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A spectrally formulated element that has three degrees of freedom (axial motion,
transverse motion and rotation) per node for analysis of slender multiply connected
composite beams under high-frequency impact loading is presented. The model represents
a linear distributed parameter system. The element has an exact dynamic sti!ness matrix as
it is derived from exact solution to the governing wave equation in frequency domain. The
present element can handle any kind of cross-sectional unsymmetry due to ply orientation.
The results from the present formulation are compared with the results from a time domain
"nite element model based on linear axial and cubic transverse displacement "eld. It is
shown that the formulated element is able to predict the re#ected and transmitted response
accurately through a rigid angle joint for varying joint angles and axial}#exural coupling.
Also, the e!ect of ply-stacking sequence on dynamic response is illustrated. With this
approach, a very large composite 2-D beam network can be analyzed under high-frequency
impact loading with much smaller system size and lower computational cost compared to
time domain "nite element method.

( 2000 Academic Press
1. INTRODUCTION

The e!ect of impact on laminated composite structures is a crucial issue which researchers
have tried to address with an increasing emphasis. The main reason is that the way these
laminated "ber-reinforced structures are constructed, it contributes to high ratios of the
longitudinal to the lateral elastic moduli, and in addition, it has signi"cant layer-wise
anisotropy due to ply orientations. One of the critical aspects is that the steep and
discontinuous bending stress gradient at the ply interfaces may cause eventual delamination
or debonding of the layers, thus putting the structural integrity in question. Starting from
manufacturing, and throughout their design life, these structures are vulnerable to highly
transient loading such as tool drop and other kinds of impact. These loading have very
small duration (k s range). Hence, the energy of the system is con"ned over a large frequency
band, exciting all the higher order modes. Other than the local damages, these disturbances
generate stress waves that propagate through the structure. Also, an initial compressive
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820 D. ROY MAHAPATRA E¹ A¸.
pulse can develop tensile stresses due to the e!ects of local inhomogeneity [1]. The incident
stress waves interact with the joints and boundaries and give rise to totally di!erent types of
wave. In addition, the responses become even more complicated if there is cross-sectional
unsymmetry due to composite ply stacking which gives rise to axial}#exural coupling.
Therefore, an e$cient computational tool becomes necessary to study the e!ect of ply
orientation on the dynamic response and the e!ect of exciting frequency range on the
propagation of coupled axial}#exural waves. The proposed formulation is aimed towards
this study.

The layer-wise construction of "ber-reinforced composite beam has a great advantage for
embedding di!erent class of functional materials such as piezoelectric ceramic, relaxor and
anti-ferroelectric thin "lms, magnetostrictive plate strips and particle layers mixed with
matrix [2}4]. Such con"gurations necessarily lead to cross-sectional unsymmetry. The
axial}#exural coupling due to unsymmetric construction across the thickness of the beam
or discontinuities in some layers, may give rise to additional progressive waves which are
unlikely in a beam made up of homogeneous material. There are very few literature
available which consider the axial}#exural coupling in the dynamics of laminated beams.
Among these, the work done by Eisenberger et al. [5] presents a dynamic sti!ness,
formulated considering the displacement "eld as in"nite and convergent recurring series. In
most of the works on this issue reported so far (e.g., references 5}7]), mainly natural
frequencies and mode shapes have been studied, and no data is available regarding the
nature of perturbation in the actual response caused by axial}#exural coupling. Also,
a similar e!ect on impact-induced wave propagation is yet to be addressed.

For laminated composite beams, it has been well established that shear deformation and
rotary inertia play a key role in the prediction of responses. In this regard, Kant and Marur
[8] have shown the e!ects of shear deformation introduced by higher order re"ned theory
on the transient response of laminated composite beams. However, these e!ects are
dependent on length-to-depth ratio (¸/h) of the beam. As seen in the work of
Chandrashekhara et al. [9], "rst order shear deformation theory (FSDT) including rotary
inertia, and Euler}Bernoulli theory (EBT) produce identical results for a slender beam
(¸/h'100). In addition, Bhimaraddi [10] has derived one perturbation solution which
shows that the error in the "rst natural frequency predicted by EBT for cross-ply beam with
¸/h'20 is well within 5% compared to that predicted by parabolic shear deformation
(PSD) theory. The proposed spectral element is derived, based on EBT with rotary inertia
neglected. Therefore, the analysis presented in this paper will be applicable to wave
propagation in slender multiply connected beams and frames.

For an applied load that have very high-frequency content, the associated wavelengths
become smaller at higher frequencies. In order to capture all the higher modes, the usual
"nite element model (FEM) requires very small element size to match the wavelength. This
increases the system size enormously, and hence the conventional "nite element method
becomes prohibitive from computational aspect. In addition, this discretized model is
exposed to crude error-bound approximation due to the numerical stability limit in
computation. Another type of solution schemes which is suitable for the analysis of
large-scale frames, is based on the concept of transfer function matrix and joint coupling
matrix [11]. Further advancement in this direction is found in the work of Pao et al. [12],
which incorporates the concept of scattering and reverberation matrices. Essentially, it can
accommodate the e!ect of higher modes. But, generalization of such matrix methodology
becomes very complicated when joints and discontinuities of di!erent types exist in
a structure. In this study, a model based on frequency domain "nite element methodology is
proposed. We call this model as spectral element model (SEM). Unlike conventional FEM,
the model uses exact solution to the governing wave equation in the frequency domain as
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SPECTRAL-ELEMENT-BASED SOLUTIONS 821
interpolation function for element formulation. This process yields an exact dynamic
sti!ness matrix that characterizes the inertial distribution accurately. Therefore, only one
element is required between any two successive structural discontinuities. As a result, each
continuous member in a framed network behaves as a structural waveguide and the system
size becomes many orders of magnitude smaller than the conventional FEM. SEM
formulation uses the fast Fourier transform (FFT) algorithm to transform the distributed
parameters from time domain to frequency domain and vice versa [13]. As a result, the
transient dynamics in the system obtained by a PDE, becomes a set of ODEs with frequency
as a parameter. These ODEs are easily amenable for solution compared to the original
PDE. Using this approach, the analysis of longitudinal wave propagation in isotropic rod
has been carried out by Doyle [14]. Also, a spectral element formulation to analyze the
#exural wave propagation in isotropic beam can be found in reference [15]. In the present
paper, a generalized 2-D beam element is derived which employs all the ingredients of the
above two analysis and can be used for wave propagation analysis of both symmetric and
unsymmetric laminated composite multiply connected beams. In frequency domain, the
operations on nodal variables are carried out after spatial discretization in a similar way as
in conventional (time domain) "nite element method. Elaborate discussions on this method
can be found in the work of Gopalakrishnan et al. [16] and Doyle and Farris [17]. One of
the important aspects of the approach is that it enables the determination of not only the
responses due to high-frequency loading, but also the associated phase change as the wave
propagates from one location to another.

In the next section, we derive the mathematical model of the distributed parameter
system. Next, the e!ects of axial}#exural coupling on phase and group dispersions are
illustrated. The spectral element formulation is presented next, along with the
computational scheme. In the numerical study, "rst the accuracy of the SEM results are
validated by comparing with FEM results for a cantilever unsymmetric composite beam.
Then the e!ect of axial}#exural coupling is demonstrated graphically. Finally, the nature of
re#ected and transmitted waves through a rigid angle joint are studied. Also, di!erent
ply-stacking sequences are considered to observe the e!ect of axial}#exural coupling on the
response.

2. MATHEMATICAL MODEL

Considering Euler}Bernoulli theory for a general laminated composite thin beam, the
axial and the transverse displacement "eld can be expressed as

; (x, y, z, t)"uo(x, t)!zw(x, t)
,x
, = (x, y, z, t)"w(x, t), (1)

where uo is the axial displacement along the middle plane and w is the transverse
displacement as shown in Figure 1(a). z is measured from the middle plane. The layer-wise
constitutive law is de"ned as

p
xx
"Q1

11
e
xx

, (2)

where p
xx

and e
xx

are stress and strain in the x direction. The expression for Q1
11

can be
found in reference [18]. The strain energy and the kinetic energy are de"ned as

S"
1

2 P p
xx

e
xx

dv, C"

1

2 P o (uR o2#wR 2) dv, (3)

where uR o and w5 are the axial and transverse velocities, and o is the layer-wise density.
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Figure 1. (a) Co-ordinate system and degrees of freedom for the spectral element; (b) AS/3501-6 graphite-epoxy
[0

5
/90

5
] composite cantilever beam with an impact load at the tip; (c) AS/3501-6 graphite-epoxy beam with

in"nite span; (d) Rigid angle joint with AS/3501-6 graphite-epoxy composite members.
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Applying Hamilton's principle, the governing di!erential equations are obtained, and
they can be expressed as

oAuK o!A
11

uo
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#B
11

w
,xxx

"0, oAwK!B
11
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#D
11

w
,xxxx

"0 (4, 5)

and the force boundary conditions are obtained as
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SPECTRAL-ELEMENT-BASED SOLUTIONS 823
where

[A
11

, B
11

, D
11

]"P
`h@2

~h@2

QM
11

[1, z, z2] bdz, (9)

h is the depth of the beam, b is the layer width and A is the cross-sectional area of the beam.
uK o and wK are the axial and transverse accelerations. S)T

,x
, S)T

,xx
. . . represent partial

derivatives with respect to x. N
x
is the axial force,<

x
is the shear force and M

x
is the bending

moment. The governing di!erential equations (4) and (5) represent a system of coupled
linear partial di!erential equations, which are di$cult to solve exactly in the time domain
for all boundary conditions. The spectral element method begins by transforming the "eld
variables (displacements) on to the frequency domain using discrete Fourier transform
(DFT). Thus, the discretized spectral form of the displacement "eld in terms of structural
frequency (u

n
) is expressed as

uo (x, t)"
N
+
n/1

uL (x, u
n
)e*unt"

N
+
n/1

(uJ
j
e~*,jx ) e*unt, (10)

w (x, t)"
N
+
n/1

wL (x, u
n
)e*unt"

N
+
n/1

(wJ
j
e~*kjx) e*unt, (11)

where i"J!1. S))T represents the frequency-dependent coe$cients, and we call these as
spectral amplitude of the transformed variables. uJ

j
and wJ

j
represent the wave coe$cients,

which are to be evaluated from three displacement and three force boundary conditions.
k
j
is the wavenumber associated with jth mode of propagation.
Subsituting equations (10) and (11) into governing di!erential equations (4) and (5), we get
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Here, c
L

and c
b

are the phase speeds of axial and #exural waves respectively. They are
expresses as

c
L
"S

A
11

oA
, c

b
"Ju

n 4S
D

11
oA

. (13)

The phase speed of the induced dispersive wave due to unsymmetric ply orientation causing
axial}#exural coupling is de"ned as

c
c
"3Su

n

B
11

oA
. (14)

From equation (12), a sixth order characteristic equation is obtained, for the solution of
wavenumber k

j
, which is given by

(1!r)k6
j
!k2

L
k4
j
!k4

b
k2
j
#k2

L
k4
b
"0, (15)

where a non-dimensional axial}#exural coupling parameter is introduced as

r"
B2

11
A

11
D

11

(16)
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824 D. ROY MAHAPATRA E¹ A¸.
and the fundamental wavenumbers corresponding to uncoupled axial and #exural modes
are de"ned, respectively, as

k
L
"(u

n
/c

L
), k

b
"(u

n
/c

b
). (17)

Explicit expression for the six roots ($k
1
, $k

2
, $k

3
) of equation (15) are given by
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where Ja is the positive real root, evaluated numerically from equation (15). The spectral
amplitudes of the displacement "eld is then explicitly rede"ned as
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where R
1j

and R
2j

are the amplitude ratios for the jth mode of propagation. These are
derived from equation (12), and can be expressed as
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It is interesting to note that for a symmetric ply orientation, the axial}#exural coupling
parameter r becomes zero. As a consequence, axial and #exural e!ects become uncoupled
and equation (15) gives two equations. One is a second order characteristic equation, similar
to that in case of elementary rod with roots $k

L
and the other is a fourth order

characteristic equation, similar to that in case of a homogeneous Euler}Bernoulli beam
with root $k

b
and $ik

b
as given in reference [13]. In this uncoupled case, R

13
, R

14
, R

15
,

R
16

, R
21

and R
22

also become zero.

3. SPECTRUM AND DISPERSION RELATIONS

From design consideration, one big advantage of using laminated composite is that it can
be tailored to get the required strength and sti!ness by di!erent ply orientations. The
maximum axial}#exural coupling that one gets from such natural ply stacking (other than
the inclusion of any other materials in the form of thin "lms, "bers or particle layers) is when
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Figure 2. (a) Spectrum relation for various axial}#exural coupling; }} r"0)0; * r"0)312;0 r"0)574.
(b) Dispersion relation for various axial}#exural coupling (*frequency amplitude of a modulated sinusoidal
pulse): ) - ) - C
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the cross-plies and 03 plies are stacked in separate groups. A generalization of the e!ect of
axial}#exural coupling gives some valuable insights, when the spectrum relation
(Figure 2(a)) and the dispersion relation (Figure 2(b)) are studied. AS/3501-6 graphite-epoxy
plies (thickness of each layer is 1)0 mm) with three stacking sequences [0

10
] (r"0)0),
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[0
5
/30

2
/60

3
] (r"0)312) and [0

5
/90

5
] (r"0)574) are considered. In Figure 2(a), it can be

observed that corresponding to axial mode (Mode 1) and #exural modes (Modes 2 and 3),
the wavenumbers increase in magnitude for increasing coupling. However, this increase in
Mode 2 (propagating component) is more than that in Mode 3 (evanescent component).
Figure 2(b) also shows the variation of group speed C

g
"du/dk

j
normalized with the

parameter C
0
"JE/o (speed in aluminium). From these plots, it is clear that the axial

speed is reduced by more than 26% due to the presence of unsymmetry arising from
cross-ply stacking in groups. Also at a range of 50 kHz, the #exural speed of propagation is
reduced by 42% for maximum coupling.

4. SPECTRAL ELEMENT FORMULATION

Two special cases arise in the dynamics of connected beams. One is "nite length beam
that is connected at both ends. The other is when the member extends to in"nity. This will
be referred to as a single noded or throw-o! element. The behavior of both of these are
fundamentally di!erent and so will be treated separately. Since the elements will be derived
in frequency domain, all the conventional nodal measures such as nodal displacement,
strain, stress, force, etc. will correspond to their spectral amplitudes.

4.1. FINITE LENGTH ELEMENT

A two noded "nite element of length ¸ with nodal displacements and forces as shown in
Figure 1(a) is considered. Using the explicit expression for displacement "eld given by
equation (18), the nodal displacements u(

1
"uL (0, u

n
), wL

1
"wL (0, u

n
), hK

1
"hK (0, u

n
),

u(
2
"uL (¸, u

n
), wL

2
"wL (¸, u

n
) and hK

2
"hK (¸, u

n
) are expressed in terms of the wave

coe$cients uJ
j
, wJ

j
as

MuL N"[¹K ] Mu8 N, (20)

where MuL N"MuL
1

wL
1

hK
1

uL
2

wL
2

hK
2
NT and MuJ N"MuJ

1
uJ
2

wJ
3

wJ
4

wJ
5

wJ
6
NT. [¹K ] is a 6]6

unsymmetric, non-singular matrix, which is a function of frequency, material properties and
dimension of the element. This matrix represents the local wave characteristic of the
displacements.

Next, using the expressions for force boundary condition from equations (6)} (8), the
nodal forces are related to the wave coe$cients uJ

j
and wJ

j
through the following force

boundary equations:

NK
1
"!NK

x
(0, u

n
), <K

1
"!<K

x
(0, u

n
), MK

1
"!MK

x
(0, u

n
),

NK
1
"!NK

x
(¸, u

n
), <K

1
"<K

x
(¸, u

n
), MK

1
"MK

x
(¸, u

n
). (21)

In matrix notation, this can be written as

MFK N"[PK ] MuJ N, (22)

where the force vector MFK N"MNK
1
<K
1
MK

1
NK
2
<K
2
MK

2
NT. The matrix [PK ] has properties that are

similar to [¹K ], and it represents the local wave characteristic of forces. Combining
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equations (20) and (22), the equilibrium equation is obtained as

MFK N"[PK ] [¹K ]~1 MuL N"[KK ] MuL N, (23)

where [KK ] is the symmetric dynamic sti!ness matrix for an unsymmetric composite beam
element as a complex function of frequency.

4.2. THROW-OFF ELEMENT

Unlike conventional "nite element, here we derive a special case when the beam is very
long, and application of any transient load at any location causes no secondary
disturbances other than incident waves departing that location. This simulates a condition,
wherein the boundaries are at such a distance that the e!ect of re#ected waves become
negligible due to attenuation throughout their long traversal, and do not reach the location
under consideration within the time of observation. In other words, throw-o! element is
a non-resonant single-node element that acts as a conduit to allow the propagation of
trapped energy out of the system. Considering only the incident part of the displacement
"eld given by equation (18), the "eld variables for throw-o! element can be written as

G
uL (x, u

n
)

wL (x, u
n
)H"C

R
11

R
13

R
15

R
21

R
23

R
25
D G

uJ
1
e~*k1x

wJ
3
e~*k2x

wJ
5
e~*k3x H . (24)

Using the same procedure as followed in the case of "nite length element formulation in
previous subsection, a 3]3 symmetric dynamic sti!ness matrix [KK ] as a complex function
of frequency is derived.

4.3. COMPUTER IMPLEMENTATION

Before performing the analysis, the given time-dependent input force is transformed into
a series of frequency components using forward FFT. These are read in along with the
complex amplitudes of the force. The program architecture is almost identical to that of
conventional "nite element program in terms of input, assemblage, system solving and
output. The major di!erence is that the assemblage is done as part of a loop over all the
members at each frequency. For each member, the local dynamic sti!ness is established and
then transformed to global co-ordinates. Then it is entered into the structural sti!ness
matrix, simply by associating the appropriate nodal numbers. Those nodes which have
a zero d.o.f. are not entered at all. The non-zero nodal d.o.f. of the resulting system are
obtained using a banded solver.

Rather than solving a speci"c loading history, the system is "rst solved for a unit impulse
by inverting the global dynamic sti!ness matrix at each frequency. This yields the system
transfer function at the nodes, which are stored for later use. The transfer function enables
one to obtain the response to any excitation from a simple convolution. Thus, the problem
can be thought of as a sequence of pseudo-static problem for each of N frequencies. Note
that the number of d.o.f. is usually quite small, because the nodes are situated at joints.
Therefore, unlike conventional "nite element method, the process of inverting and storing
transfer functions are not prohibitive from the computational view-point.
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Because the spectral elements span long distances, it is usually necessary to determine
the responses at intermediate locations. This is done by "rst evaluating the
frequency-dependent coe$cients in the kernel solution to obtain the member responses at
desired location. As the "nal step, time reconstructions are obtained by inverse FFT.

5. RESULTS AND DISCUSSION

5.1. CANTILEVER BEAM

In order to study the quality of the response obtained from the proposed frequency
domain SEM, the results are "rst compared with results obtained from time domain FEM.
For this purpose, a "nite element model is employed where the elements has the following
mid-plane displacement "eld.

uo(x, t)"C
1
#C

2
x w (x, t)"C

3
#C

4
x#C

5
x2#C

6
x3. (25)

A cantilever beam as shown in Figure 1(b) is considered with length ¸"1)0 m, width
b"0)01 m, depth h"0)01 m, and made up of AS/3501-6 graphite-epoxy, having properties
E
1
"144)48 GPa, E

2
"9)632 GPa, G

12
"4)128 GPa, l

12
"0)3, o"1389 kg/m3. The

ply-stacking sequence used is [0
5
/90

5
], which gives a coupling factor r"0)574. An impact

load of 4.4 N and 50 ks duration shown in Figure 3 is considered. The "gure shows that the
load has a very high-frequency content of about 50 kHz. This impact load is "rst applied at
the cantilever tip in axial direction. In SEM, the whole beam is considered as a single
element, whereas in FEM, the domain is modelled with 1000 elements (overall system size
3000]6). The Newmark time integration scheme with a time step of 1 ks is adopted.
Figure 4(a) shows the comparison of axial tip velocities obtained from SEM and FEM.
Figure 3. Impact load history. Frequency spectrum of the load is shown in the inset.
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Figure 4. (a) Axial response at the cantilever tip due to axial tip load:00 SEM;** FEM. (b) Transverse
response at the cantilever tip due to transverse tip load:00 SEM; ** FEM.
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Next, the beam is impacted in transverse direction at the tip and Figure 4(b) shows the
comparison of transverse tip velocities. For both the cases, the plots show good agreement.
From "gure 4(a), it is clear that the axial wave propagates non-dispersively, while the
#exural wave (shown in Figure 4(b)) is dispersive. Figure 4(b) also shows that the response
JSVI=20003078=Ravi=VVC
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obtained by SEM is slightly on the higher side. This may be attributed to the di!erent
damping schemes employed by SEM and FEM.

5.2. EFFECT OF AXIAL}FLEXURAL COUPLING

One of the characteristics of the unsymmetric composite beam is the presence of
axial-#exural coupling. That is, an incident axial wave will give rise to #exural wave and vice
versa. The aim of the following example is to capture this behavior. In order to see this, it is
required that the waves travel non-dispersively. Hence, for this purpose, a sinusoidally
modulated pulse is allowed to propagate through an in"nite beam shown in Figure 1(c). The
pulse is modulated at 50 kHz frequency. The frequency amplitude of this pulse has been
plotted with "rm line in Figure 2(b). The in"nite beam is modelled using two throw-o!
elements and one "nite length element. Three ply-stacking sequences having coupling
parameter r"0)0, 0)312 and 0)574 (as used in section 3) are considered. The modulated
pulse is "rst applied in the axial direction at C. The axial and transverse velocity histories
obtained at D, which is 3)0 m away from the application of load are shown in Figures 5(a)
and 5(b) respectively. In Figure 5(a), the time shifts in the predominant axial mode response
for increasing values of r can be attributed to the reduction in axial group speed (Mode 1 in
Figure 2(b)). Also, for r"0)574, the e!ect of #exural mode induced in the axial response is
clearly visible around 1)0 msec. The time of occurrence of this additional mode corresponds
to the #exural group speed (Mode 2) in Figure 2(b) at 50 kHz, which happens to be the
modulation frequency of the applied load. Similarly, in Figure 5(b), the increasing e!ect of
both the modes induced in the #exural response is visible for increasing values of r, and their
times of occurrence resemble those in Figure 5(a). Next, the same modulated pulse as
considered above, is applied in transverse direction on the in"nite beam at C. The tranverse
and axial velocity histories at D are plotted in Figures 5(c) and 5(d) respectively. In Figure
5(c), it can be observed that the e!ect of the axial mode induced in the transverse response is
of negligible order. Here, the time shifts in the #exural mode response for increasing values
of r are greater than that in the axial mode response due to axial loading as shown in Figure
5(a), which correlate the fact that for the chosen modulation frequency (50 kHz), the
percentage reduction of #exural group speed (Mode 2) is nearly 10% more than that of axial
group speed as revealed from Figure 2(b). From Figure 5(d), for maximum value of
coupling, two propagating pulses can be seen clearly*the "rst is due to axial mode and the
second is due to the #exural mode. It is seen that the magnitude of the #exural mode is
slightly higher compared to that of the axial mode. A general trend observed from the
example is that there is increase in magnitude of the responses for increasing values of r, and
this is attributed to the reduction in the strength of the structure with more o!-axis ply
orientations. Hence, by using SEM, the presence of two simultaneously propagating
spectrum due to unsymmetric ply orientations becomes tractable in both quantitative as
well as in qualitative forms.

5.3. ANGLE JOINT

Often in practice, we come across planar frame structures with complex geometry. Such
structures are often used for space application such as solar panel, antenna, etc., wherein
a number of skeletal members are connected by rigid or #exible joints, thereby creating
a complex structural network. The proposed SEM can account for such situation with
relative ease. In this paper, we consider a rigid angle joint with three composite members
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Figure 5. (a) Axial response and (b) Transverse response at D due to axial modulated pulse applied on the
in"nite beam at C. (c) Tranverse response and (d) axial response at D due to transverse modulated pulse applied on
the in"nite beam at C.
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(Figure 1(d)) to analyze the nature of re#ected and transmitted waves through the joint. In
particular, it will be interesting to observe how the dynamics of the system changes with the
change in joint angle. In addition, it is also important to know the e!ect of axial}#exural
coupling on the overall response. In SEM, 0)5 m long segments on both sides of the joint
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Figure 6. (a) Comparison of axial response at A, due to axial impact load applied at A.0 SEM;* FEM.
(b) Comparison of axial response at A, due to transverse impact load applied at A.0 SEM; * FEM.
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along the x-axis are modelled with two "nite length spectral elements. Rest of the
semi-in"nite segments are modelled with three throw-o! elements. In FEM, these three
semi-in"nite segments are modelled with 950 elements each, while the segment AB is
modelled with 100 elements. The length of each element is 1)0 cm. This gives an overall
system size of 8994]9.
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Each member connected with the joint is made up of AS/3501-6 graphite-epoxy, as
considered in the previous cases, and with ply-stacking sequence [0

5
/45

5
]. Here, the

coupling factor r"0)213. First of all, to validate the accuracy of the response obtained from
SEM, the impact load as considered earlier (Figure 3) is applied axially at A for joint angle
/"303. The axial velocity history at the same point A, is computed and compared with the
FEM result, which is shown in Figure 6(a). Similarly, the same load is applied transversely
at A. The axial velocity history at the same point A is computed, and also compared with
the FEM result, which is shown in Figure 6(b). In the above two cases, both the results show
good agreement.

Next, the e!ect of variation of joint angle /, on transmitted response through the rigid
joint (Figure 1(d)) is simulated. [0

5
/45

5
] ply-stacking sequence (r"0)213) is considered in

all the three members. The same axial loading (Figure 3) as considered earlier is applied at
A. The transverse response at B is computed for various angles over the range 10}1503.
Figure 8 shows the surface plot of the transverse velocity history normalized with
P
max

c
L
h2/D

11
. Here, P

max
is the maximum load ordinate (Figure 3). As seen in the spectrum

plot (Figure 2(a)), the axial}#exural coupling has much lesser e!ect on axial wave number
compared to that on #exural wave numbers. And this fact causes very little contribution of
Mode 1 on transverse response compared to the contribution of Mode 2 on axial response,
as observed in Figures 5(a) and 5(c). This is also clear from Figure 7, wherein the
contribution of axial mode is so small that it is not visible. Figure 7 also shows that at small
joint angles, and near /"903, the peaks get reduced. Actually, this happens due to less
amount of shear force transfer into the member containing the point B. In the other ranges
fo /, the magnitudes of the peaks become almost unchanged. Even though, the occurrence
of these peaks get slightly shifted behind, for increasing values of /.

To study the e!ect of axial}#exural coupling on the dynamic response, the same rigid
joint (Figure 1(d)) with an axial loading at point A, is considered as in the previous case. The
angle of the rigid joint / is taken as 453. The non-dimensional coupling parameter r is
varied by using di!erent ply-stacking sequences. Three-ply-stacking sequences [0

10
],
Figure 7. Transmitted transverse response at B, due to axial impact load applied at A, for various joint angles /.
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Figure 8. (a) Normalized axial velocity history at A and B, showing the re#ection and transmission of
response through the rigid joint (/"453), due to axial impact load applied at A: ) } )} r"0)0; 22 r"0)312;
00 r"0)574. (b) Normalized transverse velocity history at A and B, showing the re#ection and transmission of
response through the rigid joint (/"453), due to axial impact load applied at A: ) } )} r"0)0; 22 r"0)312;
00 r"0)574.
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[0
5
/30

2
/60

3
] and [0

5
/90

5
] are chosen, which produce coupling parameters r"0)0, 0)312

and 0)574 respectively. In Figure 8(a), the axial velocity (normalized with P
max

c
L
/A

11
)

response at A and B (both are at a same distance of 0)5 m from the joint) is plotted. The
"gure shows that the re#ected axial response at A, as well as the transmitted axial response
JSVI=20003078=Ravi=VVC



SPECTRAL-ELEMENT-BASED SOLUTIONS 835
at B reaches at the same time for a particular value of r. But, due to the decrease in the
values of A

11
, for increasing values of r, the axial speed of propagation decreases. As

a result, both the responses reach at a later stage. A separation of 0)24 m can be seen
between responses due to unsymmetric cross-ply and the symmetric 03 ply con"gurations.
Also, an increasing nature of dispersiveness becomes dominant after the initial peak, which
can be considered as a contribution from Modes 2 and 3, as discussed earlier. Figure 8(b)
shows the plot of transverse velocity (normalized with P

max
c
L
h2/D

11
) response at A and B.

Other than a similar time lag in the arrival of re#ected and transmitted responses as
observed in the case of axial propagation, the smoothness in the response curves disappears
and transient nature becomes signi"cant for increasing values of r. The local kinks at the
later stages necessarily appear as a very-high-frequency contribution from Mode
1 propagation.

6. CONCLUSIONS

A methodology, analogous to that of "nite element method, is presented that allow
problems involving many connected elementary unsymmetric laminated composite
waveguides to be handled in a convenient and straightforward manner.

Unlike conventional FE formulation, however, the length of the spectral element is not
a limiting factor; each element is formulated exactly, irrespective of its length. Hence,
structural connections and discontinuities are the factors which govern the length of the
element. This leads to a substantial reduction in the number of equations that are to be
solved. The work presented in this paper has mainly dealt with the behavior of elementary
unsymmetric composite beams, without the e!ects of shear deformation and rotary inertia.
Due to this reason, the numerical investigation has been restricted to slender beams and
frames with unsymmetry. This is basically to avoid any appreciable deviation from the
actual structural response.

It is seen from the numerical investigation that the main e!ect of unsymmetric ply
orientation is the alteration of the spectrum and dispersion relations. It is found that the
axial mode (Mode 1) is least a!ected by unsymmetry. However, the #exural modes (Modes
2 and 3) are most a!ected. That is, the #exural speeds are greatly reduced (about 20%) due
to unsymmetry. The numerical studies have also shown that the results from the formulated
spectral element agrees well with established "nite element method. This study, through
SEM, has clearly brought out the changes that an unsymmetric ply con"guration can
introduce to alter the dynamics of multiply connected symmetric composite beams.

Another big advantage of SEM is that the solution has very little storage requirement as
compared to conventional FEM. In the actual computation of the third example (angle
joint), it has been found that the storage requirement for system formation is approximately
2)05 KB for SEM in contrast to 1)5 MB for FEM. In SEM, 8-byte memory was assigned for
handling each of the real and complex part of the sti!ness elements in banded form, and in
FEM, the same was assigned for handling the real-valued sti!ness elements in banded form.
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