, ¢ R, 0§’
sy Slln¢ 6@? tzo JcotedUs + IVX, =R, slln(b aﬁe ﬁ¢
%= RI¢ aa[(f, 7y = R%% (30)
v = L U, _Us cotgp, Tp= L b, + ﬁ cotg o,

Ry sin qb 00 R, Rysin ¢ 00

1L ow U 1 ow U
0 ¢> HO=77—J+50~

Ho =R, 06 R, P W= RGng a0 R,

5. CYLINDRICAL SHELLS

5.1. THE EQUILIBRIUM EQUATIONS

Using the geometry definitions of circular cylindrical shells given in (Figure 5), equations
(27) will become

ON,. 1 0N,,

Ox R 00 +Qx lux—‘f_ Zﬁx’

0N, 10N 0
éxe R 6000""%4'(10—11“6""12/393

anx l aQGO NOO

ox TRap R T@=hn (1)
oM., 1My, o y
ax +§ 60 _Qxx_12ux+l3ﬁxa
1 oM oM, .. "
R 5900 axo_Qoe=12“9+I3ﬁ9,

where x and 6 are curvilinear co-ordinates of the cylindrical shells (Figure 5).
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(a)

Figure 5. (a) Circular cylindrical shell geometry, (b) positive direction of integrated stress quantities. 0 = 0,
¢ =x; Rydg =dx, Ry, = 0, Ry=R.

5.2. CONSTITUTIVE EQUATIONS

Equation (26) can be used by changing the definitions given in Figure 5, this equation is
given in Appendix A:

1 1 1
alzﬁa a2:09 a3:09 blzﬁa bZZFa b3:0 (32)

5.3. KINEMATIC RELATIONS (LINEAR STRAIN-DISPLACEMENT RELATIONS)

The kinematic relations are obtained by using equation (30) and shell geometry definitions:

oU 1oUu, W oU | oU
0 __ x o_ Y~ " o_YY6 0o __ x
B TR0 TR T TR0

LB _10B  _3p _ _10p,

T TR T YT R (33)
ow 1ow U
0 _ 0_ - -6
W=t e 1= — 2+ b

Substituting the above equations into the constitutive equations (taking into account the
coefficients which were given in equations (32)) and then into equations (31), we obtain

Lk = (Ux9 UH) W: ﬁxa ﬁ@) P_lj) = Oa (k = 1723 (R 5) (34)

These relations are defined fully by the equations given in Appendix A. In order to compare
them with classical shell theory, the three equations of motion for cylindrical shells are also
given in Appendix A [147].

6. RECTANGULAR PLATES

6.1. THE EQUILIBRIUM EQUATIONS

The same cylindrical shell equations are used, taking into account the rectangular plate
geometry definitions (Figure 6), so equations (31) become

0Ny, 0N,

Ox ay +qx 1ux+ Zﬁx
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Y
|
Figure 6. Force and moment resultant on a plate element: r - o0, 6 - oo, rdf — dy.
ON,, ON,, . )
+ =2 g = iy + 1,
ax 6)1 qy 1%y Zﬁy
0 0Q,
Do Dy =1, 39
0x oy
oM., OM,, . ;
+ - +Qxx=12ux+13ﬂxa
0x oy

oM., oM . "
axy+a—yw—ny=Izuy+I3ﬁy.

6.2. CONSTITUTIVE EQUATIONS

We have the same equations as those of equation (26), but definition (20) must be
changed, this equation is defined in Appendix A:

a1=a2=a3=b1=b2=b3=0. (36)

6.3. KINEMATIC RELATIONS (LINEAR STRAIN-DISPLACEMENT RELATIONS)

These relations can be obtained by substituting the structural geometry definitions into
the kinematic relations of the cylindrical shell (33):

o_0Us ,_dU, ., U,

&x

o0 _ U, U, U,
axa y_ays yx_ax7 /y_aya
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o 2 OBy 0B _ 0P
P ax9 y aya X axa y ay»

(37)

ow ow
0 __ 0 _
:ux - ax + ﬁxv :uy ay + ﬁy'

Now, we can substitute the constitutive equations into equation (35) in the same way that
we obtained the five differential equations for the case of cylindrical shells, and can obtain
the implicit equations of the form (34). These equations are given fully in Appendix B.

7. SPHERICAL SHELLS

7.1. THE EQUILIBRIUM EQUATIONS

The equilibrium equations for the spherical shells can be derived by using equation (27)
and following definitions (Figure 7):

cosec ¢

[N¢COS¢)+N¢’(IJ, Sin¢+N9¢’9 —NQCOS¢] +% + q(/, = Ilud, + IZB¢’
¢

1 .
R [Ny, gcosecd + Nyjcotgp+Nyg , + Nyocotgp] + % + qo=1ilg+1, Py,

Ny

R +qn211W: (38)

1 N
— [Qycotgd + Q.4 + Qgocosec p] ——F —
R R
1 y .
R [M, s + M,cotgp 4+ My, gcosecp — Mycotgp] — Qy = Lty + I3,

1 . L.
R [Mg gcosec ¢ + Mg 4 + Mygcotgdp + My, cotgp] — Qg = Iiig + 13,

7.2. CONSTITUTIVE EQUATIONS

We have the same equations as in equations (26), but the definitions given in equation (20)
must be changed; these relations are given fully in Appendix A:

1

ay=a,=by =b, =0, a3:b3:F_

(39)

7.3. KINEMATIC RELATIONS

Substituting ry = r4, = R into the definitions of equations (30), equations (5) are defined:

1 /0U 1 ou 1 |44
0 ¢ 0 0

—_ +|/|/ ——_+_ 0tg¢l? +_
& R(ﬁqﬁ )’ & Rsing 00 RC ¢ R’

tou, , 1 ou, 1
i ~ “cotgpU
Rap° " " Rsing a0 ROV

0
Yo =
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Figure 7. Geometry of spherical shell: Ry = Ry = R.

C1op, 1 oy 1
%= R2¢° "~ Rsing o0 T RCOE: (40)

Ctopy 1 op, 1
“TRop Y Rsing a0 REE

1ow U, ., 1 aw u,

0 __ _ — R
M=R%e "R TP M Rang a0 R TP

Now, we substitute relation (40) into the constitutive equations and then into equations
(38), giving five differential equations which describe the equations of motion in terms of the
displacement field and mechanical properties of the shell, so that we have the same implicit
equations as in equations (34). Li’s is equations are given in Appendix C.

8. CONICAL SHELLS

8.1. THE EQUILIBRIUM EQUATIONS

We substitute the geometry definitions of conical shells (Figure 8) into equation (27):

COSEC o . I
NBX,O + Nx,x + qx = Ilux + IZﬁxa

cosec o

1 . ..
Nog+ Nygx +———— Qg+ qo = L1ilg + 1,9,
xtan o

cosec o 1 .
Qoo+ Qxx————Nog+q,=11w (41)
X xtano
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Figure 8. Geometry of conical shell: R, = o0, Ry = xtana, ¢ = n/2 — a, sin ¢ = cosa, cos ¢ = sina, 1, dd — dx.

cosec o

MOx,G + Mx,x - Qx = 12ux + I3ﬁxs

cosec o

Mg+ Myy« — Qo = I,ilg + I3Eo~

8.2. CONSTITUTIVE EQUATIONS

Equation (26) has to be modified by changing the definitions given in equations (20) to
obtain the constitutive equation of the conical shells; this equation is defined in Appendix A:

1
ag = , a; =0, az;=0,
xtano
1 1
bi=— xtano b, = tan’od > 0 (42)

8.3. KINEMATIC RELATIONS (LINEAR STRAIN-DISPLACEMENT RELATIONS)

These relations can be obtained by using the strain-displacement relations of shells of
revolution (30) and conical shell geometry definitions given in (Figure 8)

o_Us 1 oU, W o U, 1 aU,

& , &g = —— + 5 x = 5 = - »
0x *~ xsina 00 X tano 4 0x ve xsino 00
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_ 0B 1 By 0By 1 0B,
e T Xsine 000 T ox” ° T xsino 00’

ow 1 oW Uo
o_ 0_ o
M =% the H xsino 00 xtanoc+ﬂ9'

(43)

The five differential equations of motion for conical shells, in terms of the displacement
field and mechanical properties of shells, can be obtained by substituting the kinematic
relations first into the constitutive equations, and then into the equilibrium equations.

These implicit equations L; are given fully in Appendix D.

9. CIRCULAR PLATES

9.1. THE EQUILIBRIUM EQUATIONS

These equations are obtained by using circular plate geometry definitions (Figure 9) and

the same equations as we used for the conical shell (41)

1 0Ny, ON,, .. s
- =1 I
R 60 + ar + qr 1 Uy + 2 ﬁr’

1 aNgg @N,g
R 00 or

+qg=11ae+lzﬁe,

l aQGH + aer

o
R o0 T o T=hW

Figure 9. Circular plate element: « = 7/2, x =r.

(44)
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1 aM@r aA]\4rr _ . 5
E 00 + or _er_12ur+l3ﬂr,
1 oM oM, . 5
R 6900 arg—Q90=12u0+13/30~

9.2. CONSTITUTIVE EQUATIONS

Changing the relations defined in equations (20) and substituting into equation (26), the
constitutive equation for a circular plate can be obtained and is given in Appendix A:

a1=a2=a3=b1=b2=b3=0. (45)

9.3. KINEMATIC RELATIONS (LINEAR STRAIN-DISPLACEMENT RELATIONS)

These equations are obtained by substituting the geometry definitions of circular plates
into the conical shell kinematic relations:

o U, o 13Uy , U, VozlaU,
® TR0

TS TR T o

_OB V0B _ 0By _ _13B
e MTRW0 YT YT R

(46)

. oW . Low

My =W+ﬂr, Ho =§W+ﬁe~

We substitute relation (46) first into the constitutive equations and then into equations
(44), and obtain five differential equations which are defined in Appendix E.

10. CHARACTERISTIC EQUATION

In the present theory, §; and 3, which represent the rotation of tangents to the reference
surface oriented along parametric lines o; and «,, cannot be expressed in terms of U; and W.
Therefore, the five differential equations of motion cannot be reduced to 3 as in classical
shell theory. In the case of cylindrical shells, we obtain five differential equations of motion
as shown in equations (A.2)-(A.6) in Appendix A. Also listed in Appendix A are the three
differential equations (A.7)-(A.9) of Sanders’ cylindrical shell theory. The accuracy of the
finite element method depends primarily on the number and size of the finite element into
which the structure is divided. Good accuracy can generally be obtained with a sufficiently
large number of small elements. The optimum degree of approximation in the element
stiffness and mass matrices will depend upon many factors, the most important perhaps
being the choice of the displacement functions and the degree to which they satisfy the
convergence criteria of the finite element method; here we do not mean numerical
convergence but absolute convergence to the continuum.
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The characteristic equations of vibration analysis of anisotropic laminated open circular
cylindrical shells, formulated on the basis of the present theory, have been compared to that
of Sanders’ shell theory [147]. Assuming the displacement functions for the dynamic
analysis of anisotropic circular cylindrical shells to be

U(x, 0) cosmx 0 0 0 u;(0) A;elf
V(x, 0) 0 0 sinmx 0 0 0 v;(0) 10 B;e'?
W(x,0) )= 0 0 sinmx 0 0 wi0) =Y [T, Cie b,
By (x, 0) i=t 0 0 0 cosmx O B0 ! D;elf
Bo(x, 0) 0 0 0 0 sinmx| |fu0) E;e

(47)

we substitute these definitions into the equations of motion for cylindrical shells (34). We
then take into account that the non-trivial solution leads to a tenth order polynomial
equation (48) (characteristic equation) due to 5 d.o.f.s per node, instead of an eigth order
equation (49) [147, equation (10)]:

fron™ + fen® + fon® + fan* + fan® + fo =0, (48)

where f;(i = 0-10) are the coefficients of the determinant of the matrix [H] given in
Appendix A. For the case of isotropic cylindrical shells based on classical shell theory, we
obtain

hgn® + hen® + han* + hyn® + ho =0, (49)

where h; (i = 0-8). The coeflicients of the characteristic equation of cylindrical shells based
on Sanders’ shell theory are given in reference [147]. Each root of the characteristic
equation (48) yields a solution to the equations of motion (34). The complete solution is
obtained by finding the sum of all 10 solutions independently with the constants A4;, B;, C;,
D; and E; The fundamental unknowns consist of the 10 strain components, 10 stress
resultants and the five generalized displacements of plates or shells.

It is necessary to formulate 10 boundary conditions for the finite elements; the axial,
tangential and radial displacements as well as the rotations will be specified for each node.
The displacement functions for this theory are derived and mass and stiffness matrices of
each element are obtained by exact analytical integration.

The roots of the characteristic equation for equations (48, 49) obtained by the computer
program are given for isotropic and anisotropic materials. One such set of calculation is
shown in Table 1, where the computed values based on Sanders’ theory, made by authors of
reference [139], were compared with those from other theories, given in reference [139].
Tables 2 and 3 show the characteristic equation values of equation (49), reference [ 147], and
those of equation (48) obtained by the present theory.

A cross-ply layered (0°/90°/90°/0°) cylindrical shell with the following material properties
were used as an anisotropic material example. All layers are assumed to have the same
geometric and material parameters and the individual layer is assumed to be orthotropic:
E, =25E,, G353 =02E,, G13 =Gy, =05E,, v, =025 p=1.

11. DISCUSSION AND CONCLUSION

General equations of multilayered laminated anisotropic shells were developed by taking
into account the shear deformation and rotary inertia effects as well as the initial curvature.
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TABLE 1

Roots of characteristic equations for 12 R*(1 —v?)/t? = 4 x 10* and v = 0-3

n=2 n=3 n=10
A1 Ay A Az A As
Sanders* 10-2020 0-1757 10-4650 0-43961 15-2860 52613
+9-:8026i  +0-17051i £+ 956821  + 0-40598i + 739651  + 2-5783i
Fligget 10-1952 0-1758 10-4581 0-43990 15-2533 52610
+9-8104i  +0-17040i £+ 9-5761i 4+ 0-40570i + 7-4851i 4+ 2-5719i
Vlasov’ 10-1955 0-1756 10-4591 0-43960 15-2881 52759
+9-8107i £+ 0:17060i £+ 9-5771i 4+ 0-40590i + 741831 + 2-5766i
Timoshenko' 10-2025 0-1758 10-4652 0-44000 152840 5-2645
+9-8027i £+ 0-17040i £+ 9-5632i 4+ 0-40560i + 7-3951i 4+ 2-5741i
Novozhilov’ 10-2022 0-1757 10-4645 0-43960 152796 5-2657
=+ 9-8024i =+ 0-17050i +9-5674i  + 0-40601i + 7-38591  + 2-5779
Naghdi and 10-2027 0-1760 10-4660 0-44030 152737 5-2860
Berry® =+ 9-8030i =+ 0-17020i +9-5690i =+ 0-40520i + 7-4030i  + 2-5342i

*Data from computer program of authors [139].
T Data given in reference [139].

TABLE 2

Roots of characteristic equations (48, 49) for isotropic materials (m = 1)

N1, ... » Ng, reference [147] N1, --- » N10, Present
R/t =10 4+ 2:2097 + 2:9127i + 1-6124 + 3-0289i , + 340672
L/R=1 + 4-8899 + 1-2551i =+ 5-:3039 + 1-:3630i
R/t =20 + 2-3750 + 3-8041i + 12718 + 3-7971i , + 69-0023
L/R=1 + 5-4940 + 1-6173i + 6:0694 + 2-1717i
TABLE 3

Roots of characteristic equations (48, 49) for anisotropic materials (0°/90°/90°/0°)

N1, --- » g, reference [147] N1, --- » N10, Present
R/t =10 + 2-7864, + 219869 + 17076 + 3-1030i , + 16-2057
L/R=1m=1 + 54093 + 4-3960i + 54873 + 1-2258i
R/t =10 + 4-5689, + 439733 + 4-5045 + 3-8386i , + 6:3269
L/R=1m=2 + 11-:0662 + 8-:6369i + 12-7532 + 4-7411i

We believe that these effects will be more important to the dynamic behavior of anisotropic
shells than of isotropic materials. The derivation used geometrically linear theory for small
elastic strains and strains expressed in orthogonal curvilinear co-ordinates for general
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shells. The virtual work principle was applied in order to derive the equilibrium equations.
The work of several researchers on this particular subject has been reviewed and
summarized.

The theory used yields five coupled linear second order differential equations with
constant coefficients, instead of three equations, as in the case of other theories. The reason
for this is that transverse shear strains do not vanish in the present theory and, therefore, the
f; cannot be expressed in terms of displacement components. This theory leads to no strain
during rigid-body motions.

A paper currently under preparation will deal with the dynamic analysis of open and
closed nonuniform anisotropic laminated circular cylindrical shells with arbitrary
boundary conditions. The effects of transverse shear deformations and rotary inertia on the
vibration characteristics of cylindrical shells of different geometrical (R/t, L/R and L/t) and
material (isotropic, symmetric and antisymmetric cross-ply laminated shells) parameters, as
well as axial and circumferential wave number (m, n) are handled through several numerical
examples with reasonable agreement with other theories. The computational method used
is a combination of hybrid finite element analysis based on the method of reference [139]
and refined shell theory. The displacement functions are obtained using the new shell
equations developed in this paper. This method has been successfully tested; because of the
use of classical shell theory in the framework of the finite element method, we can obtain the
high as well as the low frequencies with good accuracy.

The first preliminary results indicate that the presence of the transverse shear
deformation effects is very significant and tends to reduce the frequency parameters
specially for laminated anisotropic shells. It has been suggested that the reason for the
difference is a change in shear angle from layer to layer and the insensitivity of the classical
shell theory (CST) to this change. In the case of rotary inertia, our preliminary results
indicate that the effects of rotary inertia are practically limited. We are presently
investigating these effects on the lowest branch as well as the highest branch of the
frequency spectrum. It is important to note that Librescu [165] found, in the case of an
anisotropic plate, that the rotary inertia effect was practically inexistant at the lowest
branch of the frequency spectrum. Further work is under way to apply this theory to the
dynamic analysis of open and closed anisotropic cylindrical shells filled with or subjected to
a flowing fluid.
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APPENDIX A: CONSTITUTIVE AND GOVERNING EQUATIONS

This appendix contains the constitutive equations and governing equations for thin
anisotropic plates and shells which were referred to this paper. The appendix is divided into
five parts, covering, respectively, cylindrical shells, rectangular plates, spherical and conical
shells, and circular plates.

The P;;’s elements (4;;, Bij, Dyj, Gij, Gi;, Hyj, Hij, Ji; and Ji;) have been defined by
equations (19)—~(21) and equation (25):
Nll -Gll G16 0 A12 A16 0 Hll H16 B12 B16- 8(1)
N12 G61 G66 0 A()Z A66 0 H61 H66 B62 B66 V(l)
011 0 0 AAss O 0 Asy 0 0 0 0 )
N22 A21 A26 O Gl22 /26 O B21 BZ() /22 /26 8(2)
N, = | 461 Aoe 0 Gé. 66 0 Bsi  Bss He: 66 “/(z)
0,5 0 0 Ays 0 0 BBy, O 0 0 0 I
Mll Hll H16 O BlZ Bl6 0 Jll J16 D12 D16 K1
M12 H61 H66 O B62 BG6 0 J61 J66 D62 D66 T1
M, By1  Bis 0 5 Hie 0 D1 D6 22 % K2
M21 -B61 B66 0 ,62 H/66 0 D61 D66 J’62 ,66 - T2

(A.1)
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A.l. CYLINDRICAL SHELLS

The governing equations are defined by the following equations:

Ly(Uy, Uy, W, B, Bs, Piy)
0*U 1 aZUx Pss 62Ux 0?2 U, 52U0

=Puga t P +P51)axae+F a2 e TP
(A2)
+ %(Pl,10 + Pﬂ% + Ps, 106620%‘ I, a;!i" + Pyg 662 é" (P19 + Psg) x
Sk
Ly(Us, Ug, W, s o Pi)
=P, U +1 (Pys + Pyy) U 4 Pas U, + P, Uy
0x* R 0x00  R?* 00? 0x?
(A3)
x%—f+%<P44+P66>%—VZ+ow@ RlPaao ® Po S Tt
n ﬁﬁx Pyg %2'82" g (P29 + Pas) 5 Zg‘;) + %% &ﬂo a;go,
Ly(Uy, Us, W, By Bor Pij)
L S N (S L

1 P410 aﬁx P48 aﬁ@ 1 P49 aﬂ@
+R<P63 R>60+P6 R Jox TR\Fo TR ) a0

L4(Uxa U67 Wa ﬁxa ﬁﬂ, P_lj)
0*U, 02U, Pios0®U, U 0*U,
P72

=P U, + ! (P75 + P1o.1) I —1
T Tl oxr TR T OOVA00 T o2 R%Z 002 2 az 0x2
— (P, + P ’ U — Py )
trPrat Podgmst o g YR Vet R P %)
(A.5)

1(Pioa ow 0* B 0’y Pio.100°Ps
+R<R — P36 59+P7762 (P710+P107)5x50+ RZ 202
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0% B 0% Py By P1o,00%Po

—P33ﬁx—I3F+P7862 (P79+P108)6x60+ R2 602_P36,89:
LS(Um U()a W> ﬁx; 307 P_lj)
0*U 1 0°U, Poys0%U, 02U,
:P*“az RPor +Pss) g T 72 g2 TP
P P —Uy—1,—5 ——P —_— A.6
FRPse T PG TR e TR Vo g TR T Pe )5 (AO

1 (P oW azx 0% Bx i 0* Py
+ = <94 P66> + Pg7—— b (P810+P97) b 2,20 ﬁ_P63ﬁx

R\ R 00 0x? 0x 60 R?* 00?
o2 2 2 2
0*Pe 0°Bo  Poo 0Py 0*Pe
+P8882 (P89+P98)6x60+7R27602_P66ﬁ0_1376t2'

The equations of equilibrium for a thin cylindrical shell (hybrid finite element method
based on Sanders’ shell theory) are defined as [147]

BU POV W\, PW P OW PV
ox> 0x00 ' ox ox3 0x 00% " 0x 00

Py Pey\( &V 12U\ . (Pss  Pes
<_2RZ><axao+Raoz VTS (A7)

20°W 3 0%V 1 0*U
6x802 20x00 2R 00 )

Par Ps\[ 02U\ 1Py Psy\ (02V oW
Lo(U, V. W, Py) = <7+3><m>+ <%+ > (aez %)
Po | Psa\ (BWY\ 1 (Pas Pss\( 0w &V
<R ><6x69>+ <R +R2>< 20> + 20°
31363 PV PUN 1, 3P (A8)
ox* " Roxaoh) R\ *° " 2R
,OW 30V U
ax700 T20x? ~ 2Roxa0)

62U+P42 Rl % 52 p W P45 W N 3V
ox3 o200 o “or TR Tt T oan

2P U +63V (P, oW 3 *v. U
R \Rox00? " 0x200 R? 0x2002 " 20x200 2R 0x 00>

P, *U  Po, [*VEW\ Pss/ W 3V
Os1 &Y Fsaf TV Oss( aor A9
TR TR\ a0r a0 ) TR T T (A.9)

L1(U> V, W, Pij):Pll

L3(U7 Vs W7 Plj) :P41
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_@aj_& r*w P22<6619/+W> Py, O°W

R 00?

R 0x  R? 0x200?

Pas( W OV
R\ "0 ")

The P;’s elements are defined (only for one lamina) [147]:

P11:C11: P12:C12» P21:P12: P22:C22» P33:C33:

P44:D11a P45:D129 P54:P45, P55:D227 P66:D33,

where
Ci1=E\t/A, Cyy = Egt/A, Cy5 = v Egt/A, C33 = G, 0t,
(A.10)
D11 == Ext3/12A, D22 == Eets/le, D12 == VxE9t3/12A, D33 == Gx6[3/12,
where
A =(1—v,vy).

Matrix [H]:

H,y H{; Hy3 H{, Hgs A 0

H,, H,, H,3 H,, Hjs B 0

Hiy Hi, Hizz; Hi, Hjs Cr=<0),

Hyy Hyy Huz Hy Hys D 0

Hs; Hs, Hs; Hsy Hss E 0
where

H11=P11(—n_12)—|:P5'10 +Pios Pio.1o P55:| 2_|:P15 + Psy _ Pios1 + P1’10:|(r7m),

2R3  4R* R? R 2R?

P, Py +P Psg — P P p p
H12=<P12+—>(—n_12)+|: 14 52, Uss 102 10,8:|n7m+<j_ 10,4)}12’

2R R 2R? 4R3 R? 2R3
P14 — P54 P10,4
Hls—T’”*(F—W G
P P P P P
R e O I

2R3 R?

_ Pio+ Psg Pios | _ Pioo Pso
Hys=Pg(—m* - = - T ——5 |0’
15 18( m)+|: R 2R2 m”] s

H22:|:P22.;_P23+P82 P88:|(_ 24 |:P24+P42 P,yg + Pgy

B 1
IR 4R2 R + IR2 :|m'7_Rz(P66_P44’72)a

H23:<P24+P63 Pg,

R +2R2>m+(P44+P66)
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Py, _ Py 10+Ps7  Pgio| - n’ Pes3
H24=<P27+2R>(—m2)—|: R + 2R2:|m’7+RzP4,1o+R,
Pgs _ Pyo+Psg  Pgo) _ Py Pee
Hys=(P — Ll D492 4 Too
25 <28+2R>( ) ( R +2R2 +R2’7+R>
_ P36 + Pe3 )\ _ Pee P4y
Hj33 = P33( 2)+< R >m R Z—F,
Py Pss  Paqo
Hs, = —p Tos
34 <R 33>()+<R Rz "
P P
H35:<P36_£8>(m)+<P66_£9>Z’
H p s m Pio10 ,
44 = 77(—m)—(P7,10+P10,7)f+ R2 n° — P33,
, i g
H45:P78(_m)+(P79+P10,8)?+P10,9F_P36a
_5 mn  Pog 2
H55:P88(_m)+(P98+P89)F+F7] — Pes,
where
m:%. (A.11)
APPENDIX B: RECTANGULAR PLATES
The L; equations are given below:
Ll(Uxa Uys Wa ﬁxa ﬁya ?U)
_p 0*U, < (Pys+ P )62U P., 0*U, . 0*U L p *U,
“Puga t Pt Palg + P gr ~higm + P
U, U, 52ﬁx 5Zﬁx 0? B 0%
(P14+P52) +P54 372 *+ P o2 +(Py, 10+P57) +P5,10Tyz—12 o
0%, ’p o*p
+P1852 (P19+P58)a ay+P59W2y, (B.1)
LZ(st Uy> W: ﬁxa ﬁya Pij)
=P U, X4 (Pys+ P )aZUerP aZU"+P °Uy >+ (P + P ) U, Y4 p °U,
=fap7 25 sy 45752 22753 24 )55 oy 445 2y
*U 52/3x 0% 0% B
-1 2 Y+ Pyr—— o2 + (P, 10+P47)axay+P4,1067y2 (B.2)
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62 2 62 82
+ Pyg—— by + (Pyo + Pyg) —— b, P49i—12 by

0x? 0x 0y 0y? ot?’
L3(Ux’ Uy: Wa ﬁxa ﬂw Fu)
0*wW 0*w 0*wW 0*wW 0Py
=P33W+(P36+P63)axay+l)66 ay? -1 o2 + P3z—— o
0 0 0
+ Ps3 ﬁ+P36 ﬁy+P66 by (B.3)
ay 0x oy’
L4(Ux: Uya Wa ﬁx, ﬂys P_lj)
0*U 0*U 0°U, 0°U, 0*U
:P7162+(P75+P101) +P10,5 ay7 -1, o2 +P720x2
62Uy *U, ow ow 0%,
(P74+Ploz)a dy P1o,4a—y2—P33E—Pssa—y+P77W
0B, 02B, 02B, 0?
+ (P7,10‘f‘P10,7)a g Pl(),loayﬂz_PS?’ﬁx —1I3 thi + P78Wﬂzy + (P79 + Pyo.3)
0% 0%
X&x[é; + P1o,95yﬁzy — P36 By, (B.4)

LS(Uxa Uy» W: ﬁx’ ﬁy’ Pij)

22U 22U ?U, a2U,

= Pg; oxZ ‘f‘(Pss'|‘P91)a By

02U p U, U, L, W, W 2B,
ox a oyt TPk

B, 2B, “2ﬁ Zﬁy

+(Pga+ Poz) 7——

+P996—J)2_P66By_13ﬁ- (B.5)

APPENDIX C: SPHERICAL SHELLS
The L;’s equations (equations of motion) are given below:
Ll (Uq[)) Uﬂa W: ﬂd)a ﬁ@) Pij)

P11 U,  (Pys+ Psy) 0°U, Pss 0°U¢
2 o¢? r?sin¢g 0¢ o0  r’sin?¢ 00>

U(,) Psgcos¢p oU, 1 *Uy,

Py, d ,
+7C t QS (ZS r2 sinzd) 20 —P(P14+P33+P44C0tg (IS)Ud)—IlW
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+—= 7 T 2 o ot o3 2
r* 0¢ r*sin¢g d¢p 00  r’sin*¢ 00

(P12 — Pys — Pyy) U, (P55+P44) cosgp U,
- 15 = Pad g - Pas) cos 0U,
r 0p r sin® ¢ 00
1 (P11 +P1a+P33)0W  (Psy+Psy+Pse)0W
+F((P15 + P,s)cotg® ¢ —P36) U ++% W%
Py cotg ¢ P1,0%p 1 2.8¢
— P w P P
+<sinq’> 44) 7 W Ge T g Pt P 505,
Ps 10 52ﬁ¢> (P17 + P1o — Py4y) By
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n (Pso — P4 10) COS¢ aﬁq)
r? sin? ¢ 00
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r* 0¢ r’sin¢g 0¢p o0  r’sin*¢ 00 r 0
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PsscospoU, 1 02U
_rs‘;linqﬁ 060 — (Pys — Psscotg? ¢ — Peo) Ug — 1 ato
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( 21 224 63) +( 41T Pas+Pge) + (D31 + Psg + Pay+ Pag)cotg g

r 0¢ r?sin ¢ 00

Qazﬂlp (P47 + P3.10) 62ﬂ¢ Da.10 52ﬁ¢ i (P57 + P39 + P37) cot q,)azﬂ(p
ERFYY FZsing 00 | rPsin’ ¢ 06 2 £
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% *By  (Pag + Pio) 0Py Pao  0%Py
Il r?sin¢g 00  r?sin?¢ 00?

(Psg + P2g — P53 10) 0B
19 cotg ¢ 2P0
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1 5ﬁ9 1
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- a¢>2 T Esing 2600 s g 100 502
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Uy, (Proa—Pos) - 2U,
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1
+F(P74+P71—P91)
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1 1
+P(Psz P85+P102)00tg¢ ¢ W(PIOA_PQS) COS(f’Teo
1 2 U,
+P(VP66+P85_P10,SCOtg P Uy —1, R
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+P(P8,10 —P10,1000tg2¢ —1? Pse) Bo —I3w-

APPENDIX D: CONICAL SHELLS

The L;’s equations are given as follows:

Ll (Uxa UB: W» ﬁx: ﬁ@a ?U)
(Pys + Psy) 0*U, Pss 0°U, Pys 0U, I *U,

= P —
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LZ (st Uﬂa W» ﬂxa ﬁ@a Fu)
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APPENDIX E: CIRCULAR PLATES
The five differential equations of motion are defined as follows:
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ANISOTROPIC SHELLS WITH SHEAR DEFORMATION
APPENDIX F: NOMENCLATURE

Lamé’s parameters

extensional stiffness, equation (21)

defined by equation (20)

bending-extensional coupling stiffness, equation (21)
bending stiffness, equation (21)

Young’s moduli of elasticity, equation (10)
coefficients of the characteristic equation (48)
rigidity moduli of elasticity, equation (10)
geometrical scale factor quantities, equation (2)
inertia moment

motion equations (34)

the moment resultants applied in o;’s direction
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the moment resultants applied on the middle surface in «;’s direction (o; = cte)

defined by equation (47)
the in-plane force resultants applied in o;’s direction

the in-plane force resultants applied on the middle surface in «;s direction

(o; = cte)
terms of elasticity matrix i =1, ...,10;j =1, ..., 10)

the elastic stiffness in the material co-ordinates, equation (10)
the elastic stiffness in the global co-ordinates, equation (14)

the transverse force resultants

the external force vector

curvature radius

thickness of the shell

thickness of the lamina, equation (21)
coefficients of the characteristic equation (49)
the displacement vector components

defined by equation (15)

transformation matrix elements, equation (13)
curvilinear co-ordinates of the surface

the rotations of tangents to the reference surface
defined by equation (15)

deformation vector components

normal stress vector components, equation (9)
shear stress vector components, equation (9)
density of the shell material

distance of the point from the corresponding point on the reference surface

along the normal direction

roots of characteristic equation, equations (48, 49)
normal strains of the reference surface

shearing strain components, equation (3)

in-plane shearing strains of the reference surface
change in the curvature of the reference surface
torsion of the reference surface

shearing strains

the Poisson ratios, equation (10)
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