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FREE VIBRATION ANALYSIS OF ISOSCELES TRIANGULAR
MINDLIN PLATES BY THE TRIANGULAR DIFFERENTIAL
QUADRATURE METHOD

H. Z. ZuonG
Department of Civil Engineering, Tsinghua University, Beijing 100084, People’s Republic of China

(Received 11 October 1999, and in final form 18 April 2000)

The triangular differential quadrature method is applied to the free flexural vibration of
isosceles triangular Mindlin plates. The first six frequencies are sought and the convergence
of triangular differential quadrature method in vibrational analysis of triangular Mindlin
plates is examined. In comparison with available results, good to excellent agreement is
achieved for triangular plates with combinations of clamped and simply supported
boundary conditions. The implementation of various other boundary conditions in
triangular differential quadrature analysis is also discussed and the sensitivity of solution to
the implementation of corner conditions in vibrational analysis is highlighted.
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1. INTRODUCTION

Vibration of plates has attracted concerns over many years. In comparison with rectangular
plates which have been studied intensively [1,2], triangular plates have received relatively
less attention. In addition to the geometric variety of triangles, the combination of
boundary conditions is also a challenge. Most efforts devoted to the vibration of triangular
plates are in the confines of Kirchhoff plates [3-7]. For thick or moderately thick plates,
Mindlin theory [8] has been widely used to take into account the transverse shear effects. In
a comprehensive review of vibrational analysis of thick plates, Liew et al. [9] pointed out
that the publications available for thick and moderately thick triangular plates had been
very limited. Using the Rayleigh-Ritz method, Kitipornchai et al. [10] studied isosceles
triangular Mindlin plates with various apex angles, thickness-to-width ratios and various
combinations of boundary conditions. Liew [11] applied the same method to the free
vibration of triangular plates with curves internal supports. The vibration of triangular
plates subject to isotropic in-plane stresses was also studied by Xiang et al. [12]. Other
relevant researches on vibration of Mindlin plates with various boundary conditions can be
found in the newly published book of Liew et al. [13].

The differential quadrature method has been applied widely to various structural
problems, especially over the past decade. It stands out as a competitive numerical tool due
to its mathematical simplicity and high efficiency and accuracy. However, the conventional
differential quadrature method is restricted to problems with domains of regular geometry.
For problems with irregular geometric domains, transformation is needed to map an
irregular physical domain into a regular computational domain [14-16]. Although the
conventional differential quadrature method can be applied to problems with triangular
domain, singularity arises which has to be eliminated in the implementation of differential
quadrature [17]. As a new numerical method proposed by the author, the triangular
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Figure 1. Grid in triangular differential quadrature.

differential quadrature method (TDQM) [18] overcomes the problem of singularity and
renders the transformation unnecessary. It has been shown that the triangular differential
quadrature method is a very effective and efficient tool in elastostatic analysis of triangular
thick plate [19]. In this paper, an attempt is made to study free vibration of some isosceles
triangle Mindlin plates using the new numerical method. It is found that for triangular
Mindlin plates with various combinations of simply supported boundary condition and
fully clamped boundary condition, convergent results for the first six frequencies can be
obtained. In comparison with the available data, good to excellent agreement is attained,
indicating that the TDQM 1is an effective numerical tool. In the meantime, the
implementation of other boundary conditions in triangular differential quadrature analysis
is addressed and the influence of corner condition on solution is discussed.

2. TRIANGULAR DIFFERENTIAL QUADRATURE METHOD

First of all, a triangular domain is first discretized into a uniform grid system. The present
exposition of the grid system follows closely the description in reference [18]. The three
edges are identified by the opposite vertices, respectively, e.g., edge 1 opposite vertex 1. The
normal to an edge identifies the corresponding direction. Parallel lines are drawn which
divide the distance between vertex 1 and edge 1 into m equal segments in direction 1. Each
line is identified with a digit from O to m, the line 0 being coincident with edge 1 and line
m passing through vertex 1. A typically line is denoted by p in direction 1. From the
intersections of the lines with the other two edges, parallel lines can be drawn with respect to
edge 3 and edge 2 respectively. Thus, the grid system is generated (see Figure 1). There are

M =@m+ 1)(m + 2)/2 (1)

grid points in the entire triangular domain. In a similar way, the typical lines in direction
2 (normal to edge 2) and direction 3 (normal to edge 3) are designated as ¢ and
r respectively. Apparently, a typical point in the grid system is identified by three digits p, ¢,
r, consistent with the designation of typical lines in the three directions. The area
co-ordinates for the typical point are p/m, q/m, r/m. It is evident that

p+q+r=m 0<p,gqgr<m (2

In the triangular differential quadrature method, the partial derivative of a function f'(x, y)
with respect to a space variable at a given discrete grid point is approximated by a weighted
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linear summation of the function values at all discrete grid points in the entire triangular
domain. Therefore, the approximation of a derivative at a grid point («, f8,7) is given as

m m—j
Dy f (6 Wopy = 3, 2 Co(r'/li)%pqrqur’ )
j=0j=0
where D,, is a differential operator of order n. The subscript indices (p, g, r) take the following
values in the two summation loops:

(p, q, I‘) :(m_l_]’ l’]) (4)

C;’,’;)},, pqr are the weighting coefficients related to the function values f,,. at points (p, ¢, r). In
his just submitted work, Zhong [19] enunciated two approaches to determine the weighting
coefficients. One is an implicit approach in which equation (3) is required to be exact for the
following trial functions:

f=LiL3L5, 0<p,gr<m, )

where the expressions of the three area co-ordinates of an arbitrary point (x, y) inside
a triangular domain can be given as

1 .
Li=o(ai+ bix +¢y), i=1,23. ©)

A is the area of the triangle which is expressed in terms of the Cartesian co-ordinates of the
three vertices as

I x1 »n
2A = 1 Xa V2 |- (7)
I x5 »3

The coefficients in equation (6) are the values of the determinants of the corresponding
cofactor matrices, e.g.,

ay = X2¥3 — X3Y2, b1 =y, —y3, c1=—(x2 —Xx3) ()

The remaining coefficients in equation (6) can be obtained by interchanging the subscripts 1,
2, 3. It is noteworthy that the three vertices should be numbered in an anti-clockwise
sequence in order to ensure positive value of the triangular area in equation (7). Apparently,
one needs to solve simultaneous algebraic equations to determine CJy, ,, in the approach.
The alternative is an approach in which explicit formulae are given for the weighting
coefficients. In this paper, the explicit formulae are taken, since it is more convenient and
straightforward. In this approach, it is required that equation (3) be exact for the following

M trial functions

Joar =T LD J(L2) fiL3), 0 <p,g.r<m, ©)
where the auxiliary function is given as
PomLy —k+1
_ i . I<p<m,
Jp(Ly) = *=1 (10)
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Similar expressions for fq(Lz) and f,(L;) can be defined. Thus, explicit formulae for the
weighting coefficients of the first order derivative are obtained as

aqur dfp
oL, qur
0L, oL, 0L of, by b, b f
(x) 1 2 3 pqr 1 2 3 q
=|—— — — === —= . 11
Covrpar [ax 0x 6x] oL, [241 24 24} f"d b (an
é\qur _JT df
0L3 |4, P Ly aBy
Similar expression for CL’;})% g €an be established, ie.,
O par dfp
oL, qu’
0L, 0L, 0L of, c; ¢ C df
co | 022 05 par 1o t2 78 a ) 12
aby. par |:6y dy dy ||oL, 24 24 24 iz szf’ (12)
aqur yalva df
0Ly apy qu By

From equation (10), the first order derivative of f,(L,) with respect to L, is obtained as

2 fpla/m)
- 2<p<ao,
mz k1 Pse
p
: o I Gkt 0<a<p-t
L/ — Pt s (13)
dLlleot/m For 1

,5
=
[

=)

=
|
o

Similar expression for the derivatives of f,(L,) and f,(L3) with respect to L, and L; can be
derived.

The weighting coefficients for higher order derivatives are obtained through recurrence
relationship such as

m m-—j

(xx) (x) (x)
CO‘BV:IH]Y = Z Z Co:li/,stu Cstu,pqr’ (143)
j=0j=
) L T
xy x y
C“ﬂ‘/qur = Z z szﬂy,stu Cstu,pqr: (14b)
j=0j=0
(vy) o "o ») ()]
yy ¥ y
Céxlf“/qur = Z z szliv,stu Cstu,pqr~ (140)
j=0j=0

Analogous to the DQM, the governing differential equation of a physical problem is
expressed in terms of the triangular differential quadrature format at interior grid points of
the domain. Meanwhile, the boundary conditions at the edges of the domain must be
invoked. Equation (3) need be implemented if Neumann-type boundary conditions appear.
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Figure 2. Co-ordinate system of isosceles triangular Mindlin plate.

For mth order triangular differential analysis of Mindlin plates, there are (m —2)(m —1)/2
inner grid points at which governing equations are implemented. At the remaining 3m
boundary discrete points, boundary conditions are prescribed.

3. FORMULATION OF MINDLIN PLATES

3.1. GOVERNING EQUATIONS

In order to make comparison with the available results in reference [10], the same
Cartesian co-ordinate system and the orientation of an isosceles triangle are chosen (see
Figure 2). In addition, the commonly used non-dimensional frequency parameter is also
introduced, i.e.,

wa?

). =——(ph/D)"2, (15)
2n

where w is the angular frequency, p the mass of the plate per unit area and the flexural
rigidity
Eh?
D=——" 16
12(1 —v?) (16)

in which E and v are Young’s modulus and Poisson’s ratio respectively.
The governing equations for a homogeneous and isotropic Mindlin plate, in terms of the
three displacement components, are given as follows:

Py 1y, 1+, ow )
o 2y, =0 17
ﬁ1<0x2+ 2 32 T2 aay) VPG Ve AY=0 U7)

Y, 1—vory, 1+4+vo*y, ow 5
ﬁl( 2t e Ty ) TR G ) A =0 (17b)

—+—2————>+)h2w=0, (17¢)

where w is the deflection, ¥, and y, are the rotations of the normal against the two
co-ordinate axes y and x respectively; the three constant coefficients are

3a* 18(1 — v)ka* 3(1 — v)xa*

b=t Po=—ae— B="me

(18)
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where h, v, k are the plate thickness, Poisson’s ratio and shear correction factor which is
calculated based on the Nanni formula [20]

20(1 +v)

LY 19
24 + 25v + v? (19)

Introducing the triangular differential quadrature, equation (17) will be recast into a set of
algebraic equations at any grid point (o, f, y), i.e.,

o e XX 1 x
Z Z |:ﬁ 1 (Ciﬁv) pqr ) ;t}l;fy/) pqr> 'rbx)pqr + ﬁ 1 ﬁyy) pqr(lpy)pqr

j=0j=0

+ ﬁZ Ci)[c})y pqr pqr:| + (AZ - ﬁZ)(wx)aﬂy = 07 (203.)

m m-—j 1 _
»y) (xx) (x )
Z ) |:ﬁ <Ca)/}iyv pqr 2 aﬁy pqr>(‘py pqr + ﬁ 175 zliy> pqr(lpx)pqr

j=0j=0
+ ﬁZ CQ;})/ pqr pqr:| + ()“2 - ﬁZ)(wy)aﬂy = 07 (2Ob)
Y (xx) (yy) (y)
ﬁ3 Zo Zo [(Cfxﬁ/ pqr aﬂ/,pqr)wpqr - fxti/ pqr(l//x par 1/31 par lpy)pqr]
j=0j
+ 2PWop, =0, (20¢)

3.2. BOUNDARY CONDITIONS

There are usually three typical boundary conditions for Mindlin plates. They are:
(a) Clamped edge (C) which can be described symbolically as
Y=y = w=0. (1)
(b) Free edge (F) which requires
0, =M, =M, =0, (22)

where Q,, M,, M, are the shearing force, bending moment and twisting moment at the
edge respectively. Their expressions in terms of the displacements are given as

0, =kGh [(2: xpx> cosf + <g§}v — tﬁy> sin 0], (23a)
M, = (aatx a@?) cos?0 — (1 —v)D (aalix %> cos 0sin 0
Ny O\ L,
—-D <6—y +v E) sin” 0, (23Db)

M, = — D(1 —v) Wy _ W) ospsing — 20 =W (W | O (cos2 6 — sin?6), (23c)
dy  Ox 2 Jy Ox
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where G is the shear modulus and 6 the angle formed by the outward normal of the edge
with the x-axis.

(c) Simply-supported edge. There are two types of simply supported edges in Mindlin
plate theory. The first type (S) requires

w=0, M,=0, y,=—y,sin0 +y,cos0 =0. (24)
The second type (S*) is described mathematically as
w=0, M,=0, M, =0. (25)

The assembly of the triangular differential quadrature analog of equations (20) at all inner
grid points and the boundary condition equations at the three edges of the triangle results in
a set of 3M algebraic equations which can be written in matrix form as

[[Kbb] [Kbi]] {{@b}} _ { {0 } 26)
[Ki] [Kil | [{©:} (o)

where {0,} is the displacement vector at the three edges of the triangle, and {©;} the
displacement vector at all inner grid points. By eliminating the {©,} vector, the above

equations become a standard eigenvalue problem of size [3(m —2)(m —1)/2] x
[3(m —2)(m —1)/2], i.e.,

[K1{0;} = 12{0,}. (27)

The eigenvalues of matrix [K] are then extracted using a double QR algorithm [21].

4. RESULTS AND DISCUSSION

In order to simplify the presentation, the isosceles triangles are designated by the
abbreviated letters of the boundary condition types at the three edges in left, bottom and
top sequence. The objective of the present research is focused on the validation of the
triangular differential quadrature method in vibrational analysis since extensive results can
be found elsewhere [ 10]. In this section, presentation of results is centered on the discussion
of the implementation of corner conditions in triangular differential quadrature analysis.
The basic reason is that the triangular differential quadrature is found to be sensitive to the
implementation of corner conditions in vibrational analysis. As an exception, the boundary
conditions of CCC triangular plates are consistent around the periphery. Therefore,
convergence study is first conducted on CCC isosceles triangular plates with the apex angles
o =30° 90° and thickness-to-width ratios h/a = 0-001, 0-2. The results are listed in Table 1.
It can be seen that good to excellent agreement is achieved in comparison with the results of
Kitipornchai et al. [10]. In the present TDQ analysis, it is found that the convergence is
achieved relatively quickly with the increase of m for thick plates in comparison with that of
thin plates. In other words, the results of thick plates are more accurate for a given m than
those of thin plates. It is believed that the more flexural deformation of thin plates accounts
for the relatively slow convergence. When m is increased to 19, the first six frequencies for
both thin plates and thick plates are in good agreement with those of reference [10]. Thus,
the grid for m =20 is used as a workhorse throughout all later computations. It should be
mentioned that all available results of triangular Mindlin plates with simply supported
boundary conditions are based on the second type (S*). Investigation shows, however,
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TABLE 1

Convergence of the first six non-dimensional frequencies of CCC plates

Mode sequences

o hja m 1 2 3 4 5 6
30 0-001 15 8:5674 14-0530 17-7861 18-:6160 21-1216 26:0337
16 8:5580 13-7008 18-7772 254345 26-4802 327133
17 8:5599 13-5903 18-8974 19-7921 274283 29-4766
18 85653 13-6259 18-8696 19-1029 26:7290 28-5508
19 8:5605 13-6518 18-8272 19-4240 24-5210 27-1600
20 85569 13-6475 18-8289 19-6217 257273 26-8060
[10] 85619 13-6434 18-8432 19-5516 26-9655 27-0990
02 15 56212 7-9774 10-1326 10-3642 13-4412 13-6826
16 56123 7-9885 10-1203 10-3480 12-5803 13-1394
17 56213 7-9901 10-1185 10-4340 12-5718 13-0332
18 56212 7-9891 10-1205 104371 13-0578 13-0645
19 56213 7-9886 10-1210 10-4231 12-9838 13-0905
20 56212 7-9889 10-1207 10-4220 12-8847 13-0884

[10] 56212 7-9888 10-1206 10-4243 12-9099 13-0829

90 0-001 15 29-7969 50-1458 62-5623 956297 1042519 1133554
16 29-8817 50-1677 61-8087 76-4852 109-6254  139:5208
17 29-8170 50-2272 61-9901 767771 87-1895  106:7451
18 29-8707 50-2192 61-9252 77-4088 874045  105-8750
19 29-8337 50-2163 62-0480 77-3041 88-:6713  105-7606
20 29-8601 50-2230 61-9280 77-2480 884729  107-2100
[10] 29-8525 50-2210 62-0064 77-3491 88-:5043  107-4329

0-2 15 12-8976 18-2080 209132 24-2840 26-5037 29-9588
16 12-8951 18-2072 20-9186 24-3152 26-5848 29-9095
17 12:8972 182071 209163 24-3055 266282 29-9684
18 12-8953 18-2070 209175 24-3019 26:6159 30-0035
19 12:8969 182071 209162 24-3030 266100 29-9953
20 12-8955 18-:2070 209173 24-3031 26:6115 29-9886
[10] 12-8961 182071 20-9168 24-3032 26:6125 29-9922

that the triangular differential quadrature analysis of Mindlin plates under simply
supported boundary conditions of the second type (S*) does not converge, even for
elastostatic analysis. Therefore, all simply supported edges in TDQ analysis of Mindlin
plates are prescribed as the first-type (S). Generally, speaking, there are following six
possibilities that a corner may be formed: CC, SC, FC, SS, FS, FF. The two letters represent
the boundary condition types of the two edges that form the corner. For the first three
cases CC, SC and FC, the boundary conditions for clamped edge—(21) are implemented
at the corner. This bears great resemblance to the conventional differential quadrature
analysis where Dirichlet boundary conditions are favored against Neumann boundary
conditions [17].

For cases SS, FS, FF, the implementation of corner conditions becomes rather thorny.
One can only implement partially the boundary conditions at the two edges that form the
corner. Take SS as an example. Unlike in elastostatic analysis where the boundary
conditions of either edge can be implemented successfully at the corner, it seems that
vibrational analysis requires evenhanded treatment of the corner. Assume that 0, 0, are the
directional angles of the two edge normals. The following five conditions coexist at an SS
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TABLE 2
Comparison of the present results of CSS with those of CS*S* [10]

Mode sequences

o hja 1 2 3 4 5 6
30 0-001 5-180 9-325 13-69 14-36 20-20 20-89
(5-180) (9-345) (13-66) (14-33) (20-44) (20-86)
02 4-142 6716 9-001 9-325 1195 12-26
(4-045) (6:513) (8901) (9-062) (11-69) (12:04)
40 0-001 6670 13-00 1623 2078 26-48 29-42
(6:650) (12:95) (16:27) (20:79) (26:49) (29-41)
02 5039 8533 10-13 12-08 14:33 1541
(4913) (8275) (10-00) (11-76) (14-05) (1519)
50 0-001 8:343 17:37 19-21 2878 33-00 3418
(8-402) (17-36) (19-24) (28:80) (33:02) (34-17)
02 6011 10-48 11-30 1497 16:45 16-88
(5-852) (10-16) (11-16) (14-61) (16:12) (1675)
60 0-001 10-55 2271 22-83 37-59 40-68 40-69
(10-53) (22-72) (22-83) (37-70) (40-64) (40-68)
02 7-081 12-56 12-58 1776 18-67 18-68
(6-883) (12-:20) (12:39) (17-45) (1827) (18-45)
70 0-001 13-55 26-87 30-57 45-03 4971 54:25
(13-18) (26:89) (29-67) (44-64) (4973) (52-84)
02 8279 13-93 14-87 19-66 21-01 21-82
(8-034) (13:73) (14-43) (19-48) (20-52) (21-40)
80 0-001 18-21 32:06 40-62 53-88 60-59 72:77
(16:54) (13-02) (3829) (52:37) (60-45) (69-36)
02 9-645 15-48 17-41 21-53 2348 25-54
(9-345) (1523) (16:90) (21-37) (22-88) (25:04)
90 0-001 20-99 3854 49-15 6247 72:98 90-27
(2094) (38-54) (49-16) (62:52) (73-24) (90-22)
02 11-23 17-26 20-19 2378 26:07 2818
(10-87) (16:94) (19-61) (23-62) (2533) (26:62)

Note: The data in parentheses are given by Kitipornchai et al. [10].

corner:
Vi1 =—ysinl; +y,cos0; =0, Y, =—y,sinl, + ,cos0, =0, (28)

W:O, M,,1=0, M,,2=0.

One option that achieves success in elastostatic analysis is to consider the first three
conditions in equation (28). This is identical to the implementation of clamped edge
conditions. It is found that this strategy in vibration analysis works only when m is taken as
even numbers for SSS triangular plates. The second option was also attempted in which the
last three conditions in equation (28) are implemented. Unfortunately, no convergent results
were produced. Nevertheless, under some combinations of boundary conditions,
convergent results can still be obtained. In the case of CSS or SCS where there is an SS
corner, the results converge satisfactorily when the first three conditions of equation (28) are
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TABLE 3

Frequencies A of triangular plates with CSC boundary conditions

Mode sequences

o hja 1 2 3 4 5 6
30 0-001 6747 11-38 16-15 16-85 2316 23-80
0-05 6554 10-87 15-20 1579 2142 21-96
0-10 6-062 9-718 13-22 13-67 17-89 18-39
0-15 5461 8458 11-23 11-57 14-77 1517
0-20 4-874 7-340 9-587 9-847 12:37 1270
40 0-001 8457 15-38 19-06 23-82 2995 3312
0-05 8157 14-49 1774 21-89 27-06 29-69
0-10 7-419 12:59 1513 18-24 22-00 23-89
0-15 6567 10-68 12-66 12-66 1779 19-18
0-20 5774 9-098 10-70 12-51 14-70 1579
50 0-001 10-50 2028 2238 3246 3697 3828
0-05 10-03 18-76 20-58 29-09 3275 3378
0-10 8957 1582 17-20 2332 25-86 26-60
0-15 7-785 13-10 14-18 18-67 20-52 21-09
0-20 6747 10-98 11-85 1533 16:77 17-22
60 0-001 13-00 2627 26-30 42-14 4522 4528
0-05 12-27 23-82 23-87 3675 39-06 3918
0-10 10-73 19-47 19-50 2847 29-94 30-06
0-15 9-147 1573 5-84 2232 2335 23-46
0-20 7-816 12-98 13-13 1812 1890 18-99
70 0-001 16-:07 3096 33-82 49-86 5510 5831
0-05 14-98 27-63 2996 42-46 4636 4871
0-10 1279 22:07 23-64 32:07 34-54 3597
0-15 10-69 17-63 1872 24-82 26-53 26-53
0-20 9-013 14:45 15-27 19-99 21-28 22-00
80 0-001 20-10 36:76 43-56 5869 6671 76:-82
0-05 18-34 32-18 37-28 48-54 54-48 60-89
0-10 1525 25:04 2840 3574 39-41 43-26
0-15 12-49 19-69 22:03 2729 29-83 3246
0-20 10-38 1599 17-77 21-82 2374 25-69
90 0-001 2511 44-19 5529 69-66 80-62 98-29
0-05 22-59 3774 46-00 5617 63-54 75-03
0-10 1821 2854 33-80 40-18 44-66 51-35
0-15 14-60 22:07 2574 30-24 3335 37-89
0-20 11-98 1777 20-54 24-00 2635 29-14

implemented at the SS corner. It is interesting to notice that the present results of CSS are in
very good agreement with those of the CS*S* obtained by Kitipornchai [10]. Comparison
is made in Table 2.

As a supplementary to the vast available data published in Kitipornchai’s work, two
combinations of boundary conditions CSC and SCS, which are not included in their work,
are studied. The results are presented in Tables 3 and 4. In all computations, it is observed
that the frequencies decrease as the increase of plate thickness. For a given plate thickness,
the frequencies increase with the apex angle o. It should be mentioned that these
phenomena were also reported in Kitipornchai’s work [10].
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TaBLE 4

Frequencies A of triangular plates with SCS boundary conditions

Mode sequences

o hja 1 2 3 4 5 6
30 0-001 6264 10-60 15-10 15-98 20-96 2310
0-05 5773 9-904 1413 14-69 20-30 20-68
0-10 5418 9-002 12-50 1292 1724 17-65
0-15 4-960 7967 1077 1111 14-41 1476
0-20 4-490 7-011 9-290 9-564 1217 12-47
40 0-001 7-443 13-83 17-51 2191 27-80 3923
0-05 7-002 13-02 1621 2018 2529 27-87
0-10 6-501 11-58 14-15 17-22 21-04 22-90
0-15 5-881 10-04 12-06 14-43 17-29 18-:66
0-20 5268 8700 10-31 12-20 12-20 15-50
50 0-001 8-865 17-82 20-00 2943 3374 3528
0-05 8429 16-70 18-52 26:70 3035 31-46
0-10 7-733 14:51 15-94 22:05 24-67 25-45
0-15 6-908 12-34 13-43 18-04 19-96 20-50
0-20 6122 10-54 11-39 15-02 15-02 1691
60 0-001 10-53 2273 22-82 37-80 40-58 40-67
0-05 10-12 2107 2120 3368 36:05 3610
0-10 9-164 17-85 1797 2698 28:62 28:63
0-15 8076 14-89 14-95 21-61 22-80 22-80
0-20 7-080 12-56 12-58 1776 18-67 18-68
70 0-001 12-80 26-46 28-94 44-15 4890 51-88
0-05 12-18 2477 2639 3879 42-51 44-80
0-10 10-86 2022 2177 3042 3042 34-44
0-15 9-428 16:62 17-80 24-04 25-86 26-94
0-20 8175 13-88 14-82 19-59 21-00 21-83
80 0-001 15-64 30-87 36:63 5113 5851 6799
0-05 1473 2799 3277 44-12 49-678 56-10
0-10 12-90 22-88 2627 3390 3761 41-65
0-15 11-02 18:56 2107 2647 2913 3197
0-20 9-451 1537 17-34 2142 2347 25-63
90 0-001 19-31 3646 46-38 5996 69-81 8576
0-05 1799 32-58 40-44 50-85 5791 69-31
0-10 1542 26:06 31-44 3817 42-67 4971
0-15 12-95 20-84 2477 29-43 32:62 32:62
0-20 10-98 17-11 2016 23-64 26-09 2693

5. CONCLUDING REMARKS

Attempts have been made to study the free vibration of triangular Mindlin plates using
the triangular differential quadrature method. The implementation of corner conditions has
been discussed in length. For isosceles triangular plates with CCC, CSS, CSC and SCS
boundary conditions, convergent results are obtained. Good to excellent agreement has
been achieved in comparison with the available data. For other combinations of boundary
conditions, the results were unstatisfactory. It is believed that the uneven performance of
TDQ in vibrational analysis is attributed to the sensitivity of implementation of corner
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condition. Despite the disadvantage, the triangular differential quadrature method still
deserves consideration for its mathematical simplicity and straightforward implementation.
Since the method is in its infancy, further efforts are clearly needed to enable the TDQ to
deal with domains with various corner conditions.
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