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The superposition-Galerkin method for analyzing the free vibration of thin isotropic and
orthotropic plates as well as transverse-shear deformable plates was introduced in recent
years. It has an advantage over the traditional superposition method in that it gives equally
accurate results but requires much less work on the part of the analyst. Unfortunately, it has
not been possible up to this time to apply it to plates with free edge conditions. This was due
to mixed derivatives appearing in the formulation of free edge boundary conditions. In this
paper it is shown how, with the superposition of specially selected sets of forced vibration
solutions (building blocks), the above limitations are avoided. While the technique is applied
here to the analysis of fully symmetric modes, only, it is demonstrated how the
superposition-Galerkin method can be applied to any of the above plate problems
regardless of the combination of free edge boundary conditions to be imposed.

( 2000 Academic Press
1. INTRODUCTION

It has been well demonstrated that the superposition method constitutes a powerful
analytical technique for analyzing the free vibration of a wide family of rectangular plates.
Initially, the method was applied to thin plates with classical boundary conditions. It
subsequently became apparent that the method could be successfully applied to point
supported plates, plates resting on elastic edge support, and orthotropic plates. Later the
method was applied to thick plates whose behavior was governed by the Mindlin equations.
The latter approach was extended to cover the case of transverse shear-deformable
composite plates.

During this series of studies one characteristic of the method became apparent.
This relates to the fact that as one moved from thin isotropic plates, to orthotropic
plates, and subsequently to transverse shear-deformable plates, the amount of
work required to conduct the analysis became greater and greater. This, in turn, was
largely due to the additional forms of solutions of the governing di!erential equation(s)
which had to be provided for in the analysis as one moved to the more complicated plate
problems.

It was for this reason that the author and his colleagues introduced the
superposition-Galerkin method for the analysis of these problems. This latter method
di!ered from the traditional superposition method only in the manner whereby solutions
were obtained for the response of forced vibration solutions (building blocks) utilized in the
analysis. With the newer approach it was not necessary to solve the di!erential equation(s)
directly, but rather, solutions were obtained by the Galerkin method. As explained in
0022-460X/00/450901#14 $35.00/0 ( 2000 Academic Press
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reference [1], vast savings in computational e!orts were achieved, particularly, in the case of
transverse shear-deformable plates. It was for this reason that the superposition-Galerkin
method was utilized for obtaining solutions to composite plate problems as reported in
references [2, 3].

It remained a fact, nevertheless, that this new approach was found not to be applicable to
the analysis of plates with combinations of free edges. The reason was very simple. In the
classical Galerkin approach to obtaining solutions for building blocks, it is necessary to
represent these solutions in series of functions, each term of which satis"es exactly the
prescribed boundary conditions. This presented no di$culty for the case of building blocks
where only clamped or simply supported edges were involved. In the case of plates with free
edges, because of mixed derivatives utilized in formulating the edge conditions
mathematically, it became impossible to choose appropriate series of functions. The
computational advantages related to the superposition-Galerkin method could therefore
not be exploited.

It has now been found that by employing specially selected sets of building blocks the
superposition-Galerkin method can, in fact, be utilized to resolve these problems involving
plates with combinations of free edge conditions. The objective of this paper is to
demonstrate just how this end is accomplished.

2. MATHEMATICAL PROCEDURE

2.1. ANALYSIS OF THE THIN COMPLETELY FREE ORTHOTROPIC PLATE

The orthotropic plate has been selected for demonstration purposes as its analysis is
more complicated than that of the isotropic plate, at least by means of the traditional
superposition method. In fact, the isotropic plate constitutes a special limiting case of the
orthotropic plate. Since the main function of this paper is to demonstrate a method of
analysis, only the fully symmetric modes are analyzed. It will be seen that the analysis
described is easily extended to handle all families of mode shapes.

2.1.1. Analysis by the ¹raditional Superposition Method

Analysis of this problem by the traditional superposition method will be described
brie#y for the sake of completeness. This traditional approach was employed, and
described in detail, in reference [4], where the same completely free orthotropic plate
resting on four symmetrically distributed point supports was examined. It will be
appreciated that by deleting the portion of the eigenvalue matrix related to the point
supports of this earlier problem, one arrives at the eigenvalue matrix for the problem of
immediate interest here.

Fully symmetric modes are analyzed by superimposing the two building blocks
represented schematically in Figure 1. Only one-quarter of the plate is considered in the
analysis. Edges with two adjacent small circles are free of vertical edge reaction and the
slope taken normal to these edges is everywhere zero.

The driven edge of the "rst building block is also free of vertical edge reaction. It is driven
by a harmonic bending moment. The spatial distribution of the amplitude of this bending
moment is expressed in series form as
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Figure 1. Building blocks utilized in analysis of completely free thin orthotropic plate by the traditional
superposition method.
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The solution for the building block response is expressed as
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(g) cos (mnm). (2)

The governing di!erential equation is written as
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Upon substituting equation (2) into the governing di!erential equation, and separating
variables, one obtains the ordinary fourth order di!erential equation governing the
functions >
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(g),
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where roman superscripts indicate the order of di!erentiation with respect to the
co-ordinate g, and where a

1
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2
"DX>/4 M(mn)4!j4N.

The possible forms of solution for equation (4) are well known. The applicable form will
depend on the input parameters DHX, DH>, etc. Each will contain four unknowns;
however, two are immediately eliminated in view of symmetry required about the m-axis.
The possible forms of solution are then
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where A
m

and B
m

are constants to be determined. The reader will "nd the other symbols
carefully de"ned in reference [4].

Enforcing the zero vertical edge reaction, and dynamic moment equilibrium conditions,
along the driven edge one obtains the remaining two boundary conditions to be enforced
respectively. They are
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Enforcing the above boundary conditions, the two unknowns of equation (5) are
evaluated and the building block response is available in terms of the driving coe$cients E

m
,
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regardless of the form the solution takes. Solution for the second building block, with
driving coe$cients E

n
, is obtained from the "rst through a simple interchange of axis. Upon

superimposing the two building blocks, the net contributions to bending moments along
each of the boundaries, g"1, and m"1, are expanded in a cosine series of k terms, where
k equals the number of terms utilized in the building block solutions.

Each net coe$cient in these new series is set equal to zero, thereby giving rise to a set of 2k
homogeneous algebraic equations relating the unknowns E

m
and E

n
. The coe$cient matrix

of this set of equations forms the required eigenvalue matrix and eigenvalues are obtained
by searching for those values of the parameter j2 which cause the determinant at the
eigenvalue matrix to vanish. Mode shapes are obtained by setting one of the non-
zero coe$cients, E

m
and E

n
, equal to unity and then solving the resultant set of

non-homogeneous equations in order to evaluate the remaining coe$cients.

2.1.2. Analysis by the superposition-Galerkin method

We now turn to the problem of obtaining the response of the "rst building block of
Figure 1 by the Galerkin method. We wish to represent the functions >

m
(g), in series form,

where each term in the series satis"es all of the prescribed boundary conditions. There is no
di$culty selecting series of functions for which the condition of symmetry with respect to
the m-axis is satis"ed. The di$culty arises when we try to choose these same functions so
that each one satis"es exactly the boundary conditions expressed by equations (6) and (7).
This turns out to be an insurmountable task. In fact, this was why earlier attempts to
solve completely free plate problems by the superposition-Galerkin method had to be
abandoned.

In this paper we choose to analyze the same basic problem as discussed above by means
of the alternate set of building blocks of Figure 2. In fact, the "rst two building blocks of this
set replace the "rst building block of Figure 1.

The "rst and second building blocks of Figure 2 di!er from the "rst of Figure 1 only in the
boundary conditions which are imposed along their driven edges. The "rst of this pair is
Figure 2. Building blocks utilized in analysis of completely free thin orthotropic plate by the
superposition-Galerkin method.
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driven by a distributed harmonic bending moment; however, lateral displacement along the
driven edge is forbidden. The second building block of this set is driven by a distributed
harmonic vertical edge reaction, while slope normal to this edge is forbidden. This latter
condition is indicated in the "gure by two connected solid dots, one on either side of the
driven edge.

It is important to note that no mixed derivatives are involved in the formulation of the
boundary conditions of these building blocks. It will thus be found that Galerkin-type
solutions can be obtained for their response. It will be noted that any required bending
moment can be imposed along the driven edge of the "rst building block, however, some
residual vertical edge reaction is to be expected. Conversely, any required vertical edge
reaction can be imposed along the driven edge of the second building block, however, some
residual bending moment is to be expected.

When superimposed it will be found that these two building blocks compliment with each
other. Driving coe$cients can be adjusted so that while one building block enforces the
condition of zero net bending moment along the edge g"1, of the superimposed set, the
other will enforce the condition of zero net vertical edge reaction along the same edge.
The ultimate goal of enforcing free edge conditions along the edge is thus accomplished.

Focusing the attention now on the "rst and second building blocks of Figure 2 we express
their solutions in the form of equation (2). Amplitude of the applied bending moment for the
"rst building block is again expressed as in equation (1). Boundary conditions to be
enforced along the driven edge are

>
m
(g) Dg/1

"0, YA
m

(g) Dg/1
"!E

m
. (8, 9)

For the second building block the corresponding boundary conditions become
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m
. (10, 11)

It will be obvious that exact solutions for the above building blocks can be obtained
following steps similar to those described for the "rst building block of Figure 1. One can
obtain solutions for the third and fourth building blocks through a simple interchange of
axes and superimpose the set of four. One can then obtain an eigenvalue matrix by
enforcing a condition of zero net bending moment and zero net vertical edge reaction along
the edges g"1 and m"1.

In fact, this has been done and it is found that the eigenvalues so obtained are identical to
those obtained by utilization of the two building blocks of Figure 1.

We now turn to our main objective, i.e., we wish to demonstrate how solutions for the
response of the "rst two building blocks of Figure 2 can be obtained by the Galerkin
method.

Let us choose the following series to represent the functions >
m
(g) of the "rst building

block:
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It will be noted that each term on the right-handside of equation (12) is symmetric with
respect to the m-axis, as required, and furthermore, because of the addition of the
polynomial terms, each term in the summation satis"es exactly the required boundary
conditions.
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The functions >
m
(g) for the second building block may be expressed as
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Again it will be seen that required conditions of symmetry, and driven edge boundary
conditions, are satis"ed.

From here on standard Galerkin procedures are followed in order to obtain building
block response. Let kk equal the number of terms utilized in equations (12) and (13).
Focusing on the "rst building block we wish to obtain the coe$cients E

i
as a function of the

driving coe$cient E
m

for any value of &m'. We begin by di!erentiating the right-hand side of
equation (12), term by term, and substituting into the governing di!erential equation (4).
Thus, we arrive at a quantity which we designate as Q

m
. Q

m
is a function of g and involves

the kk unknowns, E
i
, and the driving coe$cient, E

m
. Next we expand the quantity Q

m
in

a series of kk terms, setting each term in the new series equal to zero. In order to take
advantage of orthogonality it is appropriate here to use a series of the type employed in
equation (12).

We thus arrive at a set of kk non-homogeneous algebraic equations relating the kk
unknowns, E

i
, and the quantity E

m
. One can easily solve this set of equations utilizing

standard computer routines and thereby arrive at a simple linear relationship between the
quantities, E

i
, and E

m
. The response of the "rst building block to any driving coe$cient, E

m
is now available. A solution for the response of the second building block is obtained in an
identical fashion. The Galerkin procedure as employed here has been described in detail in
reference [1].

Response of the third and fourth building blocks is obtained in a manner identical to that
described above after appropriate interchange of axes.

Having the response of all building blocks available we turn next to the process of
superimposing all four and computation of the eigenvalue matrix. This is achieved in
a manner identical to that described above. We again enforce the conditions of zero
net bending moment and zero net vertical edge reaction along the edges g"1 and
m"1. Computed eigenvalues based on the traditional superposition method and the
superposition-Galerkinmethod will be presented later. Advantages of the latter method will
also be discussed.

2.2. THE COMPLETELY FREE MINDLIN PLATE

2.2.1. Analysis by the ¹raditional Superposition Method

A thorough analysis of this plate by the traditional superposition method was presented
in reference [5]. Here it is necessary to give only a brief review of this earlier work. The same
basic equations are employed.

Again for illustrative purposes we will analyze the fully symmetric modes of vibration
only. The three governing di!erential equations to be satis"ed are reproduced in
dimensionless form below:
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Shear forces, bending moments and twisting moments may be written as
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The building blocks employed are similar to those of the traditional approach, as shown
in Figure 1. The major di!erence is that now three boundary conditions are to be enforced
along each edge. The "rst building block is driven by a distributed harmonic bending
moment. The driven edge is free of transverse shear force and twisting moment. The
amplitude of the driving moment is expressed as
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The remaining edges have slip-shear conditions imposed. This is again indicated by two
adjacent small circles. For this building block, slip-shear conditions imply zero rotation of
the cross-section running along the edge, as well as zero transverse shear force and zero
twisting moment.

The dimensionless plate lateral displacement and cross-sectional rotations are expressed
as
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It is found advantageous to compute the response of the building block separately for the
case where &m' equals zero, and &m' is greater than zero. We begin with computing response
of the "rst building block with m*1.

Substituting equations (18) into the di!erential equations it is found that the variables are
separable and we obtain a set of three coupled ordinary homogeneous di!erential equations
relating the functions X

m
(g), >

m
(g), and Z

m
(g). These equations are expressed in matrix

form as
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where coe$cients a
m1

, a
m2

, etc., are de"ned in reference [5].
It is found that through operating on the above set of equations with judiciously selected

operators, and then conducting a process of addition and subtraction of the resulting
equations, the individual quantities X

m
(g), etc., can be separated into sixth order ordinary

di!erential equations involving these individual quantities only. For each value of &m' six
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unknowns will appear, however, three are eliminated immediately in view of symmetry
about the m-axis. Other unknowns are evaluated by means of boundary conditions enforced
along the driven edge. Four forms of solution are found possible with m*1.

The reader will already appreciate that conducting the analysis as described above
will entail a vast amount of work. It will be seen shortly that utilization of
the superposition-Galerkin method obviates the need for the above computational e!orts.

We turn next to the situation when &m'"0. We are now handling what is essentially
a thick strip problem and computational work is considerably reduced. Only two
di!erential equations, which govern the functions =(m, g), and >g (g, m), apply. The
computational procedure is essentially the same as that described above and it is found that
only two possible forms of solution exist. Solution for the second building block is again
obtained through an interchange of axes, and eigenvalues and mode shapes are obtained,
after superposition of the two building blocks, by established procedures as described in
reference [5]. It is important to note that a solution for the response of the above building
blocks cannot be obtained by the Galerkin method due to mixed derivatives appearing in
the formulation of boundary conditions along their driven edge.

2.2.2. Analysis by the superposition-Galerkin method

In order to conduct this analysis we employ the building blocks of Figure 3. The "rst
three building blocks of this set replace the "rst building block of the previous set.

We begin by focusing attention on the "rst building block of the set. All non-driven edges
are given slip-shear boundary conditions as de"ned above. Lateral displacement and
cross-section rotations are again expressed as in equation (18). We begin by examining the
case with m'0. Bending moments, shear forces and twisting moments along the driven
edge are expressed as

Mg"
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Ltm
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, Qg"tg#
1

/
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#

1

/
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. (20}22)

The driving moment along the edge, g"1, is controlled by prescribing the "rst term on
the right-hand side of equation (20), thus

Ltg
Lg

"

=
+ E

m
cos(mnm). (23)
Figure 3. Building blocks utilized in analysis of completely free Mindlin plate by the superposition-Galerkin method.

m/0,1
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Instead of setting Qg and Mmg of equations (21) and (22) equal to zero we demand only
that L=/Lg and LWm/Lg of equations (21) and (22), respectively, should vanish. There will
obviously be a residual shear force and twisting moment left along the driven edge. This will
be taken out later by the other two building blocks. It is to be noted that the boundary
conditions prescribed above contain no mixed derivatives. A Galerkin-type solution is
therefore achievable for the "rst building block.

The series representations given immediately below have been utilized to permit
a Galerkin type solution for response of the "rst building block. The reader may wish to
verify that each term of each series satis"es exactly the required boundary conditions.

X
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E
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The same components of the boundary condition expressions prescribed for the "rst
building block are also prescribed for the other two building blocks of the set.

For the second building block the quantity L=/Lg is prescribed in series form identical to
that of equation (23). For the third building block the quantity LWm/Lg is prescribed as
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=
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E
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The remaining prescribed quantities are each set equal to zero.
The following series representations utilized in connection with the second building block

response meet the Galerkin requirements,
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Series representations used in connection with the third building block are
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and

Z
m
(g)"

=
+
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E
l
sin(2l!1)

n
2

g. (33)

Computation of the building block response for any of the three building blocks, and any
value of &m' is now easily achieved following established Galerkin procedures. The series
related to each building block are di!erentiated, as required, and substituted into the
governing di!erential equations. We may designate the three quantities thereby obtained as
Q

m1
, Q

m2
, and Q

m3
. Each quantity is a function of g. Each of these quantities is then

expanded in an appropriate series of kk terms. We can minimize work by choosing series
which permit us to take advantage of orthogonality. In the work reported here the
quantities Q

m1
and Q

m2
have been expanded in cosine series of the form, cos(n!1)ng,

n"1, 2,2, while the quantity Q
m3

was expanded in a sine series of the form, sin(nng),
n"1, 2,2 .

Setting the coe$cients of these new series equal to zero we thereby obtain,
for each building block, a set of 3 kk non-homogeneous algebraic equations relating the
3 kk unknowns, E

i
, E

j
, etc., and the driving coe$cient E

m
. Solving these equations

by standard computer techniques we obtain a linear relationship between each of
the unknowns and the driving coe$cient, E

m
. The response of each building block

to each excitation term is thus available in series form. The reader may wish to
examine reference [1] where a similar solution technique was employed, and described
in detail, for the fully clamped Mindlin plate. It is pointed out that the main co-
e$cient matrix for the left-hand side of the above sets of non-homogeneous equations is
identical for all three building blocks. It need be computed only once. The o!-diagonal
elements in many of the natural segments into which the above main matrix is divided are
zero.

Finally, examining equation (18), it is seen that when the subscript &m' takes on the value
zero, only two building blocks are involved. The moment and shear force acting along the
driven edge are expressed as
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, Qg"tg#
1

/

L=
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. (34, 35)

For the "rst building block we prescribe the quantity LWg/Lg as given by equation (22),
along the driven edge. The quantity L=/Lg of equation (35) is set equal to zero. All
boundary condition requirements are satis"ed through expressing the quantities X

m
(g) and

Z
m
(g) as
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For the second building block the quantity L=/Lg is expressed by a series identical to
that of equation (23). The quantity LWg/Lg is set equal to zero. The following series are
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utilized in representing the functions of equations (36) and (37),
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A linear relationship between the individual coe$cients, E
i
, E

j
, and the driving

coe$cients E
m

is obtained following the Galerkin procedure as described above.
In all solutions for fully symmetric mode building blocks it will be apparent that

functions=(m, g) and Wm (m, g) must possess symmetry with respect to the m-axis, while the
function Wg (m, g) must possess anti-symmetry. These conditions are seen to be satis"ed by
all solutions discussed above.

Solutions for the "nal three building blocks are again extracted from the "rst three
through interchange of co-ordinate axes. The six building block solutions are available, they
are superimposed and conditions of zero net bending moment, transverse shear force, and
twisting moment, are imposed along the edges g"1, and m"1, of the superimposed set.
One thus arrives at the required eigenvalue matrix.

It will be obvious that exact solutions could also be obtained for the building blocks of
Figure 3. In fact, this has been done for veri"cation purposes. Very good agreement was
obtained when eigenvalues obtained in this rather laborious fashion were compared with
those obtained earlier.

3. COMPARISON OF COMPUTED RESULTS

It is necessary to choose a value for &k', the number of terms in the building
block solutions required to give the desired convergence whether one employs
the traditional superposition method or the superposition-Galerkin method. With
this latter method we must also choose an appropriate value for kk, the number of
terms utilized in expansions related to the Galerkin procedures. In all cases the objec-
tive has been to choose values such that their increase would not change the
fourth signi"cant digit in computed eigenvalues. A value of "ve for the quantity &k' was
found to be adequate for all computations reported here. Values of &kk' will be discussed
later.

3.1. THE THIN ORTHOTROPIC PLATE

In computations related to this plate a value of 100 was found to be adequate
for the parameter kk. It is possible that lower values would have given satisfactory
results.

In Table 1 the "rst four eigenvalues are tabulated for the fully symmetric modes of a thin
square completely free plate. Only one-quarter of the plate was analyzed as discussed
earlier. Two sets of values for the orthotropic parameters were employed. The "rst set, with
DHX"DHY"1, corresponds to the isotropic plate. In the second set both parameters
were set equal to 1

2
. Comparison is made between eigenvalues obtained by means of the



TABLE 1

Comparison of eigenvalues obtained for fully symmetric
modes of the thin orthotropic square plate (A2 traditional
superposition method, B2superposition-Galerkin method)

DHX"DH>"1)0 DHX"DH>"1
2

Mode A B A B

1 4)806 4)806 4)800 4)800
2 6)106 6)106 6)048 6)048
3 15)69 15)69 10)74 10)74
4 29)11 29)11 28)46 28)46

TABLE 2

Comparison of eigenvalues obtained for fully symmetric
modes of the square Mindlin plate (A2traditional super-

position method, B2superposition-Galerkin method)

U
h
"0)02 U

h
"0)2

Mode A B A B

1 4)805 4)805 4)648 4)646
2 6)103 6)104 5)863 5)863
3 15)60 15)66 13)73 13)73
4 29)05 29)08 24)40 24)40
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conventional superposition method [4], and the present superposition-Galerkin method.
It is seen that agreement between eigenvalues obtained by the two di!erent methods is
excellent.

3.2. THE THICK MINDLIN PLATE

E!ects of varying the parameter kk for this problem were investigated in two di!erent
ways. In one approach its e!ect on elements of the printed-out eigenvalue matrix were
studied. The second approach involved studying its e!ect on computed eigenvalues.

As a result of studies in connection with the "rst approach it was concluded that matrix
elements related to the third building block were much more sensitive to variations in &kk'
than those of the "rst two building blocks. These convergence studies led to the adoption of
kk"60 for the "rst two building blocks while the value was increased to 300 for the third
building block. Results obtained were found to be stable and to agree quite well with those
of reference [5].

Eigenvalues computed earlier by the traditional superposition method are compared
with those computed here by the superposition-Galerkin method in Table 2. These
eigenvalues pertain to fully symmetric modes of a square Mindlin plate. Two di!erent
thickness ratios were utilized. It will be appreciated that ratios of 0)02 and 0)2, as utilized in
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the present work, where one quarter of the plate is analyzed, correspond to values of 0)01
and 0)1, of the earlier analysis where the full plate was analyzed.

It is seen that agreement between the two sets of computed eigenvalues is very good, with
slight di!erences in the fourth digits in some cases only.

4. DISCUSSION AND CONCLUSIONS

It is found that accurate free vibration analysis of the completely free rectangular plate
can be conducted by the superposition-Galerkin method as described here. It will be
obvious to the reader that by coupling the present sets of building blocks with similar sets
driven along the edges g"0, and m"0, a general analysis of all possible modes of the
completely free plate is achievable. Very little additional work will be required to achieve
this extension in capabilities as most of the elements of the larger eigenvalue matrix
associated with the general problem can be inferred from those obtained above.

One might be concerned about the fact that for thin plates the new method requires
replacing individual building blocks with a pair. In the case of the Mindlin plate individual
blocks of the earlier procedure are replaced with a set of three. It turns out, in fact, that the
additional building blocks do not signi"cantly increase the work load. As noted earlier, for
example, in the case of Mindlin plate analysis the same main coe$cicent matrix is utilized
for obtaining the Galerkin solution for response of all three building blocks. It need to be
computed only once.

The advantages of the superposition-Galerkin method over the traditional superposition
method have been enumerated in reference [1] and may be consulted by the reader.
Summarized brie#y, it may be stated that the entire problem of handling the various
possible forms of solution for a fourth order ordinary di!erential equation is eliminated
when analyzing the thin isotropic, or orthotropic, plate. The possible forms of solution
depend on the input parameters.

In the case of the Mindlin plate problem the obtaining of various possible forms of
solution to a set of three simultaneous ordinary coupled homogeneous di!erential
equations is completely avoided. Furthermore, problems related to computer over#ow, or
under#ow, sometimes experienced in the traditional approach, are eliminated as hyperbolic
functions no longer appear in the analysis.
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APPENDIX A: NOMENCLATURE

a, b edge lengths of quarter plate
D #exural rigidity of Mindlin plate
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D
x
, D

y
#exural rigidities associated with x- and y-directions, respectively, of orthotropic plate

Dq torsional rigidity of orthotropic plate
DHX "H/D

x
DH> "H/D

y
DX> "D

x
/D

y
h plate thickness
H 2H"l

x
D

x
#l

y
D

y
#4 Dq

M bending moment
Mm , Mg dimensionless bending moments associated with m and g directions, respectively, of

Mindlin plate
= plate lateral displacement divided by &&a''
xy distances along plate edges in m and g directions
m "x/a
g "y/b
j2 eigenvalue "ua 2Jo/D

x
for orthotropic plate, ua2Jo/D for Mindlin plate

u circular frequency of vibration
o mass of plate per unit area
l Poisson's ratio
l* "(2!l)
i2 Mindlin shear correction factor
l
x
, l

y
Poisson ratios associated with x and y directions, respectively, of orthotropic plate

/ "b/a
/
h

"h/a
tm, tg plate cross-section rotations associated with m and g directions respectively
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